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Preface 
 

The Industrial Conference on Data Mining ICDM-Leipzig was the sixth event in a series of 
annual events which started in 2000. We are pleased to note that the topic data mining with 
special emphasis on real world applications has been adopted from so many researchers all 
over the world into their research work. We received 156 papers from 19 different countries. 
The main topics are data mining in medicine and marketing, web mining, mining of images 
and signals, theoretical aspects of data mining, and aspects of data mining that bundles a 
series of different data mining applications such as intrusion detection, knowledge 
management, manufacturing process control, time-series mining and criminal investigations. 
The program committee was working hard in order to select the best papers. The acceptance 
rate was 30%. All these selected papers are published in this proceeding volume as long 
papers up to 15 pages. Besides that we installed a forum where work in progress has been 
presented. These papers are collected in a special poster proceeding volume and show once 
more the potentials and interesting developments for data mining for different applications. 
Three new workshops have been established in connection with ICDM: 1. Mass Data 
Analysis on Images and Signals, MDA 2006, 2. Data Mining for Life Sciences, DMLS 2006, 
and 3. Data Mining in Marketing, DMM 2006. These workshops are developing new topics 
for data mining under the aspect of the special application. We are pleased to see how many 
interesting developments are going on under these topics. 
We would like to express our appreciation to the reviewers for their precise and highly 
professional works. We appreciate the help and understanding of the editorial staff at Springer 
and in particular Alfred Hofmann, who supported the publication of these proceedings in the 
LNAI series.  
 
We wish to thank all speakers, participants, and industrial exhibitors who contributed to the 
success of the conference. 
 
We are looking forward to welcoming you to ICDM 2007 (www.data-mining-forum.de) and to the 
new work you will present there. 
 
July 2006          Petra Perner 
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Object detection in watershed partitioned                
gray-level images 

Maria Frucci and Gabriella Sanniti di Baja 

Institute of Cybernetics "E.Caianiello", CNR, Pozzuoli, Italy  
(m.frucci, g.sannitidibaja)@cib.na.cnr.it  

Abstract. Gray-level image segmentation is the first task for any image analy-
sis process, and is necessary to distinguish the objects of interest from the back-
ground. Segmentation is a complex task, especially when the gray-level distri-
bution along the image is such that sets of pixels characterized by a given gray-
level are interpreted by a human observer as belonging to the foreground in cer-
tain parts of the image, and to the background in other parts, depending on the 
local context. It very seldom happens that the background is characterized by an 
almost uniform gray-level. Thus, in the majority of cases, segmentation cannot 
be achieved by simply thresholding the image, i.e., by assigning all pixels with 
gray-level lower than a given threshold to the background and all remaining 
pixels to the foreground. One of the most often adopted segmentation tech-
niques is based on a preliminary partition of the input gray-level image into re-
gions, homogeneous with respect to a given property, to successively classify 
the obtained regions in two classes (foreground and background). In this paper, 
we follow this approach and present a powerful method to discriminate regions 
in a partition of a gray-level image obtained by using the watershed transforma-
tion. The basic idea underlying the classification is that for a wide class of gray-
level images, e.g., a number of biological images, the boundary between the 
foreground and the background is perceived where locally maximal changes in 
gray-level occur through the image. Our classification procedure works well 
even starting from a standard watershed partition, i.e., without resorting to seed 
selection and region growing. However, we will also briefly discuss new crit e-
ria to be used when applying digging and flooding techniques in the framework 
of watershed transformation, so as to produce a less fragmented partition of the 
image. By using the so obtained partition of the gray-level image, the succes-
sive classification is facilitated and the quality of the obtain ed results is im-
proved. Some hints regarding the use of multi-scale image representation to re-
duce the computational load will also be introduced. 

1.  Introduction 

Gray-level image segmentation is a necessary step in any image analysis process to 
single out the subsets of the image constituting the objects of interest (foreground) 
and so to distinguish them from the background.  

Recent surveys of different approaches to image segmentation can be found in 
[1,2]. Histogram thresholding (see e.g., [3]) is characterized by low computational 
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comple xity, but is suitable mainly for images where gray-level distribution is roughly 
articulated in two well defined peaks, separated by a not too broad and flat valley, i.e., 
images perceived as naturally binary such as written documents. To overcome these 
limits, rule -based methods combined with learning methods such as case-based rea-
soning have been developed [4]. Based on a rule set the histogram is properly 
smoothed and the right number of peaks is selected. Case-based reasoning ensures the 
incremental learning of the rule set with the proper parameters. Another approach is 
based on feature space clustering (see e.g., [5]), which is based on the assumption that 
each region of the image constitutes an individual cluster in the feature space. This 
method is easy to implement, but the selection of the proper features is critical and, 
analogously to histogram-based techniques, it does not take into account spatial in-
formation. Thus, this technique fails in presence of regions that a human observer as-
signs to either the foreground or the background depending on the local context. Re-
gion-based approaches (see e.g., [6]) require a suitable selection of seeds from which 
a growing process is done to group pixels in homogeneous regions. Of course, the se-
lection of the seeds plays a key role for the quality of the obtained results and the 
method works well when the region homogeneity criterion can be defined in an easy 
manner. A related approach is based on edge detection techniques (see e.g., [7]). This 
approach follows the way in which a human observer perceives objects by taking into 
account the difference in contrast between adjacent regions. A segmentation method 
exploiting both the region-based approach and edge detection is based on the water-
shed transformation [8]. Fuzzy approaches use a membership function to represent the 
degree of some properties and are generally characterized by high computational cost. 
Neural network techniques can also be used to perform classification of regions, but 
the training phase is long and the results may be biased by the initialization phase. 

The segmentation procedure to be adopted depends on the specific image domain. 
In this paper we consider the class of images where the distinction between fore-
ground and background is based only on the analysis of gray-level information, with-
out involving other features, such as the shape [9] expected to characterize the fore-
ground components. In particular, we refer to images where the foreground is either 
consistently locally lighter (or consistently locally darker) than the background. This 
class includes, for example, a number of biomedical images. In the digitized version 
of a histological specimen, the regions of interest are characterized by a different 
gray-level, either because these regions actually have different intensity in the speci-
men, or because they are placed at a different depth in the slide and, hence, some of 
them result out of focus.  

For the class of images considered in this paper, a segmentation method based on 
the use of the watershed transformation is the most suited one. Once the gray-level 
image has been partitioned into homogeneous regions, we classify the regions as be-
longing to either the foreground or the background, depending on the analysis of the 
locally maximal changes in gray-level between pairs of adjacent regions. Our classifi-
cation procedure can be applied to the basic partition obtained by standard watershed 
transformation, i.e., without taking into account suitable procedures to select the sig-
nificant seeds. Better results are achieved if the classification is accomplished on a 
more sophisticated watershed partition, e.g., the partition obtained by using the algo-
rithm introduced in [10], which significantly reduces the excessive fragmentation of 
the input image into regions. An alternative way to reduce oversegmentation is to re-
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sort to multi-scale image representation. When a gray-level image is observed at dif-
ferent resolutions, only the most significant regions are perceived at all resolutions. In 
turn, regions with lower significance, which can be interpreted as fine details, are per-
ceived only at sufficiently high resolution. Thus, if the seeds for watershed segmenta-
tion are detected at lower resolution, and these seeds are used to discriminate between 
significant and non-significant seeds in the image at full resolution, the partition is 
expected to consist mainly of the most significant regions.  

This paper is organized as follows. In Section 2, we briefly discuss the standard 
watershed transformation as well as the method [10] to partition a gray-level image 
into a set of regions. In Section 3, we describe the procedure to classify the obtained 
regions in the two classes (foreground and background). In Section 4, we give some 
hints regarding the use of multi-scale image representation to reduce the computa-
tional load of segmentation. Finally, concluding remarks are given in Section 5. 

2.  Watershed partition 

The 2D gray-level input image, used in this paper as running example, has been pro-
vided by courtesy of Dr. V. Guglielmotti and includes pyramidal neurons of rabbit 
cerebral cortex. See Fig.1, left. Gray-levels are in the range [0, 255]. In the running 
example, the foreground is perceived as locally darker with respect to the background. 
Thus, the foreground consists of the pixels having locally lower gray-level, according 
to the generally followed criterion for which the highest gray-level 255 corresponds to 
white, while the smallest possible value 0 corresponds to black. 

 

             

Fig. 1. The input image used as running example, left, and the relative gradient image, right. 

A gray-level image can be interpreted as a 3D landscape, where for every pixel in 
position (x,y), its gray-level plays the role of the z-coordinate. High gray-levels are 
mapped into mountains of the landscape, and low gray-levels into valleys. An easy 
way to explain how watershed transformation produces a partition of the image is the 
following. Let us assume that the landscape is immersed in water, after the bottom of 
each valley has been pierced. As a result, the valleys are flooded. Filling of a valley 
begins as soon as the water level reaches the bottom of that valley. A dam is built to 
prevent water to spread from a catchment’s basin into the neighboring ones, wherever 
waters from different basins are going to meet. When the whole landscape has been 
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covered by water, the basins are interpreted as the parts into which the landscape is 
partitioned by means of watershed lines. 

In a standard watershed transformation, the bottoms of all the valleys, i.e., the re-
gional minima, are detected in the gradient image of the input gray-level image, see 
Fig. 1 right. The regional minima are used as seeds for region growing. Watershed 
transformation generates a partition of the (gradient) image into regions characterized 
by homogeneity in gray-level.  

As it can be seen with reference to Fig.2 left, where the watershed lines are super-
imposed onto the input image, the image is fragmented in a quite large number or re-
gions (1010 for the running example). Oversegmentation is caused by the too many 
detected regional minima, which are not all perceptually significant. 

To reduce oversegmentation, a careful selection of the regional minima to be used 
for region growing is necessary. Flooding and digging techniques are generally em-
ployed to cause disappearance of those regional minima that are recognized in the 
gradient image as corresponding to non-significant regions. Of course, the definition 
of significant region is crucial to obtain a meaningful partition. In [10], a new crite-
rion has been introduced to evaluate the significance of the regions and to merge non-
significant regions only with selected adjacent regions. Merging is obtained by apply-
ing again the watershed transformation on a suitably modified gradient image, which 
includes a smaller number of regional minima with respect to the original landscape. 

 

             

Fig. 2. Standard watershed partition, left, and watershed partition by the algorithm [10], right. 

In [10], as soon as the watershed partition is available, the significance of a region 
X is defined by evaluating the interaction of X with every adjacent region Y. Two pa-
rameters are used to define the interaction: i) the maximal depth of X when the water 
reaches the local overflow pixel , i.e., the pixel with minimal height along the water-
shed line separating X from Y, and ii) the absolute value of the difference in height 
between the regional minima of X and Y. If non-significant regions exist in the cur-
rent watershed transform, the watershed transformation needs to be applied again af-
ter the seeds corresponding to the non-significant regions have been suitably re-
moved. Three cases are possible: 

1. X is significant with respect to each adjacent region Y. Then, X is definitely 
meaningful and no merging is necessary. 

2. X is non-significant with respect to each adjacent region Y. Then, X has to be ab-
sorbed by (some) adjacent region(s). To this aim, the regional minimum of X has 
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to be removed before applying again the watershed transformation. Flooding is 
accomplished by setting all pixels of X with gray-level lower than the lowest lo-
cal overflow value q, to value q. X will result as merged to Y, when the water-
shed transformation is applied again. 

3. X is significant in correspondence of some adjacent regions only. Then, X has to 
be merged with proper regions, selected among those with respect to which X is 
non-significant. Along the watershed line between X and any such a candidate 
region Y, a local overflow pixel exists, which is not necessarily the lowest local 
overflow pixel. Digging is performed, in this case, to open a canal connecting X 
with the region Y, which will absorb X when the watershed transformation is 
newly applied. The canal is identified as the minimal length path linking the re-
gional minima of X and Y, and passing through the local overflow pixel common 
to X and Y. The gray-level of all the pixels in the path is set to the lower value 
between those of the regional minima of X and Y. When the watershed 
transformation is newly applied, the water can flow through the canal from X to 
Y, and the desired merging is obtained. The watershed lines of X, which were 
already detected as separating significant regions, are not altered. 

The process is iterated until all resulting regions are significant. A remarkable re-
duction in the number of seeds, hence of the regions of the partition, is obtained. In 
turn, the computational cost is higher than that of standard watershed transformation, 
due both to the repeated application of the watershed transformation, and to the proc-
ess aimed at computing region significance and possibly perform region merging via 
flooding and digging.  For the running example, instead of 1010 regions characteriz-
ing the partition obtained by standard watershed transformation, only 259 regions are 
found. See Fig.2 right. Non-significant regions have been absorbed by adjacent sig-
nificant regions. Non-significant regions have never been grouped to form a new, un-
expected, significant region, or a region whose shape is altered with respect to the 
foreseen shape. 

3.  Classification of regions   

The watershed transformation has partitioned the image into N regions, whose me m-
bership to either the foreground or the background has not yet been established. Since 
the pixels constituting a region Ri of the partition don’t have all the same gray-level, 
we compute the average, ri, of the gray-levels of all pixels in Ri, and use it as the rep-
resentative gray-level for the whole region. Adjacent regions with the same value of ri 
are interpreted as constituting a single region. 

We first classify the regions whose representative gray-level is smaller (greater) 
than the representative gray-levels of all their adjacent regions, as belonging to the 
foreground (background). This initial classification is done by means of a global 
process, which detects, in a parallel way, all gray-level local minima and local 
maxima. Obviously, only the pits of the valleys and the peaks of the mountains in the 
landscape are classified by this process.  



M.Frucci and G. Sanniti di Baja 

The still unclassified regions constitute the slopes in between peaks and pits. For 
these regions, our classification method is inspired by visual perception and is based 
on the difference in gray-level between adjacent regions. In fact, the boundary sepa-
rating the foreground from the background is perceived as placed wherever strong dif-
ferences in gray-level occur. Thus, for any pair of adjacent regions Ri and Rj, out of 
which at least one is still unclassified, we compute the difference Di,j=|ri-rj|. Without 
losing generality, we assume that the first region, Ri, in any such a pair (Ri, Rj) is the 
darker one and the second region, Rj, is the lighter one, i.e., we assume ri<rj.    

An iterative classification process is performed, at each iteration of which the cur-
rent value ∆=max{Di,j}, i.e., the currently maximal difference in gray-level, is used to 
select the pairs of regions in between which the boundary is more likely to be placed. 
The process is iterated until all regions are classified. 

At each iteration, two cases are possible, depending on the number k of adjacent 
regions Rk

i and Rk
j with difference ∆ that are found.  

When k=1, we classify the darker region Rk
i of the unique selected pair, as belong-

ing to the foreground, and the lighter region Rk
j as belonging to the background. 

Moreover, we also classify in a global way all the unclassified regions that are charac-
terized by representative gray-level not larger than rki (and, hence, darker than Rk

i) as 
belonging to the foreground, and all unclassified regions with representative gray-
level not smaller than rk

j (and, hence, lighter than Rk
j) as belonging to the background.  

When k>1, classification is still done by using a global process only if the k darker 
regions Rk

i have their representative gray-levels smaller than the representative gray-
levels of all the lighter regions Rk

j. In other words, if the value maxmin= maxk{rk
i} is 

smaller than the value minmax= min k{rk
j}, we classify all regions with representative 

gray-level not greater than maxmin as belonging to the foreground, and all regions with 
representative gray-level not smaller than minmax as belonging to the background.   

In turn, if at least one of the k, k>1, darker regions Rk
i has representative gray-level 

not smaller than the representative gray-levels of all the lighter regions Rk
j, the same 

global classification would lead to conflictual assignments. For example, the region 
with representative gray-level minmax should be assigned to the background, since that 
region is the lighter one in the pair including it, but it should be assigned to the fore-
ground, since it results to be darker than the region with representative gray-level 
maxmin. To avoid conflicts, we classify globally only the regions with representative 
gray-level not larger than minmin=min k{rk

i} (not smaller than maxmax=max k{rk
j}) as 

belonging to the foreground (background). For any remaining region Rk
i belonging to 

a pair of regions with difference ∆ , the following local investigation is done. All as-
cending paths, consisting of unclassified regions with increasing representative gray-
levels, are traced along the slope including Rk

i until a classified region is met. Since 
along the slope, more than one pair of adjacent regions with difference ∆ can be 
found, a decision has to be taken to select, among the encountered pairs, the pair 
where the separation between the foreground and the background has to be placed. 
We select the pair for which rki is the greatest one, so as to favor assignment of most 
of the slope to the foreground.  

Once all regions have been classified, a final local process is accomplished, aimed 
at possibly changing the classification status of some regions that have been classified 
as belonging to the background during the iterative classification process, and are 
placed at the border with respect to foreground components along the slopes. This fi-
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nal process depends on the problem domain. If the purpose is to favor region growing 
without merging already detected foreground components, the change of status is 
done only if it does not cause a topology change. In turn, if clusters of foreground 
components are desired, e.g., to analyze the spatial organization of the foreground, the 
change of status is done only if it causes a topology change.  

 

             

Fig. 3. Pixels classified as belonging to the foreground, starting from the standard watershed 
partition, left, and from the partition obtained by using the algorithm [10], right. 

In Fig.3, the result of the classification process is shown for the running example, 
starting from the standard watershed partition, left, and from the more sophisticated 
watershed partition [10]. Foreground pixels are shown with their original gray-levels, 
while all background pixels have been set to 255. Both results can be regarded as sat-
isfactory, even if an obviously more accurate segmentation is obtained by using the 
partition obtained by the method [10]. As already pointed out in Section 2, the method 
[10] is comp utationally more expensive. Thus, the choice of which partition to adopt 
depends on a compromise between quality of the results and cost of the process. 

4. Reducing oversegmentation by multi-scale representation 

We describe here an alternative way to reduce oversegmentation, based on the use of 
a multi-scale image representation. This method requires that the standard watershed 
transform be computed only twice, while it has to be computed for a larger number of 
times if the algorithm [10] is used. When observing a gray-level image at different 
scales, the most significant regions are perceived at all resolutions, while regions with 
lower significance, e.g., fine details, are perceived only at sufficiently high resolution. 
Thus, if the seeds for watershed segmentation of the gray-level image are detected in 
a representation of the image at a lower resolution with respect to the full resolution 
of the input image and are, then, used to distinguish significant and non-significant 
seeds in the image at full resolution, the resulting partition is expected to consist 
mainly of the regions that are perceived as the most significant ones.  

To build a lower resolution representation of the input image I, we superimpose 
onto I a partition grid, each cell of which includes a fixed size block of pixels (chil-
dren). We associate to each cell of the grid a single pixel (parent) in the representa-
tion of I at lower resolution, I’. The gray-level of a parent pixel is computed in terms 
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of the gray-levels of its children. Depending on the position of the grid, the size of the 
cells, and the rule used to compute the gray-level of parent pixels, different lower 
resolution representations can be obtained. We here use the grid introduced in [11], 
whose cells are blocks of 2×2 pixels, so that the size of I’ is a fourth of the size of I. 
The rule we adopt to compute the gray-level of the parent pixels is such to produce an 
almost shift invariant lower resolution image representation. Moreover, the parent-
child relations are preserved, so that it is easy to transfer onto the full resolution im-
age I, the information derived by analyzing its lower resolution representation I’. 

More in detail, we inspect in forward raster fashion only pixels belonging to even 
rows and columns of I. This means that we use the bottom right child pixel in the 2×2 
block to find the coordinates of its parent pixel in I’. For each inspected pixel in posi-
tion (i,j) of I, the parent pixel in I’ will be in position (i/2,j/2).  

As for the gray-level of the parent pixel in position (i/2,j/2) of I’, we note that the 
sampling grid could be placed on I in four different ways and, hence, any pixel in the 
3×3 window centered on (i,j) could be the bottom right pixel of a block of the parti-
tion grid. If we consider the nine 3×3 windows, that in I are respectively centered on 
(i,j) and on each of its eight neighbors, then the pixel in position (i,j) is included in all 
the nine windows, its edge-neighbors are included in six windows and its vertex-
neighbors in four windows.  

 

                
Fig. 4. Full resolution image, left, lower resolution image, middle, and markers, right. 

We use the above numbers 9 for the pixel in (i,j), 6 for its edge-neighbors, and 4 
for its vertex-neighbors, as the proper weights to be used in a multiplicative mask to 
compute the gray-level of the parent pixel (i/2,j/2) of I’. By using the mask, we take 
into account the gray-levels of the pixel (i,j) and of its eight neighbors in a manner in-
dependent of the position of the grid. Rescaling of the computed gray-levels is done to 
have them still in the range [0, 255]. 

In Fig. 4 middle, the representation of the running example at lower resolution is 
shown. The full resolution image is given to the left, for the reader’s convenience. 

Since I is well represented by its lower resolution representation I’, we can use the 
seeds detected in the gradient image of I’, ∇’, as markers to select the significant 
seeds in the gradient image of I, ∇. Due to the preservation of the parent-child rela-
tions, we can easily project the seeds found in ∇’ onto a full resolution image. Since 
any parent pixel has four children, for each seed found in ∇’ we identify a projected 
seed consisting of the union of 2×2 blocks of pixels in ∇. See Fig. 4 right. 
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We regard a seed detected in ∇ as significant, if the partition region associated 
with it in the standard watershed transform includes at least one pixel of a projected 
seed. Seeds originally detected in ∇, but such that the associated partition regions of 
the standard watershed transform do not include any pixel of projected seeds are re-
garded as non-significant. By means of a flooding process, the partition regions of the 
standard watershed transform corresponding to non-significant seeds are merged to 
adjacent regions. In practice, the gray-level of the non-significant seeds is suitably in-
creased, so that those pixels will not be newly identified as regional min ima, when the 
watershed transformation is applied for the second time to obtain the final partition. 

 

                

Fig. 5. Final result of the process to identify foreground components. 

The results of using multi-scale representation are shown in Fig. 5. The watershed 
lines partitioning the running example into only 153 regions are shown to the left, and 
the foreground components detected by using the process described in Section 3 are 
shown to the right, superimposed onto a uniform background.   

For completeness, we point out that the resolution of the image I’ could be fur-
thermore reduced by applying to I’ the same decimation process that we have applied 
to I.  By using an image I’ with even lower resolution, the number of significant seeds 
detected as significant in the full resolution image is expected to dimin ish. However, 
this could produce a too rough segmentation of the input gray-level image. 

5. Conclusion 

We have introduced a segmentation method based on a preliminary partition of a 
gray-level image into regions by means of the watershed transformation. The partition 
regions have been classified in two classes (foreground and background) by taking 
into account only gray-level information. Our segmentation method has been tested 
on a variety of images in different domains even if, in this paper, only one running 
exa mple relative to biological images has been shown. The method is suited to gray-
level images, where the boundary between foreground and background is perceived in 
correspondence with the locally maximal changes in gray-level through the image.  

We have shown the classification results obtained starting from standard watershed 
transform, i.e., without resorting to seed selection and region growing. When this is 
done, the computational burden of the whole segmentation process is rather limited. 
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Better results are obtained, at the expense of a higher computational cost, if the gray-
level image is partitioned by using a more sophisticated watershed transformation, in-
cluding digging and flooding techniques to produce a less fragmented partition of the 
image. This more complex procedure is necessary when a finer segmentation is indis-
pensable. We have also suggested an alternative way to reduce oversegmentation, by 
using multi-scale image representation. A lower resolution representation of the input 
image is built and the seeds for watershed partition found in this image are used as 
markers to discriminate between significant and non-significant seeds in the full reso-
lution image. Segmentation done by using this approach has a cost that is intermediate 
between the cost of segmentation based on the standard or a more sophisticated wa-
tershed transformation, still producing good results.  
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Abstract. This paper describes a digital system designed for the automatic 
detection and measurement of the velocity of moving objects in images 
acquired by means of a common TV-camera mounted onto a microscope. The 
main characteristics of this system are the following: 1) it can perform a real-
time gray level difference between two  successive frames in order to detect 
moving objects and to suppress stationary objects (subtraction procedure); 
usually the delay between two successive frames varies linearly from 40 msec 
to 1920 msec;  2) it reduces the size of images resulting from the subtraction  
procedure (difference images) and stores them in the frame  memory; the result 
of these operation, all performed in real-time, is a film of time sequences;  3) it 
performs an automatic labelization in order to recognize  the moving 
microorganisms and to calculate their area in each  difference image;  4) it 
calculates and plots the variation of the average area of  the cells moving in the 
microscope field;  5) it completes the analysis in few seconds.  

1 Introduction 

The exact determination of the speed parameters of swimming microorganisms can be 
a very useful tool for the study of both behavioral and physiological aspects of 
motility, that is an essential. Speed parameters can be obtained by means of 
photomicrographic [1] and cinematographic techniques [2]. These methods, however, 
turn out to be time consuming. Statistical counting techniques can be utilized as well 
[3], but they are tedious, and prone to human errors. Other methods utilize more 
sophisticated techniques such as spectral analysis of the light scattered by the 
microorganisms [4], or analogic elaboration of the video signal of a TV-camera 
mounted onto a microscope [5]. In these cases, however, the instrumentation 
necessary for speed parameter determination has the drawback to be not portable. A 
further alternative is represented either by the digital tracking microscope, which can 



determine speed parameters by reconstructing the entire movements of swimming 
microorganisms [6], [7], [8] or by the simple method we will describe. This method 
automatically and in real time determines the speed of swimming microorganisms. 
The biflagellate algae Dunaliella salina has been used as experimental subject. 
Substantially, this method utilizes the subtraction operation, which has already been 
used by other authors for the detection of motion [9]; however our procedure 
performs automatically and in real-time both the detection of the moving 
microorganisms and the determination of their speed parameters. Our results are 
consistent with previous published speed data of Dunaliella salina obtained with the 
other methods [10]. 

2 Materials and Methods 

A Pulnix TM860 (Pulnix, USA) CCD video camera was mounted onto a Zeiss 
Axioplan microscope (Zeiss, Germany) equipped with 16x and 60x objectives and 
100W halogen lamp as light source. Cells were placed in a small chamber obtained by 
fixing a PVC ring onto a microscope slide. The chamber was closed by means of a 
cover slip so as to avoid sample drying-out. The microorganisms can freely swim 
within a narrow layer of growth medium placed between a slide and a cover slip. 
The signal of the camera was the input of a FG100 AT Frame Grabber (Image 
Technology, USA) plugged into a Pentium V personal computer 750MHz clock. For 
the translational speed determination experiment, a sequence of images taken at 
known intervals of time was acquired, stored, and processed using the automatic 
procedure of Gualtieri and Coltelli [11]. For the rotational speed experiment, the light 
reflected by the cell eyespot was measured. The experimental set-up was the same 
used previously, with the addition of a custom-made slide. This custom-made slide 
allowed the lateral illumination of the cell sample by means of an optical fiber 
delivering the light coming from a Schott KL1500 fiber optic illuminator (Schott, 
Germany). 
Photographs were recorded with an Olympus Camedia C-30303 digital camera 
(Olympus, Japan) mounted on the Zeiss Axioplan microscope (Zeiss, Germany). 

3 Operation Procedures 

Real time detection of microorganisms under the microscope is performed by 
differencing continuously each frame of the video image from a previous frame, with 
a variable delay, during the acquisition process. This operation is made possible by 
programming the 12-bit input Look-up-table (LUT) of the board. This LUT, which is 
located between the digitization circuit and the frame memory, transforms the image 
before it is stored into the frame memory. Thanks to a feed-back circuit between the 
frame memory and the LUT, operations are made on combinations of stored and 
newly-acquired data. We program the LUT in order to move the six most significant 
bits from the A/D converter (the newly acquired data) to the six most significant bits 
in the frame memory; then the LUT subtracts the same six most significant bits of 



A/D data from those previously stored in the six most significant bits of the frame 
memory (the previous frame); the resulting six bits are then stored in the least 
significant bits of the frame memory. The resulting difference image is always 
available in the lower six 1-bit planes of the frame memory; while the upper six 1-bit 
planes contain the most recent data of the A/D converter, which are used as input for 
the next frame subtraction. In the case that the images of a moving cell in two 
successive frames are partly overlapping, the subtraction operation gives a zero value 
for the overlapping region of the cell and for the background, a negative value for that 
part of the cell image which is present only in the previously acquired frame and a 
positive value for that part of the cell image which is present only in the newly 
acquired frame. In order to follow the increasing of the cell image, which will 
increase up to the whole cell size during the delay progression, we program the LUT 
to clip to zero the negative value, (Fig. 1). 
In order to store several difference images in real time in the frame memory, we could 
reduce the spatial resolution of the image being acquired by means of the hardware 
Zoom.  In order to store the (reduced) image into its proper position of the frame 
memory, the X and Y coordinates of its origin are shifted in real time by means of 
Pan and Scroll operations. In this way we can store  images, by moving the 
coordinates  of their origin toward the right and downward. At the end of this 
procedure, the frame memory is displayed as a patchwork of (reduced) images. In 
order to identify moving cells and to extract its features such as baricenter 
coordinates, contours, axis and areas, a segmentation and labelization procedure is 
applied to each difference image [11]. This procedure lasts 2 seconds for the whole 
memory.   
 

 
Fig. 1. Subtraction operation. 

 



4 Results and Discussion 

Fig. 2 represents 10-images time sequence (400 msec). Each difference image is 
represented as a framed image. The number visible in the first column represents the 
delay between the two frames on which the system has performed the difference. The 
system acquires a couple of frames utilizing for each frame six bits of the frame 
memory and performs the subtraction operation as previously explained. Usually we 
choose a delay that varies linearly, but the delay can progress in a different way as 
well. In our case, because of the CCIR standard, the delay between two successive 
frames is 40 msec, or a multiple of 40 msec. The first image (40 msec) represents the 
real time difference between the first acquired frame and the second acquired frame; 
the second image (80 msec) is the real time difference between the third acquired 
frame and the fifth acquired frame. The position of the frames in the successive 
couples can be easily extrapolated by the delay number. After subtraction every 
difference image is placed in its proper position of the frame memory in real time by 
means of pan and scroll operations. For the determination of the translational speed 
value of the cell we have to measure the distance covered by the cell and the time 
lapse; if no stimuli are applied to the environment, the swimming speed of the cells 
can be considered constant. Therefore, the time a cell takes to cover a distance equal 
to its long axis can be used for the determination of its speed. As the difference 
procedure presented in Fig. 1 suggests, until the cell doesn't cover a distance equal to 
its size, the area value will be lower than the real one. Greater the delay between the 
frames, less two successive images of the cell are superimposed; there is a delay for 
which the  subtraction operation gives two separate images of the same cell, i.e. the 
area value of the cell is the real value. A higher delay between the two frames still 
separates the two images of the cell, but the area value of the cell will remain 
constant. In Fig. 2, the cells, which are represented by the whitish areas, can be hardly 
recognized in the first frames because the difference between two successive images 
of the same cell consists of a small agglomerate of pixels. In the last frame of the 
same figure, the cells are instead easily recognizable, because in this case the 
difference between the two images of the same cell is the whole cell area. In order to 
determine quantitatively the cell area variation every reduced image is segmented and 
labelized, (last column of Fig. 2). Because of the reduced thickness of the medium, 
the swimming path of the cells is planar, i.e. the cells are always focused. The average 
area of the cells moving in the field is calculated and the detected cells are contoured. 
For each reduced image a pre-established standard deviation value determines the 
selection of an area value range. Therefore, touching cells are automatically rejected 
because their area is too big; similarly, small agglomerate of pixels, produced by the 
subtraction operation in the case of moving cells which intrudes onto the area 
formerly occupied by a different cell, or when a cell enters the field of view between 
the two frame on which the subtraction operation is performed, are rejected. The 
variation of cell number in the microscope field during the acquisition is not critical 
for the analysis, because we calculate the average area of the labeled cells present in 
each difference images. Twenty sequences are measured and the calculated areas 
averaged. 
 



 
Fig. 2a. Procedure for translational speed determination (first five frames). 

 



 
Fig. 2b. Procedure for translational speed determination (last five frames). 

 
Fig. 3 shows the plot of the average cells area versus the delay progression. By 
interpolating the data of this plot, we obtain two intersecting straight lines. The first 
line shows that the average area value increases with the increasing of the delay 
because the overlapping of two successive images of the same cell decreases. The 
second lines shows that the average area value becomes steady because there is no 
more overlapping between the two successive images of the same cell. The 
intersection of these two lines identifies the time delay which has to be used for the 
determination of the exact swimming speed of the microorganisms.  In our case about 
150 msec is the time Dunaliella cells need to cover a distance equal to its long axis. A 
quantitative determination of the long axis of Dunaliella, by means of our labelization 
procedure, gives an average value of about15 μ. Previous studies reported a velocity 



of 100 μ/sec for Dunaliella cells, [12], therefore we can state that our system gives a 
correct evaluation of the swimming speed of this microorganism.  
 

 
Fig. 3. The plot of the average area value of the cells vs. the delay between frames. 

 
To investigate the rotational speed we store in the computer memory the frames 
acquired under lateral illumination as described in the Material and Methods section. 
The eyespot of Chlorophyta such as Dunaliella is a quarter-wavelength multi layered 
organization of osmophilic granules, which reflects very efficiently the light that 
strikes upon it. As the cell moves, we can detect this brilliant spot and verify if the 
cell rotates or not. For the wild type of Dunaliella frames were acquired every 40 ms, 
were thresholded and labelized so the eyespot is recognized as present in the image, 
(Fig. 4). 
 

 
Fig. 4. Procedure for rotational speed determination. 

 
The resulting duty cycle from a 600 ms recording shows that these cells rotate with a 
frequency of 8 Hz. (Fig. 5). 



 
 

 
Fig. 5. The plot of the event of the eyespot detection vs. the elapsed time 600. 

 
The time resolution of our system, which is 40 msec, can be considered sufficient to 
determine speed parameters of moving microorganism, as the study of physiological 
aspects of motility is usually based on the microscope observation of these 
phenomena. Due to its integration time, the human visual system has a time resolution 
of 250 msec, which is 6-time greater than that of our system [13]. Because the 
problem to be solved is the quantitative determination of visual phenomena, our 
system can be considered quite adequate for this purpose.   
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Abstract. In this paper, we propose a novel, completely automated method for 
the segmentation of lymphatic cell nuclei represented in microscopic specimen 
images. Actually, segmenting cell nuclei is the first, necessary step for develop-
ing an automated application for the early diagnostics of lymphatic system tu-
mors. The proposed method follows a two-step approach to, firstly, find the nu-
clei and, then, to refine the segmentation by means of a neural model, able to 
localize the borders of each nucleus. Experimental results have shown the fea-
sibility of the method. 

1   Introduction 

A great deal of research has concerned, in the last years, the development of auto-
mated systems for the early diagnosis of lymphatic tumors based on the morphologi-
cal analysis of blood cells in microscopic specimen images. Actually, pathologists 
usually make diagnosis by analyzing the morphology of specimen cells [1, 2]. 

The first and necessary step for automating cell analysis is an accurate segmenta-
tion of the cells themselves, which is, then, followed by the extraction of significant 
morphological parameters. Unfortunately, cell segmentation is usually an ill-posed 
problem: due to poor dye quality, cell boundary could be not well distinguishable and 
parts of the same tissue could be not equally stained; two or more cells could be very 
close to each other or even overlapping; the chromatin distribution inside the cells 
could generate strong computed edges which mislead the segmentation. 

In past years, many segmentation methods have been presented [3, 4]. They in-
clude watersheds [5, 6], region-based [7] and threshold-based methods [8]. The prob-
lem with these methods is that they do not employ any shape information of the cell, 
which can be useful in presence of noise.  

Recently, the application of Active Contours has been widely investigated for cell 
segmentation [9, 10]. However, such methods require an initialization of the snake, 



making the segmentation not completely automated. Moreover, having to select 
which cell the snake should be apply to, much information regarding all the cells 
represented in the images is lost. 

Other contour-based methods include Active Shape Models (ASM) [11], Active 
Appearance Models (AAM) [12] and variational deformable models (Strings) [13]. In 
the first two cases, a boundary model and its allowed variations are learned from a set 
of example boundaries and represented by a set of labeled points, encoding only 
shape information in ASM, also image features in AAM. The Strings method differs 
from the previous ones in adopting a continuous instead of discrete boundary repre-
sentation, together with a multiple features description, giving place to a multivariate 
curve representation in functional space (instead of a point representation in vector 
space). All these methods require initialization and allow modeling only the variation 
seen in the training set of boundary examples. 

The method we propose in this paper has the main characteristic to be completely 
automated. Moreover, it is suitable to segment all the cells contained in the images, 
allowing to extract information not only from the malignant ones. 

Following a two-step approach, images are first clustered, in order to perform a 
rough segmentation and localize the cells. In a second processing step, an Artificial 
Neural Network (ANN) is applied to the image portions containing the localized cell 
for individuating cell borders. 

Such an approach assures a high level of robustness, because the ANN performs a 
classification of the image and then it can distinguish among different kinds of struc-
tures, e.g. cell nucleus, cytoplasm, background, artifacts and so forth. 

2   The Fuzzy-Neural Segmentation 

Microscopic cell images are acquired as footprints of lymphoid tissue stained accord-
ing to the Romanovsky-Giemsa technique and digitized as color images. 

Each image I contains a number, say n, of cells which are constituted by the inter-
nal body – the nucleus –, which is the structure of interest to be segmented, and the 
cytoplasm. Due to the staining procedure, artifacts can be present in the images, as 
well as not perfectly stained cells that can be then considered as added noise.  

The proposed method is suitable to detect nuclei borders and consists in applying 
to each image I a two-stage procedure as follows: 

 
1. Cell dislocation detection: a cluster analysis, based on the fuzzy c-means 

algorithm, is applied to identify and label homogeneous regions in the 
image. The clustered regions are then used to divide the entire image in 
disjoint sub-parts for further processing (image partition). 

2. Cells contours extraction: from each image partition relevant features are 
extracted and a dedicated ANN is used to complete the segmentation by 
identifying the contours of each cell. 

 
A sketch of the method is shown in Fig. 1. 
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Fig. 1. The two-step method for cell segmentation 

In the following, each step is described in more details. 

2.1   Cells Dislocation Detection  

In order to individuate how cells are dislocated in the microscopic images, a fuzzy 
cluster analysis is performed and each image is partitioned in disjoint parts for next 
step elaboration. 

 
Cluster Analysis.  Homogeneous image regions are labelled using an unsupervised 
clustering method, based on the fuzzy c-means algorithm (FCM) [14]. This algorithm 
groups a set of data in a predefined number of classes so as to iteratively minimize a 
criterion function, namely the sum-of-squared-distance from region centroids, 
weighted by a cluster membership function. A membership grade p∈[0,1] is associ-
ated to each element of the data set, describing its probability to belong to a particular 
cluster. 

For each cell image I, a features vector  
 

(I0(x), I1(x), I2(x),…, Iq(x)) 
 
is computed for any pixel x, considering I(x) as a vector of the three color component  
I(x)=(r,g,b). Then I0(x) = I, and for k = 1,…,q, Ik(x) = I∗Γk(x), where Γk  is a Gaussian 
filter with σ = k. In this way, we obtain a data set D = {v1, v2, …, vm} where each vh, 
h=1,…,m is a vector in ℜp representing image elements at different resolutions.  

Let Ucm be a set of real c × m matrices, with c being an integer, 2 ≤ c < m; the 
fuzzy c-partition space for D is, then, the set: 
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where uih is the membership value of vh in cluster i (i = 1,…,c). 



By applying FCM, an optimal fuzzy c-partition and corresponding prototypes are 
found minimizing the objective function: 
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where Λ = (λ1, λ2,…, λc) is a matrix of unknown cluster centers λi ∈ ℜp, ||⋅|| is any 
norm, e.g. the Euclidean norm, expressing the similarity between each data vector vh 
and the center λi, and the weighting exponent η ∈ [0,∞) is a constant that influences 
the membership values. 

Fuzzy partition is carried out through an iterative minimization of (2), calculating 
the cluster centers at each iteration t = 1,2,… as: 
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and updating the membership values as: 
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The iterative process stops when |U(t+1)-U(t)| follows under a certain threshold or 
the maximum number of iterations is reached. 

Applying the FCM on the cell images induces a partition of each slide into a set 
P={R1,R2,…} of disjoint connected regions R, where the indices 1,2,… are region 
labels. In other words, by clustering, we obtain a rough segmentation which can be 
refined reducing the computation by the following step of image partitioning. 

 
Image Partitioning. Once clustered the image, the convex hull of each connected 
region is calculated in order to delimitate the largest image portion (convex image) 
containing the corresponding connected region.  

Starting from the convex hull, an image partition is extracted slightly enlarged in 
both directions the convex image. Such partition contains what the FCM has classi-
fied as a unique cell. However, the contour of the clustered region can be inaccurate, 
including, for instance, the cytoplasm; moreover, it can happen that two very closed 
or touching cells are clustered as a unique region. For these reasons, it is necessary to 
refine the clusterization in a further step. 

2.2 Cells Contour Extraction 

In order to detect the exact cell contour, from each image partition, a set of features is 
extracted and classified by a dedicated ANN. 



Features Extraction. Analyzing the properties of cell images and of the similar cells, 
the following vector of features ℑ(x) is computed for characterizing each pixel x of 
the segmented image partition:  
 

 Color values: I(x) = (r,g,b); 
 Mean color value: M(x) = (Mr, Mg, Mb) computed applying an average fil-

ter F(x), i.e. M(x) = I(x) ∗F(x); 
 Gradient norm: ||∇I(x)|| and its mean, computed along the three color 

components;  
 Radial gradient: Grt(x), defined as the gradient component in the radial 

direction  from the center of the connected region; r̂
 Membership value to the clustered region: ui(x), where i is the cluster in-

dex considered as a cell in the image partition. 
 

ANN for contours identification. The vectors of the extracted features ℑ(x) are 
processed by a dedicated ANN. It consists in a Multilayer Perceptron, trained accord-
ing to the Error Back-Propagation (EBP) algorithm [15] to recognize five different 
classes. At present, to resolve ambiguity in case of touching cells and let the network 
learn and generalize better, five pixel classes are selected: 

1. Cell border 
2. Cell internal body 
3. Cytoplasm 
4. Background 
5. Artifact 

Let oj(ℑ(x)) be the answer of the output units of the network when the features 
vector ℑ(x) is being processed; then, the pixel membership to one of the above men-
tioned classes can be computed as  

Φ(x) = argmaxj=1,…,5(oj(ℑ(x))) . (5) 

A set of pre-classified images has been used to train the network, using the Resil-
ient Back-Propagation [16] version of the EBP algorithm. Once defined the desired 
ψp output for each input vector of the training set TS = {ℑp(x)}, the cost function 
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where op = (o1,o2,…,oj) is the output vector of the network, is minimized iteratively 
computing the weight update at each iteration step t as follows: 
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where wij is the weight between the network units i and j, and ∆ij is the amount of 
weight change which, starting from a chosen value ∆0, varies at each step t according 
to the following equation: 
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where 0 < ε- < 1 < ε+ are parameters used to regulate weight modifications. 
The final result of this step is discussed in the following section. 

3   Results 

Footprints of lymphoid tissues were Romanovsky-Giemsa stained and digitized with 
digital camera mounted on Leica DMRB microscope using PlanApo 100/1.3 objec-
tive. The equivalent size of a pixel was 0,0036 µ2; 24-bit color images were stored in 
TIFF format of dimensions 1200 × 1792. A total number of 800 microscopic images 
were considered, with an average number of 20 cells for each. An example of a mi-
croscopic cell image and its three color components is reported in Fig. 2. 

The cluster analysis was designed to be performed on the features vectors (I0(x), 
I1(x), I2(x),…, Iq(x)) with q = 5, but, among such components, only I3(x) and I5(x) 
were considered relevant. The input vectors represented in the form of color images 
are shown in Fig. 3.  

 
 
 

 
 
 
 
 
 
 
 



     
 Original  Red Component 

     
 Green Component Blue Component 

Fig. 2. An example of microscopic cell image: the original image and the three color compo-
nents. 

 

     
Fig. 3. An example of the three-component feature vector used for clustering: from left to right, 
original, σ = 3 and σ = 5. 

 
 
 
The same feature vector for each of the color components of the image is reported 

in Fig. 4. 
The FCM algorithm is applied to divide image pixels into two clusters correspond-

ing to cell and background. A filling operation is performed to eliminate little holes, 
while clustered regions of negligible area are deleted. An example of the clustering 
results is reported in Fig. 5. 
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Fig. 4. An example of the feature vector with the original values I0(x) and I3(x) and I5(x) for 
each of the three color components. 

 

   
Fig. 5. Example of the clustering results: rough clustered image (left), clustered image after a 
filling operation and after deletion of regions of negligible area (right). 

Examples of image partitions extracted for detecting the exact borders of a cell are 
shown in Fig. 6. 

 



  

  

  

Fig. 6.  Image partitions containing the cells to be segmented. 

    
From each partition, the set of the mentioned features is extracted. To illustrate the 

significance of such set, Fig. 7 shows an example of the gradient regarding the green 
component. 

The set of 800 images was partitioned in (i) a sub-set of 300 images, used for train-
ing, and (ii) a sub-set of the remaining 500 images used for the testing phase. A semi-
automatic segmentation was performed for the training set, consisting in a classifica-
tion of images according to the different classes of pixels. 

Different architectures were tested, varying the number of the hidden units: the 
best performance was achieved with only one hidden layer of 20 units. An example of 
the segmentation results is illustrated in Fig. 8, where the entire classification results 
are reported too. 

 

     
Fig. 7. Example of the computation of the green component gradient along the horizontal axis 
(left), along the vertical axis (middle) and the norm of the same gradient (right). 

4   Discussion and Conclusions 

A two-step method for segmenting microscopic cell images has been presented.    



The first step consists of a fuzzy clustering of images performed to obtain a rough 
segmentation and to detect cell dislocation. In the second step, a dedicated ANN is 
applied to refine the segmentation by discriminating image components, i.e. cell bor-
ders, cell internal body, cytoplasm, background, and artifacts. 

The main features of the proposed method are  
 complete automation of segmentation 
 possibility of extracting all the cells represented in the images  
 robustness due to the ANN application which allows resolving ambi-

guity of closed or touching cells. 
 
An example of the last characteristic is shown in Fig. 9, where it can be seen how 

two cells that are clustered as a unique region by the FCM are well separated by the 
ANN thanks to the individuation of cytoplasm.  

 
 
 

   
 Original ANN classification 

   

 Cell internal body 
 Cell contour 
 Cytoplasm 
 Background 
 Artifact 

 Contour Extracted 

Fig. 8. Example of segmentation. upper left: original cell image; upper right: results of the 
ANN classification (five classes with different colors); lower left: identified contours of each 
cell; lower right, legenda. 

 
 



                
Fig. 9. Example showing the robustness of the proposed method: (left) rough segmentation 
obtained by FCM that individuates a unique region corresponding to three different cells; 
(right) result of the ANN algorithm where the cells are correctly separated by classifying pixels 
in cell body, cytoplasm and artifact (see Fig. 8 for explanation of colors). 
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Abstract. 3D-stacks of optical sections through the vertebrate retina with 
fluorescent stained cell nuclei were measured with a laser scanning microscope. 
The evaluation of the data volumes with dedicated digital imaging algorithms 
gives access to complex morphometric tissue-characters that are discussed in 
terms of functional morphology. The thickness of nuclear layers and the 3D-
coordinates of cell nuclei are detected automatically to measure cell densities, 
cell ratios and to create character-distribution-maps of the entire retina. 

 
 
1     Introduction 
 
Confocal laser scanning microscopy combined with any fluorescence staining tech-
nique is a powerful and elegant method to get three-dimensional structural data from 
biological tissues. Usually the result of a single xyz-scan-measurement is a stack of 
evenly spaced and perfectly aligned greyscale images (“optical sections”) with a con-
siderable data volume and information content. Frequently these stacks are used to 
generate attractive displays of the stained structures (e.g. brightest point projections, 
colour channel overlays, surface renderings), but rarely for thorough evaluation of the 
stack’s information content by means of three-dimensional morphometric analysis. 
Many complex tissue characters are hardly revealed to an intuitive understanding by 
mere visual contemplation of 3D-data stacks or evade from a precise manual evalu-
ation in an acceptable period of time. Digital imaging algorithms, however, allow the 
extraction of both simple and complex characters from huge data stacks in a time-
saving way even on a standard PC. Still usually they have to be programmed and 
tailored to the specific object and scientific question by the scientist himself. Since 
biologists normally recoil from this challenge, most morphometric studies usually do 
not reach the third dimension to this day. In this study an example is presented for a 
computer-aided investigation and description of three-dimensional patterns of cell 
nuclei in the vertebrate retina. On the one hand retinal tissue is particularly suitable 
for optical-sectioning microscopy due to its transparency and low thickness, on the 
other hand the layered structure and high degree of geometrical order of this brain-
derivative carries valuable information for the functional morphologist. For this study 
the retina of the European anchovy Engraulis encrasicolus (Teleostei, Engraulididae) 
was chosen to make a contribution to the morphometric description of the vertebrate 
retina in general and to approach to a more profound understanding of an uncommon 
retina in special, that is specialized for polarization contrast vision [1,2]. 



2     Material and Methods 
 
2.1    Tissue preparations 
 
Adult European anchovies (Engraulis encrasicolus) where obtained from local fisher-
man just returning from their nocturnal catches in the Mediterranean (Adriatic sea, 
Rovinj). For the time of death dated back less than 1.5 hours, the retinal tissue of 
cooled animals could be regarded as in-vivo. Eyes where enucleated, the eyeballs per-
forated by razorblade-cuts through the cornea and fixed with 4% formaldehyde in 
0.1M phosphate buffer at pH 7.4 plus 3% sucrose for several hours. The cornea, lens 
and vitreous body were removed in cold buffer, thereafter the entire retina of a right 
eye (diameter 8mm) was cut into 48 pieces whose original positions were docu-
mented. The retinal fragments were rinsed in buffer and embedded in 4% agarose at 
45°C in separate dishes of two 24-well culture plates. From the centre of each 
fragment radial slices (thickness 50 µm) were made with a Leica VT1000S vibratome 
for subsequent radial optical sectioning. The slices were submersed in a 1µM-solution 
of TO-PRO-3 (Invitrogene, λmax(Excitation) = 642nm, λmax(Emission) = 660nm) in 
buffer for 10 to 60 minutes at ambient temperature for fluorescent staining of the cell 
nuclei. After the staining each slice was placed in a drop of anti-fading mounting 
medium (Vectashield®) between a glass slide and a cover glass and sealed with nail 
varnish. To avoid deformation of the slices by squeezing, the cover glass was braced 
by two pieces of cover glass as spacers (thickness 150µm) directly glued to the slide. 
A second preparation was accomplished to obtain 24 retinal fragments directly placed 
between 300µm spacers, pigment epithelium oriented downward for sub-sequent 
tangential optical sectioning. 
 
 
2.2    Microscopy 
 
The tissue preparations were imaged with a confocal laser scanning microscope 
(Leica TSC SP2 on an inverse Leica DM IRBE). For excitation of TO-PRO-3 the 
633nm HeNe-line was used and attenuated to 10% to restrict bleaching. The beam-
splitter was a triple dichroic (488, 568, 633nm) by default, the spectral detection 
window of the photomultiplier was set to 650-740nm. For the radial optical sections a 
Leica UV 25x PL Fluotar NA 0.75 oil objective was used (working distance 180µm, 
nominal resolution xy: 260nm, z: 1108nm), the voxel size was adjusted to 405nm in 
xy-plane by 810nm in z-direction (voxel-geometry: integral multiple of a cube). This 
allows both the display of radial slices through the thickest part of the retina in the 
“visual field” of the photomultiplier (207.4µm x 207.4µm allocated to 512 x 512 
pixels) and a comfortable digital slice spacing without interpolation. Gain and offset 
of the photo-multiplier were optimized to exploit the 8bit-dynamic of the sensor with 
reference to the available signal. For the tangential optical sections a Leica UV 63x 
HCX PL Apo NA 1.32 oil objective was used, voxel size adjusted to 310nm in xy-
Plane (158.7µm x 158.7µm allocated to 512 x 512 pixels) by 936nm in z-direction. 
The xyz-scans started near the cover glass towards the glass slide (against gravity), in 
each plane four optical sections were averaged to improve signal-to-noise ratio. 



Depending on the retina thickness and the tilt angle of nuclear layers in the tissue 
slices the number of optical slices was varied between 27 and 118. The resulting 
stacks of greyscale images had a data volume between 7.1 and 30.4 MB, altogether 
0.9 TB of raw data were generated.  
 
 
2.3    Digital Image Analysis 
 
For further processing the image data stacks generated by the acquisition software of 
the confocal laser scanning microscope were imported in IDL (interactive data langu-
age, Research Systems Inc.) on a standard PC (2.7GHz, 1MB RAM) and subjected to 
several home-made IDL-algorithms. The line of actions - i.e. pre-processing, semi-
automated detection of cell nuclei, mapping of measurements etc. - is subject of the 
results chapter. 
 
 
3     Results 
 
3.1    Data import 
 
3D-measurements at the CLSM usually deliver sequences of tiff-images as export-
files. Every greyscale image can be regarded as a table of measurements sorted by 
columns and rows with entries between zero and 255 (8 bit). To get access to the 
entire data set of a 3D-measurement the respective image sequence was imported (via 
IDL software) into a single array-variable with three dimensions according to the x-, 
y- and z-axis of the measured tissue volume. The x- and y-index of the array mirrors 
the pixel-position in the original 2D-image, the z-index stands for the image number 
or its z-Position of the volume respectively. This allows to directly interrogate the 
measured value of the fluorescence signal of any point in the volume (voxel) specified 
by three index values. To get the correct proportions, every xy-plane was doubled 
(radial mechanical slices; z-spacing of optical sections 2x the pixel size) or trebled 
(tangentially oriented retina fragments; z-spacing 3x the pixel size). The last step can 
be omitted to save memory and to speed up calculations - for a correct display in 
perspectives (at any angle of view deviating from the z-axis) and for spatial measure-
ments, however, the elongate voxel-shape has to be taken into consideration. 
 
 
3.2    Display of raw data 
 
In almost every case displays of the raw data show the nuclear layers of the retina 
oriented obliquely in the kartesian coordinate-system (Fig. 1). It is true that the vibra-
tome sections were cut as close to the radial plane as possible under visual control, 
but a precisely radial orientation is not obtainable in practice, not least because of the 
hollow-sphere shape of the whole retina. Likewise in tangential view (whole mounts) 
the retina fragments always showed orientations tilted against the xy-plane. Never-



theless, as a simplification, a small retina fragment with 200 µm edges cut out of an 
eye with 8 mm diameter is regarded as not-curved in this study. 
 

 
 
 
Fig. 1. Cubic display of a 3D-stack of optical slices through a small fragment of the anchovy-
retina (radial vibratome slice) with coordinate system (X, Y, Z). The XY-view (207µm x 
207µm) is a brightest-point-projection of the entire stack. The XZ- an YZ-views are single 
planes. Note nuclear layers lying obliquely in the data volume 
 
 
3.3    Cell layer alignement 
 
To simplify the following measuring methods and to get the common depiction of the 
retina with horizontally aligned histological layers, the fluorescent stained nuclear 
horizons of the scanned retinal volumes are to be oriented as parallel to the xz-planes 
(radial sections) or the xy-planes (whole mounts) of the data volume as possible. This 
happened in two orthogonal directions either interactively (with auxiliary lines paral-
lel to the x-, y- or z-axis) or automatically. An appropriate digital imaging algorithm 
is demonstrated on a radial 3D-scan exemplarily (Fig. 2, 3): a brightest point pro-
jection (BPP) of the data volume in the xy-plane (i.e. z-axis shortened to zero) serves 
to determine the inclination angle of the nuclear layers to the x-axis. To do this, the 
BPP is rotated around the z-axis in 1° increments and convolved with a bright 
horizontal bar shifted vertically over the image in every angle-position. The result of 
this double-loop operation is a 2D-data set with a maximum indicating the rotation-
angle that leads to horizontal alignement of the nuclear layers (Fig. 2). After rotation 
of the raw data stack around the z-axis by the determined angle (extension of the data 
volume on all sides helps to avoid clipping artefacts but increases memory demand 
and calculation time) the procedure is repeated with the yz-BPP and subsequent ro-
tation around the x-axis. As a rule a second iteration of these two steps leads to a very 
good alignement of the nuclear layers for radial scans parallel to the xz-planes of the 
kartesian coordinate system (Fig. 3). 
 



 
 

 
 
 
Fig. 2. Automated detection of rotation angle for the horizontal alignement of the nuclear 
layers. A) The XY-view of the data volume is convolved with a horizontal bar in vertical 
direction and then incrementally rotated. B) The resulting profiles build up a 2.5D-landscape 
with a peak (arrowhead) that indicates the wanted rotation angle. Inlay: contour plot of the 
“mountain” with “summit”-position 
 
 
3.4    Simple measurements 
 
Based on BPPs of the aligned data volume the thickness of retinal layers, e.g. outer 
nuclear layer (ONL), inner nuclear layer (INL), inner plexiform layer (IPL) and gan-
glion cell layer (GCL), can be determined easily manually or automatically (Fig. 3). 
For the semi-automated morphometric analysis of the nuclear layers the definition of 
“regions of interest” (ROIs) containing unclipped fluorescence signals is required. 
The ROIs are defined on BPPs of the three orthogonal main-planes (XY, YZ, XZ), 
this way enclosing a “volume of interest” (VOI) completely filled with 3D-images of 
cell nuclei. 
 
 
3.5    Detecting nuclear positions 
 
To get the number and reliable centre-of-gravity positions of the cell nuclei quickly, 
every manually defined VOI was convolved with an idealized image (kernel) of the 
wanted structure (cell nucleus). The cell nuclei of the anchovy retina have diameters 
of 5-6µm depending on the cell type, resulting in circular profiles of 12 to 15 pixels 
maximally using the image acquisition settings indicated above for radial optical 
sections. Due to the almost spherical shape of cell nuclei in the retina the convolution 
can be executed with 2D-kernels plane by plane instead of 3D-kernels (spheres) in 
space. To do this, a kernel-array (2D-variable equivalent to the image of a white circle  



 
 
 
Fig. 3. Nuclear layers of the retina aligned parallel to the XZ-planes. Vertical intensity-profiles 
(left) help to measure the thickness of the outer nuclear layer (ONL), vitreal part of the inner 
nuclear layer (INL with bipolar (B) and amacrine (A) cells) and inner plexiform layer (IPL). 
Horizontal cells (H) and ganglion cells (G) form separate layers. Note restricted infiltration 
depth in the ONL (YZ-view) 
 
 
with the approx. nuclear diameter on a black background) is centred over each XY-
pixel of the data volume subsequently. The overlapping pixel-values of the kernel and 
the image are multiplied and the result is stored at the corresponding centre-position 
in a new 3D-variable. The result of this convolution procedure is a data set containing 
“blurred light-clouds” with local maxima at the centre-positions of the wanted nuclei 
(Fig. 4). Starting with the brightest maximum of the entire volume, the 3D-coordi-
nates of the corresponding nucleus was written into a table. Then the nucleus around 
the local maximum was deleted in the VOI by multiplication with a black sphere of 
the approx. nuclear diameter and the convolution was repeated with the modified VOI 
and so on. Stop-criterion for this procedure was an estimated and pre-defined number 
of iterations combined with a test for erroneous measurements. Starting from the first 
coordinate the distances to all other detected points in the VOI were calculated. If a 
value lower than twice the expected nuclear radius occurred, the relevant coordinate 
was deleted. Such “misdetections” accumulated at iteration numbers equal or larger 
than the actual number of cell nuclei in the VOI.  
 
 
3.6    Evaluation of position data 
 
The corrected list of centre-coordinates allowed computation of the cell density of the 
VOI (converted to cells per 104µm2 of retinal area), compilation of a neighbour-



distances histogram for pattern-description (Fig. 5) and finally the correlation of 
measurements between the three neuron layers of a single retina fragment. After 
having analyzed several tissue fragments scattered over an entire retina 2D- or 3D-
mapping of simple or complex measured characters can be demonstrated (e.g. density 
map of one cell type, ratio map of two parameters, Fig. 5). Every calculation step 
described above was performed on a standard PC between a few seconds and several 
minutes. 
 
 
 

 
 
 
Fig. 4. Convolution of measured signals from the ganglion cell layer (A) with a discoidal kernel 
leads to a blurred picture with local maxima at the centre-positions of the cell nuclei (+ in B, 2D 
aspect of a 3D-operation). The detected nucleus is deleted (+ in C) prior to iteration of the 
convolution. D) Data stack with deleted nuclear centres 
 
 
4     Discussion 
 
This study outlines a method that gives access to complex morphological tissue-
characters arising from the spatial arrangement of cell nuclei (in the vertebrate retina 
as example) by the use of fluorescence staining, optical sectioning microscopy and 
digital image analysis algorithms tailored for special purposes. Additionally it is 
intended to demonstrate the usefulness of mass-data analysis in the field of histology 
and functional morphology and to encourage the ambitious life scientist to design his 
own application software. The study provides the following lessons and impulses: 
 
 



 
 
 
Fig. 5. Evaluation of position data. Top left: Table of nuclei detected in the INL with 3D-
coordinates and measured nuclear volume. Top right: Histogram of neighbour-distances in a 
small VOI of H-cells with peaks indicating a square pattern (x-axis in µm). Bottom left: density 
distribution of G-cells with a ventral maximum around 250 cells/104µm2. Bottom right: Ratio-
map of INL-thickness / ONL-thickness indicating an area of high computing potential (light-
grey) in the ventral retina 
 
 
4.1    Optical sectioning depth 
 
Prior to any programming the image acquisition parameters have to be adapted or 
rather optimized to get data sets that are suitable for evaluation. To be able to excite 
and collect fluorescence light from a sufficient tissue volume a penetration depth of at 
least 50 µm is desirable. Despite a relative high optical transparency, formalin-fixed 
retina tissue considerably scatters the visible light inversely proportional to its wave-
length. To get deep optical sections with a satisfactory signal-to-noise-ratio a fluores-
cent stain with excitation- and emission maxima in the “red part” of the electro-
magnetic spectrum should be favoured (e.g. TO-PRO-3). The limiting factor in terms 
of penetration depth turned out to be the restricted infiltration of the ONL by different 
dyes even with infiltration times of more than 1h at 30° (see YZ-view in Fig. 3). As 



not much more than 25 µm of the tissue can be stained in z-direction the thickness of 
mechanical radial sections should not exceed 50 µm in this case.  
 
 
4.2    Field-of-view and resolution 
 
The use of a red fluorescent dye happens somewhat at the expense of spatial 
resolution but doesn’t influence the conspicuousness of cell nuclei. In fact the field-
of-view of the microscope’s sensory device has to be adjusted to gather fluorescent 
light from all three nuclear layers of the retina at the same time (radial slices) to be 
able to correlate cell counts of radial staggered VOIs and to minimize the total data 
volume. In the examined material the distance between the vitreal border of the GCL 
and the scleral border of the ONL peaked at about 230 µm, fitting diagonally in the 
chosen field-of-view. The resulting nuclear diameters of around 15 pixels turn out to 
be an acceptable trade-off. Tangential optical sections of mechanically not-sectioned 
retina fragments were made to record VOIs of the GCL (radial scans with a z-size of 
≤ 50 µm were less suitable to image this nuclear monolayer). In this orientation the 
resolution was increased by the factor of 1.3, the field-of-view restricted respectively. 
 
 
4.3    3D-arrays 
 
The import of image stacks into a single 3D-array in general and the use of IDL in 
particular allows comfortable access to every single voxel-value and to easily apply a 
series of powerful imaging-routines and other logical operations. Programming in a 
compiler language like IDL opens up the possibility to compute large data sets and 
frequent iterations even on standard PCs and notebooks relatively fast – ImageJ for 
example does the same job in a comparatively unacceptably long period of time. Of 
course similar approaches were developed and conducted also by other investigators 
for their special research problems independently [3]. 
 
 
4.4    Functional morphology 
 
From the zoological perspective the semi-automated analysis of nuclear patterns 
opens the door to the description and interpretation of tissue-characters (not only in 
the retina) that hitherto has been too time-consuming or even impossible with paper 
and pencil. This is especially true for an accurate counting of objects (e.g. cell nuclei) 
not only on single microscope-slides [4], but also in high-content data stacks, also for 
generating neighbour-distance histograms in 3D (to describe cellular sphere-packing 
patterns or developmental processes at the retinal margin) and for the display of 
standardised density- and ratio-maps. Some examples are given to illustrate the scope 
of the functional morphological discussion of complex retinal characters: The density 
distribution of photoreceptors in the retina gives an indication of the visual acuity in 
different sectors of the visual field. This is, however, only reliable if the density 
distribution of ganglion cells mirrors the first mentioned pattern. The ratio of 
photoreceptors to ganglion cells in a small area reveals the degree of radial signal 



convergence and thus an relative indicator of light sensitivity (cone- and rod-
pathways have to be analysed separately), the ratio of photoreceptors to secondary 
neurons, on the other hand, gives indications about the potential computing power or 
computing complexity of the examined retina fragment etc [5]. 
 
 
4.5    Outlook 
 
To continue with this subject it is planned to expand the image analysis applications 
to the automated recording of shape-parameters and the high-resolution distribution of 
the fluorescence signal within single nuclei for cell-classification (in combination 
with neuroanatomical techniques), to the mapping of nuclei in hemispheric coordinate 
systems (e.g. small eyes) and ultimately to the full-automated adaptive acquisition and 
analysis of fluorescence signals from entire retinae with motorized microscopes. 
High-content applications would be also the comparison of developmental stages or 
related species. 
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Abstract. In this paper, we present a general approach to shape charac-
terization and deformation analysis of 2D/3D deformable visual objects.
In particular, we define a reference dynamic model, encoding morpho-
logical and functional properties of an objects class, capable to analyze
different scenarios in heart left ventricle analysis.
The proposed approach is suitable for generalization to the analysis of pe-
riodically deforming anatomical structures, where it could provide useful
support in medical diagnosis. Preliminary results in heart left ventricle
analysis are discussed.

1 Introduction

Deformable structures arise frequently in human anatomy and, in many cases,
their deformation modes are of key importance in understanding the functional
properties of the related organs and assessing their health-state. The main ex-
ample is given by cardiac dynamic analysis, since many heart pathologies are
correlated to the deformation pattern of the organ. In cardiac analysis, well-
established imaging techniques are of great support in medical diagnosis, since
they allow to acquire video sequences of the heart, from which its dynamical
behavior can be inferred. However, the interpretation of the acquired data (tem-
poral sequences of 2D/3D images, possibly from different imaging modalities)
is difficult or, at least, time consuming; in daily practice, sometimes, physicians
extract the most salient frames from the video sequence (end diastole and sys-
tole) and perform direct comparison among images in the selected subset. It is
likely that, considering the full video sequence, more precise and rich information
about the state of the heart can be discovered.

Motivated by these problems and extending the works [1, 2], we believe that
it is fruitful to define, in some generality, the concept of periodically deforming
visual objects (see section 2 for a precise definition) and to propose a method-
ological approach to their study.

Besides providing modules for structures reconstruction and characterization,
that have their own importance in biomedical applications as automatic tools to
speed up diagnosis, the main idea is to define a reference dynamic model of an
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objects class: this model can be understood as an encoding of morphological and
functional properties of a periodically deforming object during its full deforma-
tion cycle. In particular, shape changes and evolution of local object properties
are depicted in a coincise form in the reference dynamic model, thus allowing
for deformation analysis and deformation pattern classification.

The paper is organized as follows. In section 2 we define the class of objects we
are interested in, making explicit the necessary assumptions. Then in section 3,
the proposed approach is outlined and its basic modules leading to the reference
dynamic model are described in detail. More precisely three modules are consid-
ered: object reconstruction (sec. 3.1), in which every object is reconstructed in
Euclidean space as a collection of manifolds, object characterization (sec. 3.2),
in which local shape descriptors and functional features are coded into property
functions and, finally, deformation pattern assessment (sec. 3.3) where the ref-
erence dynamic model is actually built. Preliminary results in heart dynamic
analysis are then presented in section 4, whereas conclusions and directions for
further work are briefly discussed in section 5.

2 Periodically deforming visual object

A visual object O embedded in the background space Ω ⊂ IRd (d = 2, 3) is a
collection

O = {(V α, Pα)}α=1,2,...,k

where each V α is a smooth manifold (possibly with boundary) embedded in Ω

and Pα : V α → IRd(α) is a smooth properties function assuming its values in a
suitable properties space.
The smoothness assumption is a quite common hypothesis in computational
anatomy (see e.g. [3]) and it is satisfied in practice to a large extent; it implies
for example that differential geometric properties (like normals, curvatures,...)
can be computed everywhere. We use, moreover, collection of manifolds -instead
of a single one- to be able to describe object subparts (possibly of different dimen-
sionality) by attaching them specific salient attributes via a dedicated properties
function. For example, in heart left ventricle modelling, the object of interest is
the myocardium, that can be modelled as a 3D manifold, whose boundaries are
two surfaces: the epicardium and the endocardium. It is convenient to attach to
the boundary surfaces a different (actually richer) set of attributes than those
used for internal points.

A deforming visual object O = (Ot)t=1,2,... is a temporal sequence of visual
objects satisfying some smoothness constraint. Each Ot = {(V α, Pα)}1≤α≤k

should be regarded as the snapshot of the deforming object at time t.
We require that each manifold V α

t appearing in the snapshot at time t can
be smoothly deformed into V α

t+1 in the subsequent snapshot. Tears or crack of
any object subpart are, therefore, ruled out; moreover, in such a way, we avoid
dealing with changes in topology, that would require to model shape transitions,
a task far beyond our present scopes.
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Finally, a periodically deforming visual object is a deforming object for which
there exists an integer T such that ∀t : Ot = Ot+T . In other words, the deforming
object depicts a periodic motion; thus, a periodically deforming object is char-
acterized by a finite list of snapshots (O1, O2, . . . , OT ), which will be referred to
as its deformation cycle.

We make a final assumption about the data available to describe a peri-
odically deforming visual object. It is assumed that a sufficiently rich set of
synchronous signals and images, possibly from different modalities, has been ac-
quired so as to represent faithfully a physical body or phenomenon of interest.
In particular, the data set should include at least one 2D/3D image sequence
(It)1≤t≤T , from which morphology and regional properties of the object can be
inferred.

3 Methodology definition

With the previous assumptions, a reference dynamic model of an object of inter-
est is constructed by coding the dynamics of the object in a rich representation
of its shape and functional properties.
The approach consists in three modules, each one performing specific tasks. Es-
sentially, the first two modules are dedicated to extract a suitable periodically
deforming visual object from image data. Then the periodically deforming visual
object is analyzed and used to construct the reference dynamic model. A more
precise outline of the modules used to obtain the aforementioned model is as
follows:

Object reconstruction: For each phase t, the collection of manifolds {V α
t } is

identified and reconstructed in 2D/3D space by applying neural algorithms
to the image sequence (It)1≤t≤T ;

Object characterization: Morphological features and dynamic descriptors are
extracted and coded in a property function Pα

t that for each point x of the
manifold V α

t returns the property vector (Pα
1 (x), . . . , Pα

m(x)), where each Pα
i

represents one of the selected features;
Deformation pattern assessment: Suitable and significant shape descriptors

are extracted and spatial distribution of the property functions are evaluated
in order to obtain a description of the object dynamics.

In the following sections, these steps are described in more details.

3.1 Object reconstruction

The 3D reconstruction of the visual object O is achieved via voxelwise classifi-
cation, that is by labeling each voxel in the image domain with semantic classes
which describe voxel membership to the collection of manifolds {V α

t }.
The classification is performed applying an advanced neural architecture to

a set of extracted features. The involved features can be divided into two classes.
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First, low-level features are considered: they are context-independent and do not
require any knowledge and/or pre-processing. Some examples are voxel position,
gray level value, gradients and other differentials, texture, and so forth. Middle-
level features are also selected, since voxel classification can benefit from more
accurate clues, specific of the problem at hand. In particular, if an intrinsic
reference system can be individuated to describe the object shape, it can be used
to define a relative voxel position. If, in addition, a priori information about the
object shape is available, a reliable clue for detecting edges in the images is given
by the gradient along the normal direction to the expected edge orientation.

Moreover, a multiscale approach is adopted: the features are computed on
blurred images, supplying information about the behavior of the voxel neighbor-
hood, which results in a more robust classification.

The set of selected features are processed to accomplish the voxel classifica-
tion by means of a Multilevel Artificial Neural Network (MANN), which assures
various computational advantages [4]. For each voxel x, its computed features
vector is splitted into vectors Fk(x), each one containing features of the same
typology and/or correlated. Then each Fk(x) is processed by a dedicated clas-
sifier based on an unsupervised Self Organizing Maps (SOM) architecture. The
set of parallel SOM modules constitutes the first level of the MANN which aims
at clustering each portion of the feature vector into crisp classes, thus reducing
the computational complexity. The output of this first level is then passed to
a second and final level, consisting in a single Error Back-Propagation (EBP)
module, which supplies voxel classification.
Its output describes voxel membership to the various manifolds V α

t in the col-
lection {V α

t }1≤α≤k.

3.2 Object characterization

The reconstructed object is further characterized by assigning a significant prop-
erties function Pα

t : V α
t → IRd(α) to each manifold V α

t .

Three types of properties are considered:

– intensity based properties;

– local shape descriptors;

– local dynamic behavior descriptors.

Examples of properties of the first type are gray level value, gradients, tex-
tures and so on. They are extracted form the image sequence It –the one which
leads us to object reconstruction. If data collected from other imaging modali-
ties are available, after performing registration, we can fuse this information to
further annotate the object (for example, in the case of the heart, information
regarding perfusion and metabolism, obtained e.g. by means of PET imaging,
can be referred to the reconstructed myocardium). Geometric based properties,
belonging to the second type, are extracted directly from the collection of man-
ifolds {V α

t }, and are essential to describe locally the shape of the object. Again,
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we may distinguish between context independent features (automatically com-
putable for every manifold of a given dimensionality, such as Gaussian and mean
curvature for surfaces) and problem-specific properties.

Finally, the local dynamic behavior may be described by properties borrowed
from continuous mechanics (such as velocity field and strain tensor); they, how-
ever, require, at least, local motion estimation, that we haven’t pursued yet.

3.3 Deformation pattern assessment

The periodically deforming visual object obtained in the previous steps can be
used to assess the dynamic behavior of the object and identify its deformation
pattern. However, the voxelwise characterization of the reconstructed objects is
not suited for state assessment. Indeed, the given description of the whole objects
(collection of manifolds described by functions) has a dimensionality far too high
to make the problem computationally feasible. Moreover, it would be essential to
be able to compare anatomical structures belonging to different patients and, at
the moment, the idea is to use a deformable model (given for example by mass-
spring models [5] ) and to normalize every instance of anatomical structure to
that model: in this way anatomical structures (belonging to the same family)
are uniformly described and can be then compared.

Combining these two issues, we should look for a new set of ‘more intrinsic’
features Ft that should be enough simple and, at the same time, capturing
essential information about the objects.

To obtain these new kinds of features, global information about the objects
can be extracted from the properties function, without introducing any model.
For example, one may consider the ‘property spectrum’, by which we mean
the probability density functions (PDF) of a given component of the property
function Pα

t (·). This consists in a function capturing how the property is globally
distributed; thus, comparison of different property spectra is directly feasible; to
reduce dimensionality, moreover, it is effective to compute the momenta of the
PDF (mean, variance,. . . ).

However, properties spectrum does not convey any information at all about
regional distribution of the property. In practical situation, this is a drawback
which cannot be ignored: for example, a small ‘highly abnormal’ region may not
affect appreciably the PDF, but its clinical relevance is, usually, not negligible.
Hence, spatial distribution of properties has to be analyzed; in some cases, ap-
proaches which do not need a refined model of the object (e.g., Gaussian image,
spherical harmonics or Gabor spherical wavelets) may be suitable. However, in
general one should define a model of the objects (whose primitives -elementary
bricks- are regions, patches or landmarks) and then propagate it to the set of
instances to be analyzed by using matching techniques. Then, we may consider
the average of a property on regions or patches (or the value in a landmark) as
a good feature, since comparisons between averages on homologous regions can
be immediately performed.

Following this recipe, a vector of features Ft with the desired properties is
obtained for each phase of the cycle. The deforming object is then described by
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the dynamics of the temporal sequence of feature vectors obtained at different
phases of the deformation cycle.

A further fruitful feature transformation may be performed exploiting our
assumptions on deformable visual objects. Indeed, the smoothness of deforma-
tions implies that a visual object has mainly low frequency excited deformation
modes. We extend this slightly assuming that this holds true also for the features
lists (Ft)1≤t≤T . We assume that the fundamental frequency of the motion is also
the main component of each feature tracked on time. With these assumptions,
an obvious choice is given by the Fourier transform, followed by a low pass filter,
which supplies a new features vector Θ.

The evaluation of the above mentioned parameters Ft, at each phase t, implic-
itly codifies information regarding object dynamics. Actually, we avoid defining
a complex model of the object kinematics and exploit its periodic characteristic
by constructing a rich representation of each phase of the deformation cycle.

4 Results

An elective case study for the presented methodology is cardiac analysis, whose
clinical relevance can be hardly overestimated. We restrict our analysis to the
left ventricle (LV) that, pumping oxygenated blood around the body, is the part
of the heart for which contraction abnormalities are more clinically significant.

The proposed methodology is, of course, not universal, in the sense that
there are some intrinsic limitations that prevent it to be potentially applied
in any scenario. Indeed, our analysis is limited to a single deformation cycle
and so only pathologies that affect every deformation cycle can be considered.
Moreover, we require that physiological and (selected) pathological states induce
different feature dynamics. This requirement is not too restrictive; actually, it is
well known that many pathologies are correlated to abnormal shape patterns at
end systole.

The LV structure is modelled as a 3D manifold (the myocardium) with
boundary. The boundary has two connected components which are the surfaces
corresponding to epicardium and endocardium.

We describe henceforth how the steps of the methodology are applied. First,
the deformable visual object structure is extracted from the available data, con-
sisting in a sequence of short axis gradient echo MR images, acquired with the
FIESTA, GENESIS SIGNA MRI device (GE medical system), 1.5 Tesla, TR
= 4.9 ms, TE = 2.1 ms, flip angle 45◦ and resolution (1.48× 1.48× 8) mm. Sets
of n = 30 3D scans, consisting of k = 11 2D slices, were acquired at the rate
of 30 ms for cardiac cycles [diastole-systole-diastole]. Various clinical cases were
considered, for a total of 360 scans, corresponding to 12 cardiac cycles.

To perform reconstruction, we first used a pre-processing step devoted to the
automatic localization of the left ventricle cavity (LVC) [6].

The located LVC is then exploited to define an Intrinsic Reference System
(IRS), given by a hybrid spherical/cylindrical coordinates system. This choice is
dictated by the fact that LV approximately resembles a bullet-shaped structure;



7

moreover, in the IRS, image partial derivatives w.r.t. radial coordinate are an
efficient clue for heart surfaces detection.

The IRS is used to extract the following features for voxel classification:

– Position w.r.t. IRS
– Intensity and Mean intensity (computed applying Gaussian filters)
– Gradient norm ||∇It||
– Partial derivative in the radial direction ∂It

∂r
.

Using the 2-level ANN, voxels are classified on the basis of their features vec-
tor as belonging or not to epi- and endocardial surfaces. More in detail, the set
of extracted features is divided into two vectors F1, F2 containing respectively
position, intensity and mean intensity, and position, gradient norm and partial
derivative ∂It

∂r
. The position w.r.t. IRS is replicated in both vectors because it

reveals salient for clustering both features subsets. Then, the first level of the
MANN consists of two SOM modules, which have been defined as 2D lattice of
neurons and dimensioned experimentally, controlling the asymptotic behaviour
of the number of excited neurons versus the non-excited ones, when increasing
the number of total neurons [7].

A 8 × 8 lattice SOM was then trained, according to Kohonen’s training al-
gorithm[8], for clustering the features vector F1, while F2 was processed by a
10 × 10 lattice SOM.

A single EBP module has been trained to combine the results of the first
level and supply the final response of the MANN. The output layer of this final
module consists in two nodes, which are used separately for reconstructing the
epicardium and the endocardium. Since each cardiac surface divides the space
into two connected regions (one of which is bounded), each output node can be
trained using the signed distance function with respect to the relative cardiac
surface. In this way, points inside the surface are given negative values, whereas
positive values are given to points in the outside. Henceforth the surface of
interest correspond to the zero-level set of the output function.

Different architectures have been tested, finding the best performance for a
network with only one hidden layer of 15 units, trained according to the Resilient
Back-Propagation algorithm [9].

The voxel classification, supplied by the MANN, may be directly used for
visualization purposes by using an isosurface extraction method, as shown in
figure 1.

Characterization of the reconstructed structure is obtained annotating every
voxel with intensity, Gaussian and mean curvature, wall thickness and IRS prop-
erties. In particular, Gaussian and mean curvature have been included as shape
descriptors whereas wall thickness, which is a classical cardiac parameter, is
one example of problem-specific property: it is defined as the thickness of the
myocardium along a coordinate ray and it is expected to increase during con-
traction (since myocardium, being almost water, is, with good approximation,
incompressible).
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Fig. 1. Different views of the rendered left ventricle at end diastole. The surfaces are
obtained applying marching cubes on the two output functions of the network. To
eliminate satellites, a standard island removing procedure is applied.

Fig. 2. Wall thickness at end diastole and systole, shown as an attribute of epicardial
surface. Estimation is performed according to the centerline method and values are
expressed in millimeters.
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This characterization is translated in a more amenable form by computing
properties spectrum and regional features. In computing spectrum, coordinates
w.r.t. IRS have been disregarded, with the exception of radial coordinate; inten-
sity has also been excluded. For any property only mean and variance have been
considered. For computing regional features, so far, we used a popular model of
the LV (see [10] for a review of 3D-cardiac modelling). In 2D, as shown in Figure
3, it is defined by the intersections of cardiac surfaces with a pencil of equally
spaced rays. The 3D version is obtained by stacking the 2D construction along
the axis of the LV.

Fig. 3. The pencil of equally spaced rays used to computed local features.

5 Conclusions and further work

In this paper, we define a reference dynamic model, encoding morphological and
functional properties of an objects class, capable to analyze different scenarios in
heart left ventricle analysis. In particular, a framework for the shape characteri-
zation and deformation analysis has been introduced for the study of periodically
deforming objects.

This framework consists of several modules performing a) object reconstruc-
tion, b) object characterization, c) pattern deformation assessment. Solutions
to specific tasks proposed in each module are, to a large extent, independent
and may be combined with other methods, thus broadening the potential ap-
plication field of the framework. In particular, an approach based on multi-level
artificial neural network has been selected as a general purposes strategy for
object reconstruction, motivated by the promising results presented in [4]. A
quantitative evaluation of segmentation performance, based on comparison be-
tween images automatically segmented and images annotated by a committee of
expert observers, however, is still in progress.

The elective case studies are represented by the analysis of heart deformable
anatomical structures. Actually, for demonstrating the effectiveness of the pro-
posed framework, we have shown the preliminary results in the study of the heart
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left ventricle dynamics. The next step will be to employ the obtained results for
defining a general method to classify the state of the deformable object, and, in
particular, the physio-pathological states of the left ventricle.
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Abstract. The commonly used model of the heart for medical applications suf-
fers from some incompleteness when explaining different kinds of measured
forces in vivo studies by medical experts. In this paper, we make a statistical anal-
ysis of the so-called angle of intrusion automatically. The basis of the proposed
method is a set of histological preparations showing heart fibre tissue. We adapt a
multi-scale midline extraction process to extract the myocyte strings out of these
images and measure the angles of intrusion. Furthermore, a statistical model is
derived and validated by the result of a novel parameter estimation technique.

1 Introduction

In this work, we present an approach to analysing the orientation of myocyte strings
automatically. For this, digitised images showing heart tissue (see Figure 1 for an ex-
ample) are processed. The dark elongated structures are the strings of myocyte cells,
which cause the contraction of the heart muscle. The top border of the image is ori-
ented parallel to the epicard (the outer border of the heart). Substantially, the myocyte
cells form strings, which are situated parallel to the epicard with slight variations. For
medical purpose, the distribution of the myocyte orientations, also denoted as angle
of intrusion, has a high impact. Using former models of the heart, where the myocyte
structures are essentially ignored, the forces observed by the physicians in vivo studies
[5] cannot be simulated or at least explained suitably. Lunkenheimer et al. [6] try to
enhance the existing model of the heart by investigating two different kinds of observed
forces. Their assumption is that there must be not only tangential directed myocyte
strings, as assumed so far. Furthermore, they expect a larger portion of transversal my-
ocyte strings. The first step to document this assumption is an appropriate analysis of
the angles of intrusion, which we present in this paper.

Some former work has been done to perform quantitative assessments of myocytes
by Karlon et al. [2]. They compare manual measurements with two automatic ap-
proaches. The first method is based on a Hough transform technique. Firstly, edges
are computed using four different gradient masks. The responses of these filters are
thresholded and a connected component analysis is performed. Afterwards, the image
is divided into smaller regions and some constraints are checked to filter out false re-
gions. On all remaining regions, a Hough transform is performed to compute one mean
orientation of the structures in each. The mean orientations of all regions are collected
and constitute the observation set.



Fig. 1. Sample image of heart tissue: Myocyte
strings are visible as dark elongated structures.

Fig. 2. Grey-level transform and adaptive con-
trast enhancement of the slice in Figure 2.

The second method described by Karlon et al. [2] is based on the intensity image
gradient directly. Once again, the image is divided into regions and a statistical analysis
is performed in each. As statistical model, the class of von Mises distributions with
parameter kappa (for statistical background see [1]) is used. Since the result of the
two methods are justified by a manual analysis, an automatic analysis of the angle of
intrusion is well founded [2].

In contrast to these two methods, our approach does not divide the images into
regions. Since we are not only interested in the mean angle of intrusion, but also want to
analyse the underlying distribution, we try to take as much information as possible into
consideration. For this, we locate the midlines of the myocyte strings in the images and
take the tangential vectors at sample points of the extracted midlines as observations.

The remainder of this paper is organised as follows. At first, we describe the image
analysis part (Section 2). This process results in the observation set consisting of local
measured angles of intrusion. In Section 3 we give the statistical analysis of the obser-
vation set. We will present two different distribution models, based on classes of von
Mises and Gaussian distributions, respectively. Afterwards, the results of our approach
are shown (Section 4). Finally, we end up by drawing some conclusions (Section 5).

2 Analysis of heart fibre images

The histological preparations are cuts of pig hearts, which are dissected using pairs of
cylindrical knives with different diameters (see [6]). After pinning the slices flat, they
are fixed in formaldehyde, embedded in paraffin and sectioned. A treatment with several
substances is done to achieve a swelling of the preparations, so that the myocyte strings
are clearly visible. The colour images show these preparations 100 times magnified. All
slices are adjusted with the upper border parallel to the epicard and recorded on digital
camara.

The image analysis part of our method consists of three steps: enhancement of the
myocyte strings (Section 2.1), midline extraction (Section 2.2) and measurements of
the tangential orientations of the midlines at equidistant sample points (Section 2.3).



2.1 Image Acquisition and enhancement of the myocyte strings

At first, we transform the colour images to intensity imagesI(x, y) by a linear combi-
nation of the three RGB colour channels.

I(x, y) = 0.2626 ·R(x, y) + 0.4116 ·G(x, y) + 0.3258 ·B(x, y) (1)

This linear combination scheme is computed once by analysing a subset of images by
a principal component analysis, to keep as much contrast in the images as possible.

Afterwards, we enhance the contrast of the imageI(x, y) by an adaptation of the
method proposed by Yu et al. [9]. This method works by propagating the minimum
(lmin), average (lavg) and maximum (lmax) value towards different scan directions by
a conditional propagation scheme. The initialisation of the three arrayslmin, lavg and
lmax is the image, which should be processed. In contrast to the original approach of Yu
et al. [9] we use different conductivity factors for the minimum (Cmin = 0.95), average
(Cavg = 0.75) and maximum (Cmax = 0.55) values, to steer the propagation behaviour
of the enhancement algorithm. Thus, we use the conditional propagation scheme at the
actual scanned image position:

lavg = (1− Cavg) · lavg + Cavg · lavg (2)

lmin = (1− Cmin) · lmin + Cmin · lmin iff lmin > lmin (3)

lmax = (1− Cmax) · lmax + Cmax · lmax iff lmax < lmax (4)

where the bar denotes the value at the previous scanned image position. Furthermore,
we choose two scan directions, namely from top to bottom and vice versa. This adap-
tation of the approach is motivated by our goal to keep the dark structures, but lighten
the bright structures to enhance the contrast. For each pixelp the three resulting values
lmin, lavg, lmax ∈ [0, 1] reflect the minimum, average and the maximum intensity in
a neighbourhood ofp. The original intensityold at p can now be emphasised against
its neighbourhood. Therefore, we define the local intensity range asδ = lmax− lmin
and the local enhancement factor asω =

√
δ · (2− δ). The new intensity value atp is

then computed as (adaption of the transformation proposed by Yu et al. [9])

lmax + lmin− ω

2
+

2 ω (old− lmin) (δ + ω (lavg − old) (old− lmax))
δ3

. (5)

The result of this grey level transform and enhancement step applied on the preparation
of Figure 1 is shown in Figure 2.

2.2 Midline extraction

After the pre-processing procedure (Section 2.1), now the extraction of the midlines
will be explained. For this task we have developed a multi-scale extension [7] of López’s
Level-Set-Extrinsic-Curvature approach (LSEC) [3, 4]. In the following, we give a brief
summary of this extension. The pixel arrayI of the enhanced intensity image (Figure
2) is taken as input image, in which we want to localise the midlines of dark elongated
structures (myocyte strings).

(1) Computation of the intensity gradient vector field:
After a slight smoothing ofI with a Gaussian kernel (σ = 0.75) we apply the Sobel
operator, which results in the partial deviationIx andIy. These deviations are used to



Fig. 3. Gradient image after multi-scale
smoothing of the gradient vector field

Fig. 4. Extracted midlines are laid over the in-
tensity image.

compute the edge magnitude arrayS and a local edge orientation arrayΘ. Since at
each pixel, the corresponding deviationsIx andIy could be recomputed onS andΘ,
in the following we use the notation (Ix, Iy) or (S, Θ) for the gradient vector field,
equivalently.

(2) Enhancement of edge magnitude:
Since the LSEC approach of López et al. [3, 4] is valid on normalised gradient images
only, we boost the edge magnitudesS pixel-wise using the function

bt(S) = 1− exp
(
− S2

2 · t2
)

(6)

with thresholdt = 0.075. This optimistically choice is made to preserve even weak
edges, since they would be filtered out in the further process, if there are no equally
orientated edges in the neighbourhood.

(3) Iterative smoothing process:
The goal of this step is to smooth the gradient vector field in the sense that the gradi-
ent vectors are propagated towards the interior of dark elongate structures. Firstly, the
structured tensor is computed for each pixel

ST (x, y) =
(

Ix(x, y)2 Ix(x, y) · Iy(x, y)
Ix(x, y) · Iy(x, y) Iy(x, y)2

)
, (7)

where(x, y) are the image coordinates. This tensor field is smoothed element-wise
with Gaussian kernelsGk of different scalesσk = k · σ0 (σ0 = 0.75). For each pixel
(x, y) and each scale we compute the edge magnitudeSk(x, y) and the new edge ori-
entationΘk(x, y) based on the largest eigenvalue and corresponding eigenvector of the
smoothed structured tensor (for details see [7]).

Finally, for the pixel(x, y) the vector with the highest edge magnitude valueSk(x, y)
of all considered scalesk is chosen as the result vector of the iterative smoothing pro-
cess. In Figure 3 the result of the sample image (Figure 1) is shown. The magnitudeS
of the vectors are visualised by the intensity (V) and the directionΘ by the colour (H)
in the HSV colour space.



Fig. 5.Example image of Ĺopez
et al.[3].
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Fig. 6.Equidistant resampling of the midlines and computing of
the angle of intrusion

(4) Computation of local creaseness in the intensity image:After a single addi-
tional smoothing, we apply the divergence operator on the smoothed gradient vector
field (Ix, Iy). The level set extrinsic curvature is a creaseness measure of an image
function I. The midlines we want to detect consist of pixels with maximum crease-
ness. Therefore, the level set extrinsic curvature is computed as the negative divergence
κ of the smoothed gradient at each pixel. López et al. [3, 4] have proved, that this is
equivalent to the direct computation

κ(x, y) =
2Ix(x, y)Iy(x, y)Ixy(x, y)− I2

y (x, y)Ixx(x, y)− I2
x(x, y)Iyy(x, y)

(
I2
x(x, y) + I2

y (x, y)
)3/2

s (8)

of the LSEC in continuous domains under certain preconditions. In fact, the divergence
of gradients gives even better results in discrete domains than the direct computation.
This advantage is depicted in the example image of Figure 5. The divergence approach
leads to continuous segments, where as the direct computation leads to gaps [4].

(5) Grouping points of maximal creaseness to line segments:Pixels, which hold
a local maximum creaseness, value in direction of the local smoothed gradient vector
are taken as candidates for midline pixels. We link two neighboured candidates together
if the gradients and the creaseness at the corresponding pixel are similar. This can be
done by simple threshold rules. After this grouping process and an additional filtering
step (discard segments of less than three pixels), we get the midline segments, which
represent the myocyte strings. Result of this step are presented in the Figures 4 and 5,
where the extracted midline segments are overlaid on the grey-scale images.

2.3 Measurement of the tangential orientations

The midlines are represented as strings of neighboured midline pixels (see Figure 6).
With each midline pixel (blue dots) the smoothed gradient vector is stored (connected
arrows). The drawback of this representation is that diagonal midlines are represented
by pixels, which form a stairway, but a straight pixel line represents horizontal midlines.
Obviously, this representation does not regard the true length of the midline.

Since we want to make a statistical analysis of the myocyte orientation, we have to
resample the midlines at equidistant points. We decide to choose the width of one pixel



as distance, so that a midline ofn pixel length should be represented byn + 1 midline
pixels. This resampling can be done by scanning over the midline and interpolating the
pixel coordinates as well as the assigned gradient vectors using the nearest two pixels on
the midline. Thereby, the tangential of the midline defines the scanning direction, which
is orthogonal on the smoothed gradient vector at the last considered midline point. In
Figure 6 the resulting pixel coordinates (green crosses) are shown. In this figure the
computation of the tangential vectorv at pixelp with coordinates(r, c) is drafted.

Naturally, the situation in Figure 6 is idealised, but in fact we are mainly interested in
the analysis of the tangential vectors. For the purpose of midline visualisation, we keep
the representation at pixel grid points, whereas for the statistical analysis we choose the
equidistant representation with sub-pixel accuracy.

3 Statistical data analysis
The tangential vectors at the equidistantly distributed sample points of the myocyte
string midline are taken as observation set. Obviously, these vectors are represented in
a cyclic domain with period of180o orπ, respectively. For this reason, we have to derive
a model for cyclic data spaces. Fisher [1] gives a general introduction in the statistical
analysis of such data spaces. In the following, we treat each observed angle as a point
on a circle. Since the period of the domain is180o, an angle does not correspond to the
normal angle in the Euclidian manner. For the purpose of geometrical interpretations of
the observation set in the cyclic domain, all angles have to be multiplied by2.0.

One can observe three common characteristics of the observed angles of intrusions:

1. Presence of equally distributed noise, introduced by falsely detected structures.
2. The angles are unimodal distributed (see Figure 7) with only a slight variation.
3. The distribution seems to be symmetrical.

Based on these observations, we have derived a suitable model for the underlying distri-
butions. Due to the first characteristic, the noise is regarded as an additive constant term
α/π, whereα is the portion of noise. To model the signal (i.e. the angle of intrusion) a
symmetrical density function with one local maximum should be used. In Section 3.1
we present two models (Gaussian and von Mises, respectively). The parameter estima-
tion procedure is the same for both models. Since the equally distributed noise has no
impact to the calculation of the mean orientation, at first the mean orientationµ̂ is es-
timated. We have tested several estimators [8] and figured out that a least median error
approach works best (Section 3.2). Subsequently, the portion of noise is estimated by
inspecting the neighbourhood of the antipole ofµ̂ (Section 3.3). At last we compute
the estimation of the shape parameter (Section 3.4), which areκ̂ (von Mises) and̂σ
(Gaussian), respectively.

3.1 Distribution models
Both distribution models, which we have taken into considerations, are explained by
three parameters: the portion of noiseα ∈ [0, 1], the mean angleµ ∈ [−π/2, π/2), and
one shape parameter. In detail, the PDFs are given as:

pGauss
α,µ,σ(φ) =

α

π
+

(1− α) · exp(− (2φ−2µ)2

2σ2 )
π σ

(9)

pvon Mises
α,µ,κ (φ) =

α

π
+

(1− α) · exp(κ cos(2φ− 2µ))
π I0(κ)

(10)



whereI0 is the modified Bessel function of order zero. The first summand of these
density functions represents the equally distributed portion of noise with fractionα and
the second summand (with fraction1− α) is an adaptation of the signal distribution to
the cyclic domain ofφ ∈ [−π/2, π/2).

The Gaussian model cannot be applied directly to the observation set, due to the
cyclicity of the data space. For this, we have to cut the data space at the antipole of the
mean angle. Afterwards, the whole observation is mapped toR linearly, such that the
mean value is mapped to 0 and finally, a standard analysis on the line is performed to
estimate the standard deviationσ of the underlying Gaussian.

The use of a von Mises model offers the evidence that the shape parameterκ is di-
rectly deducible on the cyclic domain. Note that a reduction ofκ leads to an enlargement
of the variance. The von Mises distribution is a kind of standard distribution on cyclic
domains (see [1]). Its importance is comparable with the role of the normal distribution
on a line. Unfortunately, things becomes more difficult on cyclic domains, so that not all
properties of the normal distribution are adaptable to von Mises distributions. The close
relationship becomes clear, by inspecting the density function of the von Mises model.
If the cosine in Equation (10) is approximated by its first ordered Taylor polynomial
the model is (beside normation andκ := σ−2) the same as the Gaussian (see Eq. (9)).
However, in all conducted experiments the von Mises distribution seems to model the
observation more precisely (Table 1).

For validating the goodness of our models and to compare different estimators, we
have used the following quality measure, denoted as match score (MS). The data space
is divided into finite intervals of equal length (we use 180 binsb1, . . . b180 of 1o width
as default). For this discretisation we construct the relative histogramh of the observed
angles of intrusion and compare for each binbi the measured frequencyh(i) with the
expected frequencyf(i). Assuming a distribution with parameter vectorp the match
score is computed as:

MS(p) = 1− 0.5 ·
180∑

i=1

|f(i)− h(i)|. (11)

3.2 LME-estimation of the mean orientation
For a fixedµ the median error to the observation setS = {φ1, . . . , φn} is computed as

mederr(µ, S) = mediani∈{1,...,n} { darc(µ, φi) } (12)

wheredarc is the arc-length distance in our cyclic domain. Now, we minimise this error
function err(µ) to estimateµ

err(µ) = minµ∈[−π/2,+π/2] {mederr(µ, S) } , (13)

µ̂ = arg minµ∈[−π/2,+π/2] {mederr(µ, S) } . (14)

The statistical interpretation of this method is minimising the width of the 50%-quantile
interval centred atµ.

The computation of̂µ can be done by a single scan through the sorted observation
setφ(1), . . . , φ(n). We use two cyclic indicesiA andiΩ = iA +n/2, which represent the
beginning and the ending of a candidate error interval. For each error interval the corre-
sponding estimation forµ is given by(φ(iA) + φ(iΩ))/2. The estimation̂µ is computed
as the centre of the shortest candidate error interval and can be found by one sweep.



3.3 Estimating the portion of noise
After estimating the mean direction̂µ, we utilise the characteristic that the variation of
the data is less in comparison to the domain. Therefore, we assume that all observed
angles in a small interval centred at the antipoleµ̃ := µ̂ + π/2 of µ̂ are introduced
by noise. In our implementation, we choose an interval length of0.2 · π, which gives
appropriate results. Since we assume equally distributed noise on the whole domain,
we can easily estimate the overall portion of noise: Letn be the size of the observation
set andc be the counted angles in the interval]µ̃− 0.1π, µ̃ + 0.1π] the portion of noise
could be estimated aŝα = 5c/n.

3.4 Estimating the shape parameter
Finally, we estimate the shape parameter, which isκ in the von Mises case. This can
been done by inspecting the minimised errorerr := err(µ̂) (see Eq. (13)). We compute
κ̂ as the unique solution of the equation

0.5 =
∫ err

−err

pµ̂,κ̂,α̂(φ) dφ . (15)

Unfortunately, this equation has no analytical solution. We foundκ by using the fact
that the right side of the objective functional is increasing inκ̂, so that we can guarantee
to find κ by a binary search algorithm. This estimation technique can be adapted to
other distributions, which have one shape parameter (e.g. the Gaussian model).

4 Results
Our image database consists of 45 images showing heart tissue. All slices are arranged
in the common coordinate system, such that the epicard is parallel to the upper border
of the image. We have estimated the parameter of the proposed model for all images and
compute the match score (see Table 1). Furthermore, the average of the single results
are plotted in the row ’Average’ and the analysis of the whole observation set, which
consists of the union of all observation sets are presented in the row ’Complete Set’.
This combination is valid because all slices are referenced to the same context.

The first observation is that in every case the von Mises model outperforms the
Gaussian model by mostly over 0.5 match score points. The average match score of
the von Mises model is with 92.19% reasonable high (98.24% in the case of simulated
data) and validates our model. In Figure 7 we have plotted the observation histogram
against the derived PDF (normalised to the same integration area) of the sample slice.
The approximation of the model with the observation is good, except near the mean
orientation. In some other slices, we obtain local marginal inaccuracies other where,
but not at a fixed position. This phenomenon could be explained with local differences
in the heart tissue, which exhibit different structures at different locations of the heart
muscle. Since the preparations in our test study are located all over the heart, combining
all results eliminate local phenomena. In Figure 8 the observation histogram of the ag-
gregated observations and the derived PDF are overlaid. The visible model-observation
coherency in this plot demonstrates the overall goodness of our model. This is also con-
firmed by the match score indicator of the complete evaluation of 94.87%. Here, the
match score 93.98% of the Gaussian estimation is clearly lower.

The estimations ofµ andκ correspond to the expectancy of the medical experts and
in their opinion confirm the need of a more accurate model of the heart [6].



Preparation Size µ̂ κ̂ α̂ MS von Mises MS Gaussian

Slice 01 57728 -3.08 10.80 2.97% 91.24% 91.09%
Slice 02 54608 10.07 7.61 4.07% 91.05% 90.58%
Slice 03 61283 7.42 9.08 3.26% 92.40% 92.00%
Slice 04 69057 16.72 12.97 1.77% 91.62% 91.36%
Slice 05 60890 17.83 7.35 2.94% 93.29% 92.83%
Slice 06 58330 -3.44 5.86 7.02% 92.54% 91.88%
Slice 07 66060 3.69 8.66 3.84% 92.40% 91.96%
Slice 08 61291 -1.79 7.30 5.42% 92.33% 91.85%
Slice 09 55559 -11.93 4.98 7.50% 93.25% 92.56%
Slice 10 60250 0.15 7.53 6.43% 91.85% 91.39%
Slice 11 56364 -5.46 4.82 11.34% 92.09% 91.31%
Slice 12 60266 -1.22 4.70 12.05% 92.00% 91.20%
Slice 13 56292 4.78 4.74 6.47% 93.31% 92.45%
Slice 14 57900 -0.01 5.41 7.38% 90.84% 90.16%
Slice 15 54972 6.40 4.14 8.53% 92.58% 91.61%
Slice 16 64023 -3.82 7.45 5.40% 90.29% 89.80%
Slice 17 58538 -7.73 4.15 5.55% 93.72% 92.91%
Slice 18 60359 -0.43 5.79 6.20% 93.01% 92.39%
Slice 19 62503 2.18 8.38 3.18% 93.61% 93.22%
Slice 20 59616 0.09 5.21 4.34% 92.45% 91.76%
Slice 21 60453 -1.60 5.47 8.92% 91.74% 91.08%
Slice 22 60085 3.74 6.77 6.92% 91.59% 91.03%
Slice 23 61623 -5.41 3.76 10.73% 93.11% 92.10%
Slice 24 60643 -1.25 4.03 4.37% 93.34% 92.36%
Slice 25 61079 2.63 5.97 6.20% 92.62% 91.96%
Slice 26 63194 17.74 5.15 8.37% 92.85% 92.13%
Slice 27 58143 1.53 4.29 10.27% 92.62% 91.75%
Slice 28 59888 2.48 9.66 6.13% 91.29% 90.93%
Slice 29 60537 1.30 4.62 12.31% 90.92% 90.25%
Slice 30 57753 5.82 5.39 9.51% 89.81% 89.10%
Slice 31 56389 0.76 6.30 12.16% 91.54% 91.00%
Slice 32 54771 0.55 6.28 8.90% 90.59% 89.98%
Slice 33 64169 -2.17 6.50 5.71% 91.05% 90.51%
Slice 34 66315 -0.72 4.47 4.62% 92.04% 91.20%
Slice 35 54963 -11.74 5.44 8.15% 93.65% 93.00%
Slice 36 58668 -0.10 4.00 7.74% 92.70% 91.74%
Slice 37 63878 -8.31 6.11 6.46% 90.94% 90.39%
Slice 38 58285 -1.47 7.20 4.90% 92.07% 91.63%
Slice 39 56380 -0.88 4.53 7.05% 93.42% 92.63%
Slice 40 54885 -0.35 6.16 10.06% 92.53% 91.99%
Slice 41 60458 -12.58 5.44 7.05% 93.86% 93.20%
Slice 42 53136 1.31 3.29 12.62% 92.33% 91.17%
Slice 43 47940 4.96 8.58 6.39% 93.73% 93.34%
Slice 44 62925 17.67 10.12 2.33% 91.56% 91.21%
Slice 45 66382 8.60 13.71 2.33% 90.78% 90.51%

Average 59530 1.18 6.45 6.80% 92.19% 91.57%

Complete Set 2678831 1.17 4.27 6.75% 94.87% 93.98%
Table 1.Results of the statistical analysis on the whole image data base
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5 Conclusions and further work
In this paper, we have presented a completely automatic method for analysing the angle
of intrusion of myocyte strings in heart tissue slices. Firstly, we have described an al-
gorithm to extract the myocyte string and then given a method to measure the angle of
intrusion at a multitude of sample points. Furthermore, we have developed a statistical
model for the angle of intrusion distribution and validated this model experimentally.

Motivated by the results we want to advance the improvement of the heart model,
by extracting the structure of the myocyte strings, which are connected to each other.
Moreover, we are discussing with other research groups if a simulation of a heartbeat
based on such image material could be possible.
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Abstract. In automated DNA sequencing, the final algorithmic phase,
referred to as basecalling, consists of the translation of four time signals
in the form of peak sequences (electropherogram) to the corresponding
sequence of bases. Commercial basecallers detect the peaks based on
heuristics, and are very efficient when the peaks are distinct and reg-
ular in spread, amplitude and spacing. Unfortunately, in the practice
the signals are subject to several degradations, among which peak su-
perposition and peak merging are the most frequent. In these cases the
experiment must be repeated and human intervention is required. Re-
cently, there have been attempts to provide methodological foundations
to the problem and to use statistical models for solving it. In this pa-
per, we exploit a priori information and Bayesian estimation to remove
degradations and recover the signals in an impulsive form which makes
basecalling straightforward.

1 Introduction

In automated sequencing, a reaction of extension from the initial primer of a
given DNA strand generates a complete set of fragments in which the last base
is marked with a fluorescent dye out of four different types, one for each type
of base. Fragments are then sorted by length by means of electrophoresis and
detected, as they pass under a laser, by four optical sensors, capturing the emis-
sion in the distinct wavelength ranges where the four dyes emit. The result is an
electropherogram, that is four time series in the form of peak sequences, each
representing the variation with time of the concentration of DNA fragments end-
ing with the same base. Each peak in the four signals represents a base, its size
is related to the number of DNA fragments of a given length, while its time
location is related to the specific length and reflects the position of the base in
the DNA strand under consideration. Basecalling is the final algorithmic phase
of automated sequencing, and consists in obtaining the DNA base sequence from
the electropherogram by the ordered reading of the peaks.

? This work has been supported by the European project Network of Excellence MUS-
CLE FP6-507752 (Multimedia Understanding through Semantics, Computation and
Learning)



The most popular commercial basecallers are the software developed by ABI
[1], running on the ABI Prism sequencers, and Phred [5] [6], which has been used
in the Genome Project. Both are based on peak detection algorithms refined
with heuristics, and are very efficient when the peaks are well distinct and quite
regular in spread, amplitude and spacing.

Unfortunately, in the practice data production is subject to several processes
that lead to degradations of the electropherograms, particularly near the end of
the sequence. Among those, the most important and frequent are peak superpo-
sition, known as cross-talk, due to the spectral overlapping between fluorescent
dyes, and peak merging, known as diffusion, due to mobility shifts and deviations
of the fragments in the gel. Signal leakage may also occur, resulting in secondary
peaks. These degradations may seriously affect the performance of basecalling
algorithms, and, in the current practice, they entail repeating the experiment,
comparing the base sequence with that of the complementary strand [7], and
manual editing.

The availability of economic DNA sequencers and reliable and fast basecalling
algorithms, which allow to reduce as much as possible the intervention of human
operators, is still an open issue and is especially important in order to cope
with large scale sequencing of whole genomes, sequencing of the genomes of as
many as possible species, comparative genomics and evolutionary studies, and
the increasing diffusion of sequencing of individual DNA segments in the clinical
practice. Furthermore, accuracy up to a single base would be essential for reliable
locations of SNPs, and for the efficiency of gene prediction software, e.g. to avoid
premature termination due to false stop codons.

In the literature, there have been several attempts to provide methodolog-
ical foundations to basecalling, and to use statistical models which allow the
incorporation of prior knowledge about the structure of the problem and the
data directly into the basecalling algorithm, without resorting to heuristics [3],
[8], [10], [11], [12]. In particular, in [8] hidden Markov models and Markov chain
Monte Carlo methods are used.

In this paper, the problem of removing cross-talk and diffusion in electro-
pherograms is formulated as one of joint blind source separation and blind de-
convolution. In particular, Bayesian estimation and a priori information are ex-
ploited to recover the signals in an impulsive form which makes the task of
basecalling straightforward.

2 Problem formulation and Bayesian estimation

In ideal conditions (i.e. same velocity for all fragments of a given length, fluo-
rescence emission in four separated wavelength ranges) the ideal electrophoretic
signal sj , j = 1, 2, 3, 4, would be an impulse train, where the impulse locations
identify the mutual positions of the bases of type j out of four types (namely,
A, T, C and G) along the DNA strand under consideration, and the impulse
magnitudes vary in time according to the changing color concentration, i.e the
changing number of fragments of a given length. It is immediate to see that in



such a case the task of basecalling would be straightforward. Conversely, the
fragment mobility is a random process, subject to variations due to the nature
of the experiment, and the j − th measured signal xj , j = 1, 2, 3, 4, represents
the intensity of fluorescence emitted in one of four wavelength ranges, where the
emission spectra overlap. The electropherograms can thus be considered as the
result of the application to the ideal signals of two operators in cascade: a convo-
lution with a kernel related to the mobility distribution (diffusion), followed by a
mixture of the four signals, modelling the superposition of the fluorescence emis-
sion spectra in four wavelength ranges (cross-talk). The data model we consider
is thus:

xi(t) =
4∑

j=1

Aij (hj ∗ sj) (t) + bi(t) ∀t, i = 1, 2, 3, 4 (1)

where bi is a noise term incorporating the left error sources, A is the 4 × 4 un-
known cross-talk matrix, and hj is the unknown impulse response which models
the diffusion effect. This is related to the peak shape, depending on the casual-
ity of fragment mobility. In general, hj can be considered a Gaussian function,
with unknown and time-varying variance. Indeed, longer fragments are more
prone to mobility variations, so that it is expected that the variance of the im-
pulse response slowly increases with time. Asymmetric, heavy-tailed peaks, due
to deviations in the gel of long fragments, could be modelled as a mixture of
Gaussians.

In the current practice, noise removal, cross-talk correction (also referred to
as color separation) and deconvolution are performed off-line and separately, as
steps of pre-processing of the electropherogram, prior applying basecaller soft-
ware. As per the noise, this is assumed as constituted of two terms. A white,
Gaussian term is suitable for modelling error sources such as fluorescent impurity
in the gel, electronics and light scattering, and, since the actual DNA fluores-
cence is a very slowly varying signal, low pass filtering is usually employed to
filter this noise out. Another noise term is the baseline, i.e. an error term due to a
constant value of background fluorescence, which is modelled as a slowly increas-
ing function of time. The correction of the baseline error is usually performed
by removing a roughly constant waveform from the recorded signals.

To eliminate the cross-talk between the four channels of the electrophero-
gram, usually a linear operator is applied. As already said, cross-talk is due to
the overlapping of the outputs of the optical filters that separate the fluores-
cence from each of the four tags. This overlapping is linear and can be modelled
through a mixing matrix. When this matrix is known, the cross-talk can be elim-
inated by applying its inverse to the data. The mixing matrix, however, is not
known, and must be determined. To this purpose, techniques mostly based on
analysis of the second order statistics of the signal have been proposed.

Given the data model of eq. 1, our aim is instead to jointly perform estima-
tion of mixing and diffusion, and color separation and deconvolution, using a
priori knowledge that one might have about the problem. Thus, recovering the
ideal signals, i.e. removing the cross-talk and peak spreading effects, is seen as a



problem of joint blind source separation and blind deconvolution. In a Bayesian
framework, we propose a Maximum A Posteriori (MAP) estimate for the un-
knowns of the problem:

(ŝ, Â, ĥ) = arg max
s,A,h

P (s, A,h|x) = arg max
s,A,h

P (x|s, A,h)P (s)P (A)P (h) (2)

where P (x|s, A,h) is the noise distribution, and P (s), P (A), and P (h) are the
prior distributions for the three independent sets of variables. At present, we
consider the noise term to be in its whole a white, Gaussian and stationary
process. Although in our approach the baseline is considered incorporated in a
generic Gaussian noise term, from experiments conducted on synthetic data we
have seen that the proposed method is robust enough against non-stationary
noise, whose variance is slowly increasing with time.

The prior adopted for the signals has been chosen on the basis of the mini-
mum number of constraints one may reasonably enforce on the expected, ideal
output of the electrophoresis process. In blind source separation, when as in our
case both the mixing and the sources are unknown, a typical constraint which
is enforced to sort out a solution from the infinite ones which fit the data, is
statistical independence of the sources. This approach has given rise to a num-
ber of very efficient methods and algorithms known as independent component
analysis (ICA) [2] [4] [9]. In our case, however, ICA is not suitable, since we
know that the four electrophoretic signals should not be superimposed to each
other. This means that the sources are actually dependent, but, at the same
time, this information provides us with a very powerful constraint for efficiently
bounding the problem. Thus, in our method, to obtain separation, at each time
t only one signal out of the four is allowed to be non-zero. For deconvolution, we
enforce positivity and minimum energy of the signals. Indeed, these constraints
used together are able to produce super-resolution, and then are very effective
for the deconvolution of impulsive signals. With respect to the estimation of the
mixing and diffusion operators, we considered generic constraints for both A and
h. In particular, the adopted prior for A constrains its elements to be positive,
while h is modelled as a Gaussian function and bounds on its variance are used.

The joint MAP estimation of eq. 2 is usually approached by means of alter-
nating componentwise maximization with respect to the three sets of variables
in turn:

ĥ = arg max
h

P (x|s, A,h)P (h) (3)

Â = arg max
A

P (x|s, A,h)P (A) (4)

ŝ = arg max
s

P (x|s, A,h)P (s). (5)

where the priors P (h), P (A) and P (s) are chosen in such a way to probabilis-
tically enforce the over-mentioned constraints. We solve the above scheme via
a Simulated Annealing algorithm in A and h, alternated with deterministic up-
dates for s, based on gradient ascent.



3 Experimental results

To quantitatively measure the performance of the proposed method, we car-
ried out a number of experiments on synthetically generated DNA electrophero-
grams. Two of such experiments are illustrated in Figures 1-3, for the noiseless
and noisy cases, respectively. The data were generated by convolving four non
superimposed impulse trains with Gaussian impulse responses, and then linearly
mixing the four resulting signals. For each impulse train, the number of impulses,
their locations and amplitudes, were chosen randomly, and the standard devia-
tion of the corresponding impulse response was kept fixed along the sequence, in
the assumption that diffusion can be considered stationary for short sequences.

Fig. 1. Top: noiseless synthetic DNA sequencing data; Middle: color corrected data;
Bottom: output from joint separation and deconvolution.



Fig. 2. Left: data scatterplot; Right: reconstruction scatterplot.

Figure 1 shows the results of the method in the noiseless case. In particular,
the top panel shows the very bad quality electropherogram considered as data,
the middle panel shows the intermediate result of blind color separation, and the
bottom panel shows the final signals reconstructed after both color separation
and blind deconvolution. Note, however, that the algorithm directly produces
the final reconstruction starting from the data alone, and the intermediate color
separation result has been obtained by multiplying the data with the inverse
of the estimated mixing matrix. In this case, the final reconstruction exactly
reproduces the positions of the original impulse trains considered, apart from
scale factors in the amplitudes. The symbols marking the different impulses
indicate the four kinds of DNA bases (A, T, C, G). The original mixing matrix
adopted for generating the data was:

Atrue =




1.0000 0.4976 0.1277 0.2129
0.9536 1.0000 0.3723 0.2415
0.6725 0.7184 1.0000 0.3345
0.2725 0.2136 0.3266 1.0000




while the estimated one was:

Aest =




1.0000 0.4675 0.1348 0.2185
0.9525 1.0000 0.3697 0.2422
0.6862 0.6683 1.0000 0.3453
0.2717 0.2693 0.3014 1.0000




For comparison purposes, the two matrices has been rescaled by dividing each
column for its highest value. The mean square error between Atrue and Aest was
0.0217. The standard deviations of the four Gaussian impulse responses were



estimated up to an accuracy of 0.001. Figure 2 shows the scatterplots of the data
(left panel) and of the reconstructed signals (right panel). While a high degree
of correlation is present between each couple of data signals, the reconstructions
are perfectly uncorrelated.

Fig. 3. Top: noisy synthetic DNA sequencing data; Middle: color corrected data; Bot-
tom: output from joint separation and deconvolution.

In another experiment, shown in Figure 3, we added same noise to the con-
volved and mixed signals. This was a white, Gaussian process, with standard
deviation slowly increasing with time, to simulate the baseline error. Also in
this case the reconstructions of the signals, the mixing matrix and the im-
pulse response standard deviations were more than satisfactory, showing that
the method is robust enough even against non-stationary noise.



Other experiments were conducted on real data, for which results from auto-
matic sequencing machines were available. In particular, we performed tests on
several segments of the genome of a Gymnochlora sp. alga. With our method,
we obtained some improvements with respect to the performance of the com-
mercial basecallers, even for high quality electropherograms. Figure 3 shows the
result obtained on a segment for which the reliability of the calls of the com-
mercial basecaller was very low. For this segment, the highly reliable sequencing
of the complementary strand was available. We could thus perform a biological
validation of the results, based on an estimate of the true sequence, obtained
for complementarity from the dual strand. In particular, we observed that the
sequence provided by the commercial sequencer contained seven errors (mainly
missing bases, i.e. deletions), while ours only three errors. Finally, Figure 4 shows
a short sequence of satisfactory quality where, however, the software running on
the commercial automated sequencing machine produced an error in the inter-
val 100-150 where the sequence ”ATA” was recognized. In fact, according to the
other strand, considered reliable by the biologists, the middle ”T” should instead
be an ”A”. As shown in the bottom panel of Figure 4, in the same position our
algorithm correctly recognized an ”A”.

Fig. 4. Top: real DNA sequencing data; Bottom: output from joint separation and
deconvolution.



Fig. 5. Top: real DNA sequencing data; Bottom: output from joint separation and
deconvolution.

4 Conclusions

We have proposed a method based on statistical models for the processing of
electrophoretic time series produced in automated DNA sequencing, with the aim
at removing typical degradations and improving basecalling. The degradations
we considered are the most frequent ones, that is peak superposition (cross-talk)
and peak merging (diffusion). We formulate the problem in a Bayesian estimation
framework as one of joint blind source separation and blind deconvolution. In
particular, the a priori information we exploited allows to obtain the restored
electropherograms in an impulsive form which makes basecalling straightforward.
Preliminary results on synthetically generated data and real DNA sequences
showed the promising performance of the method, even against very bad or
noisy electropherograms. In addition, the method is suitable for handling any
kind of constraint. Further improvements could thus be obtained, for instance,
by including constraints on the number of allowed bases and bounds on the
spacing between bases. Another possible extension could consists in enforcing
the bases to be complementary with those of the other strand, when, as it often
happens, this is available as well.
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Abstract. The automatic subcellular localisation of proteins in living
cells is a critical step to determine their function. The evaluation of fluor-
escence images constitutes a common method of localising these proteins.
For this, additional knowledge about the position of the considered cells
within an image is required. In an automated system, it is advantageous
to locate and segment these cells in bright-field microscope images taken
in parallel with the fluorescence micrographs. Unfortunately, currently
available cell segmentation methods are only of limited use within the
context of protein localisation, since they frequently require microscopy
techniques that enable images of higher contrast (e.g. phase contrast mi-
croscopy or additional dyes) or can merely be employed with too small
magnifications. Therefore, this article introduces a novel approach for
the robust automatic segmentation of unstained living cells in bright-
field microscope images.

1 Introduction

The genomes of a variety of species have been decoded in recent years. Know-
ledge about genes enables the analysis of corresponding, frequently unknown
proteins and their functions, e.g. in order to gain knowledge about cell processes
or to develop efficient drugs. A common approach of determining the function
of proteins is the examination of fluorescence microscope images [1–3], which is
especially well-suited for the analysis of subcellular locations in intact cells.

In order to localise them, the considered proteins are tagged with a fluores-
cence dye, for instance with the green fluorescent protein (GFP) or one of its
spectral variants [4]. Unfortunately, the surrounding cells themselves are almost
invisible in these fluorescence images (see Fig. 1). Thus, additional information
are required to associate fluorescent spots with specific cells. Commonly applied
methods for the acquisition of these information consist in manual segmentation
[1] or the usage of specially stained cells [2].

In contrast to that, our approach enables an automatic segmentation of
Spodoptera frugiperda cells (Sf9) without applying additional dyes. A bright-field
microscope image, taken in parallel with each fluorescence image, is used for the
identification of cells (see Fig. 2) which constitute the basis for the analysis of
the corresponding fluorescence image.



Fig. 1. Fluorescence micrograph showing
Sf9 cells with stained lysosomes.

Fig. 2. Bright-field image taken simul-
taneously with the micrograph of Fig. 1.

The bright-field images are segmented by applying an active contour ap-
proach briefly outlined in [5]. After a discussion of relevant literature (see Section
2), this technique as well as required methods for the automatic determination
of initial segments are described in Section 3. Section 4 proposes various en-
hancements that are relevant for a practical application of our approach. These
methods are evaluated in Section 5. Eventually, conclusions are drawn and a
short outlook is given in Section 6.

2 Related Work

Numerous articles have been published regarding automatic cell segmentation.
Unfortunately, the subcellular localisation of proteins in living cells imposes spe-
cial limitations that prohibit the application of most of these methods.

A large number of approaches such as [6–8] employs phase contrast mi-
croscopy in order to improve the contrast of acquired images. This technique
requires special objectives that reduce the amplitude of incident light. As we
take a fluorescence image in parallel, the light of fluorescent objects would be
attenuated, as well. An alternation of the objective between the acquisition of the
images causes further problems, since it modifies the optical path. Consequently,
an association of corresponding pixels of both images would be hampered. Other
approaches require special dyes [2, 9, 10] that are frequently applied to dead cells
or tissues. If they were utilised with living cells they might interfere with exam-
ined proteins or even kill the cells.

Unlike phase contrast microscopy and the application of dyes, bright-field
microscopy can be applied to the segmentation of cells in the context of pro-
tein localisation without adversely influencing the outcome of the investigation.
Unfortunately, bright-field images are usually of low contrast, intensity-variant,
and unevenly illuminated [11]. Furthermore, they show a great variety of cell
appearances [12]. In addition, a relatively high magnification (60×, 1 µm equals
6.45 pixels) is necessary, as subcellular structures are to be localised. So, the con-
sidered Sf9 cells comprise between 10,000 and 80,000 pixels. Therefore, methods
utilising small search windows in order to detect whole cells (cf. [9, 12]) cannot
be employed.



Fig. 3. Local intensity variation in a bright-field image (left). The result of the self-
complementary top-hat (right) allows a noticeably better recognition of the image
foreground than the variance map (centre) using a neighbourhood of 41× 41 pixels.

As cells in bright-field microscope images are separated from other cells and
their surrounding by their membrane, it is beneficial to include this information
into the segmentation procedure. Parametric active contours or rather snakes
have proven advantageous for that purpose [7, 8]. So, we have developed a snake
algorithm for the robust segmentation of Sf9 cells in bright-field microscope
images as well as methods for its automatic initialisation which are described in
the following section.

3 Cell Segmentation in Bright-Field Images

Before actually segmenting cells in bright-field images, extensive preprocessing is
essential to obtain a sufficient initialisation. Firstly, a separation between image
areas containing cells (foreground) and other regions (background) occurs (see
Section 3.1). Secondly, probable cell membrane pixels are detected (see Section
3.2) so as to enable a separation of neighbouring cells. Afterwards, cell markers,
i.e. small regions within possible cells are determined (see Section 3.3) which are
subsequently applied as initialisation of the segmentation procedure (see Section
3.4).

3.1 Separation of Image Foreground and Background

Wu et al. have shown that the local intensity variation is a valuable feature for the
separation of foreground and background in bright-field images [11]. Instead of
computing the local variation defined by the variance within a square neighbour-
hood, we take advantage of a morphological operator: the self-complementary
top-hat [13]. Figure 3 depicts the result of the application of the self-complemen-
tary top-hat to an exemplary bright-field image as well as the corresponding
variance map if a square neighbourhood of 41 × 41 pixels (suggested by Wu et
al.) is considered. In order to increase the computational efficiency we employ
structuring elements with a size of 25× 25 pixels.

The bimodal distribution of the local intensity variations determined by the
self-complementary top-hat is considerably more distinctive than the one com-
puted by analysing the variance. Hence, the automatic separation of image fore-



ground and background, which is performed by minimum error thresholding [14],
is alleviated.

3.2 Detection of Probable Cell Membrane Pixels

Probable cell membrane pixels are determined by utilising morphological oper-
ators, as well. As the cell membrane possesses a linear shape that is less curved
than other cell compartments and is characterised by a substantial change of
pixel intensities, linear structuring elements are applied to the gradient mag-
nitude image. All image structures that cannot contain this linear structuring
element such as dirt, noise, and intracellular objects are removed by a morpho-
logical opening. In order to get closed contours, this operation is repeated for
seven additional orientations. The resulting images are fused by computing the
point-wise maximum, which constitutes an algebraic opening [13].

The length l of the linear structuring elements is crucial to the result of
the algebraic opening. If it is chosen too small, irrelevant image structures will
remain; if the value is too high, cell membrane pixels will disappear. Hence,
we have developed an automatic procedure for the determination of an optimal
value (see Section 4.1).

3.3 Determination of Cell Markers

On the basis of the computed image background and cell membrane pixels small
regions within probable cells are identified – the cell markers (see Fig. 4). It is
assumed that points possessing a great distance to the image background and
membrane pixels lie inside cells. These points are determined by computing the
local maxima of the distance transform [13].

Fig. 4. Computation of cell markers. The cell markers (right) are determined in such
a way that they maximise the distance to the image background (left) and membrane
pixels (centre).

In order to obtain an appropriate initialisation for the segmentation step,
these regions are dilated by a small circular structuring element (diameter: 5%
of the maximal cell radius, 9 pixels). Afterwards, the contours are traced so as
to obtain a polygonal representation that comprises only the start and end point
of adjoining lines.



3.4 Cell Segmentation by Active Contours

Active contours have several advantages with respect to the segmentation of
cells. Firstly, they always yield closed contours even if the corresponding cell
membrane is hardly visible. Secondly, they enable the inclusion of context specific
knowledge such as membrane curvature and cell size. So, the robustness can be
improved.

Several approaches have been proposed for the computation of active con-
tours, e.g. variational calculus, dynamic programming, and greedy methods. We
have decided to apply a greedy approach [15] due to its efficient computability,
stability, and flexibility. Since our approach aims at complete independence from
user interactions while processing images, special requirements have to be ful-
filled. In particular, the determined cell markers instead of close approximations
of the resulting contour should be applicable as initialisations.

Cohen [16] proposed a method to realise the growth of snakes by introducing
an inflation force. This technique applies normal vectors of the contour in order
to determine the direction of extension. As a result, the contour might overlap
if it is initialised with a concave cell marker. Hence, we have decided to utilise
an alternative basis for the growth of the contour – the minimal distance to the
initial contour. Equation (1) shows the corresponding energy functional E∗

snake

of a parametric curve v
(
x(s), y(s)

)
with arc length s.

E∗
snake =

∫ 1

0

[
αEcont + βEcurv + γ(Edist)Eao + δ(Edist)Edist

]
ds (1)

Econt and Ecurv control the continuity and curvature, respectively. Moreover,
Econt fosters equal spacing between points [15]. Eao represents the resulting
image of the algebraic opening (see Section 3.2) and Edist the distance from the
initial contour. As the energies are minimised, the image as well as the distance
have to be inverted. Thus, a maximal considered distance ∆max is required. We
have set it to the maximal cell radius increased by a tolerance interval of 20%
(198 pixels in total).

The parameters α, β, γ, and δ control the influence of the respective energy
terms. At this, γ and δ are modified dependent on Edist.

γ(Edist) = γ0 ·
∆max − Edist

∆max
(2)

δ(Edist) = δ0 + γ0 − γ(Edist) (3)

According to (2), γ(Edist) yields high values if Edist is small, i.e. if the snake
has a great distance to its initialisation. By this, high pixel values near the cell
markers, within the cells are suppressed. Equation (3) ensures that the sum of
γ(Edist) and δ(Edist) equals the sum of its base values γ0 and δ0, respectively.
So, the extending force is reduced if the snake reaches a distance from its cell
marker where the probability of membrane pixels is high. Additionally, back-
ground pixels receive a high value of Edist in order to avoid an extension of the
snake in this region.



4 Enhancements

In the introduction of our segmentation approach in Section 3 several questions
were left open although they are crucial for the correct function. They have been
topics of current research and are answered in the following. Section 4.1 outlines
a method that enables the automatic determination of the optimal length l for
the linear structuring elements which are applied during the algebraic opening.
A further problem consists in the parametrisation of the snakes. As they are
growing, new points have to be inserted (see Section 4.2).

4.1 Improvement of the Detection of Membrane Pixels

The basis for the automatic determination of the length l of the linear structuring
elements is provided by n = 499 cell masks manually extracted by biological
experts. Besides the mask of a cell i itself, the points of a tube with a diameter of
5% of the mean cell radius that is centred at the mask boundary are considered in
order to detect the intensities of membrane pixels. The sets of the corresponding
points p are denoted by Mi (mask) and Ti (tube), respectively. According to
(6), then an optimal value l for the length of the line elements is computed by
iterating over all possible values up to ∆max.

ITl =
n∑

i=1

∑
∀p∈Ti

Il

(
xp, yp

)2 (4)

IMl =
n∑

i=1

∑
∀p∈Mi

Il

(
xp, yp

)2
∆

(
xp, yp

)
(5)

lopt = arg max
∀l

 ITl
max
∀l

ITl
− IMl

max
∀l

IMl

 (6)

Il

(
xp, yp

)
constitutes the image generated by an algebraic opening with a

structuring element of length l. The consideration of squared pixel values re-
sults in a reduced influence of small intensities that have less negative effects on
the segmentation than high ones. Moreover, the points of the mask image are
weighted by their minimal distance ∆

(
xp, yp

)
to the boundary. lopt is optimal

in a sense that it maximises the difference of the intensities (scaled to fit into
the interval [0, 1]) within both examined image regions in order to enhance the
contrast.

4.2 Insertion of New Points

The segmentation consists in the extension of snakes starting from small regions
within probable cells. So, the distances between adjoining points are increased
and resampling of the snake, i.e. the insertion of new points is necessary. On the
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Fig. 5. Approximation of an ellipse by line segments. A line segment of length λ con-
necting the points P and P ′ causes an approximation error ε if it is equally divided by
the major axis. As the distance between the ellipse and its centre C is maximal there,
ε is maximal, as well. Thus, ε constitutes the worst case value.

other hand, too high a number of points results in an increased computational
effort. Thus, some kind of compromise has to be reached. Since Sf9 cells are
almost elliptically shaped, an ellipse approximation of the current snake is per-
formed [17]. This yields the lengths of the semiminor axis b and of the semimajor
axis a as well as the centre C. On the basis of these values the approximation
error ε occurring if the ellipse is approximated by a line segment of length λ is
computed (see Fig. 5).

An ellipse can be described by x = a · cos α and y = b · sinα. Inserting the
coordinates xP = a − ε and yP = λ

2 of point P and fusing the results leads to
(7) which enables the determination of λ.

λ = 2b · sin
(

arccos
a− ε

a

)
(7)

Instead of computing the ellipse approximation after every iteration step
of the snake algorithm (variable split length, VSL), it can be applied to the
determination of a constant split length λ∗ (CSL). For this purpose, all manually
extracted cells are approximated by an ellipse and λ∗ is set to the minimal value
of λ. So, a correct approximation of all cells with an error less than ε can be
guaranteed, as well.

5 Results

We evaluated our methods on a dataset containing 499 cells manually extracted
from 45 images by biological experts. In order to enable investigations regarding
different foci, the dataset comprises images of the same specimen at three manu-
ally adjusted focal planes (A, B, and C) showing the cell characteristics depicted
in Fig. 6. All 499 manually extracted cells were automatically marked during the
preprocessing step (see Section 3.3) and each cell mask was associated with the
marker closest to its centre. Furthermore, the length of the linear structuring
elements for the algebraic opening was automatically set to lopt = 31 according
to Section 4.1.

In order to assess the segmentation, the manually extracted cell masks were
compared with the corresponding automatically segmented cells by performing a



A B C

Fig. 6. Cells at different focal planes. The appearance of the examined cells varies if
the focus is modified.

15-fold cross test. The energy weights were chosen in such a way as to minimise
the error term d̄err for all except one of the images of a focal plane (see (8)).

d̄err =
1
n

n∑
i=1

dmax
i

bi
(8)

dmax
i denotes the maximal distance of corresponding manually and automatically

determined contours of a cell i. These values are normed to the current manually
determined cell size represented by the length of the semiminor axis bi of the
cell’s approximation by an ellipse.

After computing the energy weights, the remaining image was segmented in
order to measure the test errors. d̄test

A , d̄test
B , and d̄test

C denote the mean of these
test errors over all images (see Tab. 1). Additionally, the mean point number
per snake p̄ and the average processing time1 per image t̄ on an AMD Athlon
64 CPU (2GHz) were determined.

Table 1. Comparison of the segmentation if variable split length (VSL), constant split
length (CSL), and no resampling are applied. The dash denotes parameters that were
not available.

method ε λ∗ d̄test
A d̄test

B d̄test
C p̄ t̄

VSL 0.5 – 0.104 0.118 0.142 33.9 1.038s
0.125 – 0.088 0.109 0.139 59.2 1.200s

CSL 0.5 18 0.094 0.130 0.143 45.2 0.802s
0.125 9 0.102 0.116 0.141 89.6 0.980s

no resampling – – 0.109 0.123 0.146 23.4 0.708s

The results of all methods show that the choice of the focal plane has a
considerable effect on the quality of the segmentation. The errors rise from plane
A to plane C. These results originate in less distinctive cell membranes (B) and
stronger intracellular intensity variations (C), respectively (cf. Fig. 6)

Both reparametrisation methods attained smaller segmentation errors than
the original approach which does not perform resampling. Since CSL utilises
1 excluding the time for the computation of the cell markers



a minimal value of the split length λ that is sufficient for all cells, it requires
additional points in comparison to VSL. These unnecessary additional points
seem to deteriorate the segmentation compared to VSL (e.g. for ε = 0.125). The
lowest errors were reached by VSL with ε = 0.125 which required significantly
more processing time than the other methods because of the determination of λ
during the actual segmentation. So, if enough time is available VSL should be
employed. Otherwise, the original approach and CSL, especially with ε = 0.5,
are beneficial.

In order to assess our results, the manually extracted segments of 363 cells
determined by five persons were compared pairwisely. The corresponding con-
tours possess a mean maximal distance of 5% of the cell size with a standard
deviation of 2.5%, as the cell membranes cannot always be determined unam-
biguously. Thus, we conclude that our methods achieve a very high accuracy.

6 Conclusion

We have presented an approach for the automatic segmentation of cells in bright-
field microscope images. Furthermore, several enhancements with respect to the
quality of the preprocessing as well as the segmentation have been introduced.
The evaluation occurred on images at three different focal planes in order to
enable the choice of an optimal one. At this focal plane, all methods yielded
excellent results insofar as the segmentation error is only slightly higher (differ-
ence < 10%) than the deviations of segments manually determined by different
persons. Figure 7 depicts the segmentation of a bright-field image if VSL with
ε = 0.125 is applied.

Fig. 7. Segmentation of a bright-field image (left). The segments are depicted as black
contours that are equal to the final snakes. The central image shows only segments,
that could be associated with manually extracted cell masks whereas the right picture
comprises all snakes.

Since the segmentation yields contours that represent dead cells, dirt and
other image structures (see Fig. 7), as well, a classification of the segments has
to be performed [18]. On the basis of the recognised cells, our research will now
be directed towards the analysis of the corresponding fluorescence images.
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Preface 

The availability of growing amounts of data and multimedia documents in biological, 
medical, and natural sciences has motivated a strong research interest in novel meth-
ods and systems for automatically extracting and synthesizing previously unknown 
and interesting knowledge. This is also the motivation of this workshop  to focus on 
applications of data mining spanning the full range of natural and biomedical sciences 
domains. 

Following the explosion of interest in natural and biomedical sciences appli-
cations of data mining, this workshop on data mining in the Life Sciences is the first 
of its kind to be held at ICDM-06, in Leipzig, Germany. 
   Six papers are to be presented at this First Workshop on Data Mining in the Life 
Sciences.  These papers represent the research and experience of authors working in 
five different countries on a wide range of problems and projects. They illustrate 
some of the major trends of current research in Data Mining in the Life Sciences. 

The first paper focuses on biological knowledge extraction, integration, and dis-
semination by making available to the scientific community an integrated and com-
prehensive knowledge-base for biomolecular modeling, to which data mining actively 
contributes. The second paper surveys biological sequences mining, which is a very 
salient area of research given the growing amount of biological sequences available. 
The paper also provides several innovative ways of mining for invariants within these 
sequences. The third paper tackles the problem of discovering higher-level knowledge 
structures from biomedical literature in the form of prototypical cases that can be 
added to the knowledge-base of a case-based reasoning system for decision-support 
assistance for example. It builds on recent advances in text mining from literature, 
especially concept mining and relationship mining. The fourth paper proposes to mine 
images for specific parameters in food, and deals with image mining for intelligent 
interpretation. The system mines for hygiene-relevant parameters from images of 
grains of cereal crops. The fifth paper deals with colony image segmentation, and 
presents a novel algorithm particularly suitable for this kind of image segmentation. 
The algorithm is based on kernel spatial fuzzy c-means. The last paper also proposes 
an image mining algorithm for the segmentation of densely packed rock fragments 
with uneven illumination.  

Overall, these papers represent an excellent sample of the most recent advances of 
data mining in the Life Sciences, and promise very interesting discussions and inter-
action between the major researchers in this niche of data mining research. 
 
 
 
June 2006                       Isabelle Bichindaritz 
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An interaction knowledgebase for biomolecular

modeling

Gabor Bereczki and Masaru Tomita

Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan

Abstract. Many modeling problems in cell simulation require access to in-
formation provided by various public biological databases. Providing unified
access to these databases as well as integrating them with model building
software presents a standing challenge for designers of modeling systems.
We have set up a knowledgebase integrating several of the most influential
public biomolecular databases, a web services front end for browsing and
searching the unified data warehouse, SOAP RPC services for application
interface to the data and a Java model editing client for graphical model
editing.

1 Introduction

The problem of modeling whole cells, the fundamental building blocks of life, poses
a significant challenge, ever since its emergence little before the turn of the mil-
lennium. The problem set involves modeling metabolic reactions, gene expression,
translation, transcription, signal transduction, polymerization, 3D scaffold forma-
tion, et cetera.

E-cell is a research project at the Institute for Advanced Biosciences, Keio Uni-
versity, Japan aimed at the modeling of a whole living cell. The project was started
up by Masaru Tomita and Koichi Takahashi in 1997 by creating E-cell1[1], an ODE
solver simulation engine for metabolic and gene expression processes. In 2003 E-
cell3[2] was released, an improved simulation environment, with capabilities to in-
tegrate different algorithms .

As part of the project, the E-cell 3 Modeling Environment was set up with
the aim of helping model creation utilizing a graphical user interface. The ultimate
objective of a modeling environment is to facilitate the research cycle by eliminating
the bottleneck of reconstructing biochemical networks [3].

Recent trends in the field suggest that the focus in modeling has shifted to the
small scale experimental work where models comprising of a several reactions and
substances are intensively investigated through experimental work and the results
are published as models. Large scale models can then be built through a combination
of these small models. Hence there is a need for software tools that provide:

– An interface to various public databases containing information related to bio-
chemical reactions.

– A simple and concise user interface for drawing up simple models from databases.
– Methods to recombine, test, debug and estimate parameters of the various small

scale models.



The first requirement can be satisfied with the newly developed knowledge base
that integrates various databases, the second requirement by the web services in-
terface together with the Java editing tool now under development and the third
requirement by the traditional desktop application Model Editor which is part of
the E-cell 3 software package.

According to Galperin [4] there are over 850 public databases as of October
15 2005. Of great importance to the modeling community are those databases that
contain molecular interactions and background information on important molecular
biology entities such as genes and proteins. Thus databases of primary interest are
those that contain information on:

– metabolomic interactions

– protein-protein interactions

– transcriptional regulatory interactions

– gene expression information

– genes and nucleotide sequence catalogs

– protein catalogs

– biochemical molecule catalogs

A closer examination at the databases of this subset of molecular phenomena sug-
gests that many of the existing hundreds of databases are small and redundant. The
most significant databases are introduced in Figure 1.

Fig. 1. Several of the most significant databases for systems biology. Record counts are
taken from own research at the end of summer 2005.

Similar project in the field usually fall into two categories (i) federated query sys-
tems, such as Biomart[10] or BioMediator[12] and (ii) datawarehouses most notably
BioSilico[11] and and Biozon[13] . GEM System [5] developed at our instute aims at
genome wide reconstruction of metabolic pathways. Compared to these works our
proposed knowledgebase presents a datawarehouse system with a conceptual model
compatible to SBML[14] built upon a simple and flexible relational data model.
The datawarehouse as well as the front end focuses on creation of models instead
of mere visualization of pathway data. With the currently released version of the
user interface, SBML models can be created in an interactive and semiautomated



way utilizing user defined rules to infer stoichiometry models which can be later ex-
tended with mass balance differential equations and parameters. Both ODE solvers
and parameter estimating tools are provided by the E-cell 3 project.

2 Methods

To achieve the goals laid down in the preceding section, the following tasks must
be completed:

– obtaining the data from public databases
– parsing the raw data into our data warehouse
– integrating the data from different databases
– storing the data
– distributing the integrated data over a network
– creating client tools to utilize the data

To be able to integrate the different -omics concepts, the different physical data
representations of various databases as well as allowing an incremental, database by
database build-up, maximum flexibility and extendability is required. A dynamic
data model is planned henceforth. Facing an enormous quantity of data from hetero-
geneous sources it is advisable to retrieve high quality data only, however not restrict
the scope of the stored data by any other criteria (such as organism or biological
process) for the sake of versatility. For example in the case of Genbank sequences,
only the non redundant set of sequences is processed excluding the majority of data
contained i.e. ESTs, STSs and the similar high throughput - low annotation entities.
Given the scarcity of resources and to retain scientific integrity no content process-
ing or change in the data is allowed only curated resources are used, this implies
that new interactions are not inferred either by own computational or experimental
research. The data parsing should focus on maximum recovery of cross references
and interactions. The data warehouse is a repository of many of the attributes that
an entity has in the original database, but not all attributes. Name, Identifier and
Description class attributes are mainly parsed, as they serve the purpose of cross
referencing and text search. Data provenance is taken care of by the data warehouse
keeping track of the origin of every single record even after entities are merged. To
maintain the integrity of the data a very simple update uproach is utilized: building
the database from scratch. This approach improves robustness by removing com-
plexity from the implementation and the extra computational costs are only in the
repeated parsing as the entity integration and relationship origination algorithms
must run on the whole database.

The data model defines the representation of knowledge in our data warehouse.
The representation of knowledge is carried out in the form of an attributed, undi-
rected graph, where nodes are entities and edges are relationships.

Logical data model: The four major modeling objects are: entities, attributes, re-

lationships, rules. An entity can be a gene, protein, reaction or any kind of biomolec-
ular phenomena (entity class) that databases or models may contain. Entities be-
longing to the same class can be merged without loss of information if they have
matching globally unique identifiers. The knowledge base only contains strong (e.g.
gene, protein) and associative (e.g reaction, pathway) entities. Weak entities (e.g.



publications) are processed as attributes in order to reduce data model complexity.
Attributes are any properties that the biomolecular object represented by the entity
may possess. Attributes are categorized as cross references (used for merging enti-
ties, creating relationships), names (for synonym search), free text fields (for text
search), or other information (e.g. formulas, parameters). Relationships describe
any means by which two entities can be connected. Example for relationships are
part of, generalization, type of, substrate of, product of. Relationships are generated
from entities and attributes using rules and are therefore redundant. Relationships
provide the backbone of the meta interaction network and the means of navigation
in the database. Rules govern data processing steps other than parsing. Simple rules
are created for semantic labeling, merging of entities, and creation of relationships.
The conceptual logical data model is not fixed, but basically aimed at SBML[14]
level 2 compatibility. Thus entities should conform to SBML components wherever
it is possible. Metadata, such as GO terms and taxonomy data are also processed
in the entity-relationship form and referenced to biomolecular data.

Physical data model: There are two databases in the knowledgebase;

– temp; for preprocessing tables for raw parsed data
– data; for storage of entities, attributes , relationships and rules indexed for easy

navigation, search and data mining

The knowledge base issues an artificial unique identifier for every entity, attribute
and relationship and connects those tables using these IDs. Entities, relationships
and attributes have types, which are defined in the type table. The main advantage
of this approach is that (i) different entities from different data sources can be
easily incorporated, as there is no need for a separate table definition for each new
entity type and (ii) multi value attributes are easily resolved without the need for
introducing new entities in a hierarchical fashion.

The files are downloaded from the database servers using the ftp protocol and
then parsed into preprocessing tables in the temp area. All databases under integra-
tion have their set of preprocessing tables. Every preprocessing table represents a
different type of entity. During parsing, multi-value attributes are normalized into
multiple rows. The columns of a preprocessing table are similar to those of the
attribute table, with the difference that attribute types are parsed as is from the
source database therefore not globally unique. During load the preprocessed data is
transferred from the temp database to the data database. Attributes are semanti-
cally labeled, that is, every attribute is assigned an attribute type code by using a
mapping table. Artificially unique identifiers of entities and attribute rows are also
assigned in the load phase. Semantic labeling of properties happens by rules that
specifies the label that should be given to a specific attribute in a specific database.
The most important goal for semantic labeling is to find common identifiers and
names in different databases and label them with the same attribute type ID for
purposes of cross-referencing. Most frequent common identifiers are: EC number,
GI ID, Gene ID, Uniprot ID and various KEGG IDs. In current implementation
there are 933 labeling rules for 33 preprocessing tables (data sources).

Integration of databases practically means merging entities of the same type
from different ( or the same ) database source. Because attributes are made uniform
during the semantic labeling procedure merging happens without regard to the
original source of the data. Integration happens in 2 steps:



Merging of entities is performed by rules stored in the merge rules table. If the
values of a certain type of identifier match in different instances of a certain type
of entity, the entity instances will be merged. Merging actually means overwrit-
ing the entity ID of the attributes belonging to the other (to be merged) entities
with the surviving entity ID. The surviving entity ID is chosen randomly from the
matching ones. Merge by attributes is implemented in SQL stored procedures and
is heavily optimized, because there are millions of rows that needs to be compared
and can be computationally very expensive. There are 9 merge rules in the current
implementation to integrate entities by identifier matching.

Establishing relationships. Relationships (such as type of, part of, participates,
specialization of etc.) are determined by another rule table: relationship rules. A
relationship between two entities can be set up if they belong to a certain type and
the value of attribute1 of entity1 matches attribute2 of entity2. This problem is
thus very similar to that of merging by attributes and is implemented in a similar
fashion. There are 45 relationship rules present into the data warehouse.

Integrated data should be made available to users in many different forms. Since
it is not recommended to expose the underlying database tables to users directly
hence a communication layer was established to function as an interface between the
user and the knowledgebase. HTTP was chosen as the protocol of choice for com-
munication between the data warehouse and the client side due to its is universality
and negligible security challenges. XML was chosen as the media of communication
as it is widely used for data exchange purposes and both HTML and SOAP RPC
is built upon XML technology.

The client side consists of a web services interface that was designed with sim-
plicity in mind and was inspired by the Google philosophy in order to provide the
core access to the knowledgebase. All the attribute values are indexed for keyword
search and the database tables (entity,attributes, relationships) are made browseable
through a user friendly HTML interface. A two dimensional modeling tool has been
developed which communicates with both the data warehouse server and the web
surface. This modeling tool facilitates pathway construction from the knowledge-
base. The 4 problems that need to be addressed are:

1. Traversing the edges of the semantic graph: Traversal is governed by rules
that determine which edges (relationships) and nodes(entities) can be walked
through.

2. Cutting out subgraphs from an infinite graph: A version of the shortest path
algorithm is to be applied in which given two nodes ( source and destination) a
subgraph must be found which contains a minimum number of edges.

3. Mapping datawarehouse entities into SBML objects: To convert database enti-
ties into SBML, a straightforward mapping can be used; reactions can be coded
as SBML Reactions, most type of relationships can be translated into SBML
SpeciesReferences and most other entities can be interpreted as SBML Species.

4. Laying out subgraph as an aesthetic 2D diagram: A slightly modified version
of the Kamada- Kamai [15] graph layouting algorithm is implemented in which
edges are imaginary springs, which pull connected nodes together and nodes
are imaginary charged spheres which repel each other. Ordinary differential
equations can be written up for the forces and the system can be relaxed through
iteration.



The unified datawarehouse is implemented on a MySQL 5.1.16 server running on
Linux Fedora Core 3 platform using traditional relational database technology. The
user interfaces are powered by the Apache Cocoon servlet which uses pure XML
technology to create any publication formats from XML format input source. The
Cocoon servlet connects to the MySQL database via JDBC connection. The client
side editor tool is implemented in Java utilizing the Graphical Editing Framework
(GEF) and Sun SOAP RPC libraries . All software components used are freely
extendable and distributable under the lesser or greater GPL license. Methods used
for the project are summarized on Figure 2.

Fig. 2. Methods used for the whole project

3 Results

Data content and storage: The datawarehouse contains 13,383,335 unique entities,
198,923,486 attributes and 12,626,326 relations between entities. The database occu-
pies around 12.3 GB of disk space without indexes, which consume another 14.5GB.
This is due to heavy indexing utilized by the full text search features of MySQL.
The indexes contain redundant, but performance increasing information.

Biological scope: The datawarehouse combines data from a relevant and rep-
resentative set of proteomics, metabolomics, genomics, interactome and ontology
databases in the hope that new relationships and networks can be incurred from
the otherways unconnected data. The data warehouse currently includes data from:

– KEGG [8]: A comprehensive database of metabolic pathways, reactions, com-
pounds, participating genes, pathways.

– The Biomolecular Interaction Network Database (BIND)[9]: A collection of
records documenting molecular interactions.

– NCBI Genbank[16]: An annotated collection of all publicly available DNA se-
quences. In the data warehouse Genbank is parsed as genes, DNA sequences,
RNA sequences entities.

– The NCBI Reference Sequence Project[17] (RefSeq): An effort to provide the
best single collection of naturally occurring biomolecules, representative of the
central dogma, for each major organism. The database is a collection of DNA,
RNA and Protein sequences and genes.



– NCBI (Entrez) Gene[18]: An implementation to organize information about
genes, serving as a hub between databases internal and external to NCBI. The
database structure is built around the central dogma cross referencing genes,
DNA, RNA and protein sequences.

– The NCBI Taxonomy[19]: A compilation of the names and IDs to all organisms
that are represented in genetic databases with at least one nucleotide or protein
sequence.

– Enzyme nomenclature database[20]: A repository of information related to the
nomenclature of enzymes. The database contains only enzyme entities.

– The UniProtKB/Swiss-Prot[21] Protein Knowledgebase: A curated protein se-
quence database that provides a high level of annotation (such as the descrip-
tion of protein function, domains structure, post-translational modifications,
variants, etc.).Contains only protein entities.

– The Gene Ontology (GO)[22] project: A collaborative effort to address the need
for consistent descriptions of gene products in different databases. The database
contains ontology entries of biological process, cellular component and function.

The original number of entities was 15,560,534 of which 2,177,199 (14%) was merged
thus leading to the current number of entities. The number of attributes did not
change in the integration process as all attributes were inherited by the merged
entities for maintaining data provenance ( source of data is stored at the attribute
level). The nearly 200 million attributes currently in the database can be classified
into 273 different types of which the most abundant attributes are NCBI Taxonomy
ID, NCBI GI ID, NCBI Gene ID, Pubmed ID, Description.

Using the statistical tables (data not shown), a superficial analysis of the data
contained by the database shows that sequence databases are overrepresented com-
pared to interaction databases, the reason for this is that low added value infor-
mation ( sequencing information ) is most abundant in databases - in the range of
tens of millions of sequences, while high power information ( reactions, pathways
) are less frequently found, perhaps a few hundred thousand partially overlapping
reactions can be found. Although in the entity and attributes datasets the sequence
information is overrepresented, relatively few relationships were uncovered until the
last load of the database . An explanation might be that the data in the source
databases is so inefficiently cross referenced that very few additional information
can be incurred from gene expression related data. An example can be seen on Fig
3 where the connectivity of entities in preprocessing tables by frequently used gene
and protein identifiers were studied.

User interfaces to the knowledgebase currently comprise of a web services in-
terface and a Java editing tool. Web services facilitate easy search & browse of
the database. The user can perform keyword search on a Google like interface and
returns the result in group of ten entities. By clicking on one of the hits, detailed
results are presented. The detailed results contain

– the type of the entity

– the relationships the entity participates

– the detailed attribute list

– links to outside references ( if any )

– data sources



Fig. 3. Connectivity of databases. The numbers on arrows show the number of common
ID fields. The thickness of arrows demonstrates the degree of the chances of linking the
two databases by the given ID.

Fig. 4. The most recent version of the user interface enables interactive browsing in the
knowledgebase as well computer aided build up of on bespoke models



See Figure 4 for sample screenshot. The related entities are hypertext referenced
and thus a whole network of interacting molecules can be explored within a short
space of time. To make the browsing through the biomolecular network more user
friendly a Java editing tool is being developed. The Java editing tool is a simplified
SBML editor which performs the following tasks:

– keeps track of the entity information pages the user has visited
– builds a graphical representation of the network walked through upon request
– extends this graph by automatic actions
– saves the graph, which in fact is a model skeleton, in SBML format
– annotates SBML model skeleton with database identifier information

The user can then perform various other modeling tasks with the saved model
skeleton ( SBML model not necessarily containing reaction parameters ), improve
it into a true model, fit parameters, etc, with classical modeling tools of their choice.

4 Conclusion and future work

In this paper we have presented a comprehensive model editing environment for
biomolecular modeling based on information from publicly available databases.
Further work on integrating the data warehouse into the modeling environment
is needed as the database services must be made available to the E-cell’s native
Model Editor. The most important use cases for this integration are: annotation
of modeled species and reactions with database identifiers, and merging of small
models from different sources, which might need database driven reconciliation of
names and Ids.

The biological scope of the current database needs to be extended with explicit
transcriptional binding information (other than that of BIND dataset) and kinetic
information, all of these extensions fit well into the current SBML compatible frame-
work.

A limitation of the current implementation is that it does not accommodate
updates from the original databases. The datawarehouse needs to be built from
scratch every time an update is carried out. There are no design problems that
would not allow an incremental update approach since the information about the
data source and its primary ID is stored in the attributes table and hence can be
deleted or updated. However, the heavy indexing of tables required to speed up
servicing user requests may prevent performing incremental databases on a regular
basis.

Connectivity issues outlined in the data analysis section raise the need for ob-
taining relationship information from homology orthology investigations though
performing real time mass runs from high throughput BLAST runs.
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Abstract. In this paper we first discuss the existence and importance
of invariants in biological sequences, and then explore the features and
approaches in mining these invariants. We show some interesting invari-
ants in biological sequences, including Dinucleotide Relative Abundance
Profiles (DRAPs) and Chaos Game Representations (CGRs). We also
discuss the unique features and possible approaches of invariability min-
ing.

1 Introduction

Data mining is defined as the process of analyzing data to identify patterns or
relationships. In early days, the objects of data mining were mainly database ta-
bles. Later, the objects of data mining were expanded to text, and more recently,
to biological sequences [1][2][3][4].

Biological sequences include DNA, RNA, and protein. With the continuing
progress in molecular biology and bioinformatics, huge numbers of biological
sequences are becoming available to data mining. As these sequences are rich
with patterns and relationships, mining biological sequences holds great promise.

Patterns and relationships can be mined from biological sequences in many
different ways; in this paper, we focus on mining a specific pattern: invariability.

2 Invariants As Functions

First, we review the concepts of invariability and invariant. Invariability is de-
fined as a quality of uniformity and lack of variation. Invariant is defined as
a feature (quantity or property or function) that remains unchanged when a
particular transformation is applied to it.

For example, let us consider the invariant π. When we say π is an invariant,
we do not mean merely the number beginning with 3.1415926. Rather, we mean
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that the underlying quantity (i.e. the ratio of the circumference of a circle to
its diameter) is an invariant. The fact that the ratio of the circumference of a
circle to its diameter is always the same value shows the relationship between
circumference and diameter of a circle.

Based on the above understanding, we may define an invariant in biological
sequences as a function on sequences that does not change or changes in a very
small range.

We may use an example to show an invariant in biological sequences: Suppose
function n(s) is the number of different nucleotides in DNA sequence s. We know
that n(s) ≤ 4 because there are only 4 possible nucleotides: A, C, G, and T .

If s is an artificially synthesized DNA sequence, n(s) could be 1, 2, 3, or 4.
If s is shorter than 4, n(s) cannot be 4. If s is a naturally existing sequence and
is long enough (such as longer than 10,000 base pairs), it is likely that n(s) = 4
holds. We understand that counterexamples may exist, but this does not really
matter because we only use n(s) as an example to illustrate the concept of
invariants.

Suppose n(s) = 4 holds for any naturally existing sequence s where s is
longer than 10,000 base pairs, we may say n(s) is an invariant. This invariant is
very simple and it is only used to illustrate the concept of invariants. Usually,
an invariant in biological sequences only holds within a particular scope. In the
n(s) example, the scope is naturally existing DNA sequences that are longer
than 10,000 base pairs.

3 Some Invariants in Biological Sequences

In this section, we describe a few more invariants in biological sequences. We
have two goals in mind when we introduce these invariants. The first goal is to
get familiar with, and to expand, the concept of invariants; the second goal is to
set these invariants as the foundation of the discovery of more invariants.

3.1 DRAP

For a sequence s, the Dinucleotide Relative Abundance Profile [5] DRAP(s) is
an array {ρXY = fXY /fXfY }, where XY stands for all possible dinucleotide
combinations, fX denotes the frequency of the mononucleotide X in s and fXY

the frequency of the dinucleotide XY in s.
Karlin and Burge observed that DRAPs of different DNA sequence samples

from the same organism are generally much more similar to each other than to
those of sequences from other organisms. In addition, closely related organisms
generally have more similar DRAPs than distantly related organisms.

DRAP (s) is a function on DNA sequences, but it is different from n(s). For
a DNA sequence s, n(s) produces a value, but DRAP (s) produces an array that
contains 16 values. This reminds us that in the definition of invariants we should
accommodate not only single value functions, but also functions which produce
other data formats, such as arrays, matrices, and so on.
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Another point we should notice is that DRAP (s) is not a constant. For
different DNA sequence samples from the same organism, DRAP (s) will produce
arrays that are similar, but not exactly the same. From this point of view,
DRAP (s) is not an invariant because it does change. In the biological world,
quantities that do not change at all are very rare. However, quantities that
change in a small range can be considered as invariants for practical purposes.

The scope of invariant DRAP (s) is also different from the scope of invariant
n(s). For DRAP (s), the scope is only for sequences from the same organism,
which is much smaller than the scope of n(s).

Invariant DRAP (s) are unique within a specific species. It was concluded
that the DRAP values constitute a genomic signature of an species.

3.2 CGR

In 1990, Jeffrey proposed using Chaos Game Representation (CGR) to visualize
DNA primary sequence organization [6]. A CGR is plotted in a square, the four
vertices of which are labelled by the nucleotides A, C, G, T, respectively. The
plotting procedure can be described by the following steps: the first nucleotide
of the sequence is plotted halfway between the centre of the square and the
vertex representing this nucleotide; successive nucleotides in the sequence are
plotted halfway between the previous plotted point and the vertex represent-
ing the nucleotide being plotted. The major advantage of CGR is that it is a
two-dimensional plot that can provide a visual representation of primary DNA
sequence organization for a sequence of any length, including entire genomes.

Various geometric patterns, such as parallel lines, squares, rectangles, and
triangles are among the interesting patterns that can be found in CGRs. Some
CGRs even show a complex fractal geometrical pattern which is very similar
to the Sierpinsky Triangle [7]. These interesting features relevant to the DNA
sequence organization attracted further research in CGR [8][9][10][11].

CGR is not just a visualization tool. In fact, CGR is itself another interest-
ing invariant. Experiments showed that variation between CGR images within
a genome was smaller than variation among genomes [12]. Fig. 1 shows the sim-
ilarity of CGR images within the same genome. Fig. 2 shows the dissimilarity of
CGR images in different genomes.

CGRs in their original form are not easily processed by a computer. Thus
another form of CGR was introduced: FCGR (the Frequency matrix extracted
from a CGR). The structure of FCGR was introduced in [12] and the name
FCGR was proposed in [13]. A kth-order FCGR is defined as follows.

A kth-order FCGR of a sequence s, denoted by FCGRk(s), is a 2k × 2k

matrix. To obtain this FCGR, we first plot a CGR from s, then divide this CGR
by a 2k × 2k grid so that each grid square corresponds to an element in the
matrix. We then count the number of points inside each grid square, and use
the number of points as the matrix element corresponding to the grid square.
We do not count those points on the grid square lines because they represent
the length k − 1 oligonucleotide at the beginning of the DNA sequence, and we
can omit these k − 1 points as long as the DNA sequence is much longer than
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Fig. 1. These four CGRs are all plotted from DNA sequences from the human genome.
AL033528 (83111 bp) is from Chromosome 1; U01317 (73308 bp) is from Chromosome
11; AP000231 (77728 bp) is from Chromosome 21; AC000115 (95855 bp) is from Chro-
mosome X. These sequences have different lengths so that some of them are darker and
others are lighter. They are very similar in the general patterns.

k. Note that, instead of being a graphical representation like CGR, a FCGR is
a numerical matrix.

A FCGR can also be constructed directly from a sequence instead of plotting
a CGR first and then converting the CGR into a FCGR. We can construct a
FCGR directly by counting the number of occurrences of each length k oligonu-
cleotide in the sequence and putting this number into the appropriate place of
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Fig. 2. These four CGRs are plotted from DNA sequences from different genomes.
AL683874 (68100 bp) is from a fungus; AE003572 (91383 bp) is from fruit fly; AF003131
(65649 bp) is from nematode; BX323038 (87548 bp) is from zebrafish. These sequences
have different lengths so that some of them are darker and others are lighter. They are
very different in the general patterns.

the FCGR matrix, according to the correspondence between a length k oligonu-
cleotide and a CGR grid square.

A first-order FCGR and a second-order FCGR have the structure shown
below, where Nw is the number of occurrences of the oligonucleotide w in the
sequence s.
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FCGR1(s) =
(

NC NG

NA NT

)

FCGR2(s) =




NCC NGC NCG NGG

NAC NTC NAG NTG

NCA NGA NCT NGT

NAA NTA NAT NTT




The definition of FCGRk+1(s) can be obtained by replacing each element
NX in FCGRk(s) with 4 elements

NCX NGX

NAX NTX

Here we omit the definition of CGR resolution and detailed mathematical
discussions, and give the following conclusion directly: a kth-order FCGR is
equivalent to a CGR of resolution 1

2k . This conclusion describes the relationship
between CGRs and FCGRs. CGRs and FCGRs have been thoroughly explored
in [11].

CGRs and FCGRs are important invariants in DNA sequences. The scope of
each invariant in this category is that the DNA sequences are within a specific
genome, and that the sequence should be not too short (at least 1k bp).

These invariants have very important biological meanings. To some extent, a
CGR plotted using a DNA sequence reflects a unique identity of the species from
which the DNA sequence was extracted. CGRs and FCGRs are also important
starting points in searching for more invariants in DNA sequences.

4 Features and Approaches of Invariability Mining

From the analysis and illustrations in Section 2 and Section 3, we know that
invariants do exist in DNA sequences. In this section we discuss the features and
approaches of mining invariants from DNA sequences.

The first feature of invariability mining is that this is totally a new area. We
refer to data mining on database tables as traditional data mining (We use this
term only for convenience; there is no negative meaning). Although invariability
mining is also a process of analyzing data to identify patterns and relationships,
it is different from traditional data mining. As such, the techniques developed
in traditional data mining usually cannot be applied to invariability mining di-
rectly. There are two major differences. First, traditional data mining deals with
database tables, whereas invariability mining deals directly with biological se-
quences. Second, the mining goals are different. Invariability mining is interested
in a specific type of pattern–invariants, whereas traditional data mining tries to
find association relationships among variables. These differences pose difficulties
and challenges for researchers in this area, but are ultimately very exciting.



Lecture Notes in Computer Science 7

The second feature of invariability mining is that this area is tightly related to
biological discoveries. An invariant found in biological sequences usually reveals
important biological regularities. The interpretation of such invariants could be
an important topic. At the same time, the discovery of invariants relies heavily on
a priori biological knowledge. The ultimate reasons of the existence of biological
invariants are the natural regularities. There is no such area as invariability
mining in general databases. Without natural regularities, invariability mining
is meaningless.

Efficient methods and algorithms in the area of invariability mining of bio-
logical sequences are yet to be discovered. Here we describe two of the major
approaches that can be used in this new area.

The first approach in invariability mining is transformation. Existing invari-
ants (including the ones described in Section 3) are good starting points. We
may analyze these invariants, find the components that reflect the regularities,
and propose new possible invariants.

The second approach in invariability mining is search with prediction. Often-
used functions in existing invariants may be accumulated and tested with dif-
ferent sequence groups. Traditional data mining techniques, such as clustering,
can be used in determining the promising sequence groups.

5 Conclusion

Mining invariants in biological sequences is a new area which fits the broad
definition of data mining, but has features that are different from traditional
data mining.

In this paper, we first explore the concepts in this new area, point out that an
invariant can be described by a function and defining the scope of this function.

We describe some important invariants existing in biological sequences, such
as DRAPs and CGRs. These invariants not only give us concrete examples of
invariants, but also help us to clarify definitions. These invariants also serve as
starting points in further mining processes.

The general features and approaches of invariability mining are also dis-
cussed. We point out that invariability mining is a new area and it is tightly
related to biological discoveries. We may use the transformation approach to
propose new invariants from existing invariants, or use search with prediction
approach to find new invariants.

In conclusion, mining invariants in biological sequences is an emerging and
promising area, and it is worth further exploration.
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Abstract. This article addresses the task of mining cases from biomedical literature to automatically 
build an initial case base for a case-based reasoning (CBR) system. This research takes place within 
the Mémoire project, which has for goal to provide a framework to facilitate building CBR systems in 
biology and medicine. By analyzing medical literature, the CaseMiner system mines for medical con-
cepts such as diseases, signs and symptoms, laboratory tests, and treatment plans all connected to-
gether in a given medical domain. It then organizes these concepts in a structure called a case. This 
case mining component provides a definite help to start-up the creation of a biomedical CBR system 
case base, composed of both concrete cases and prototypical cases. Most cases learnt by CaseMiner 
are prototypical case, but some of the cases learnt from medical case studies really correspond to ac-
tual patients’ cases. This article validates the approach by presenting a comparison between the proto-
typical cases learnt from stem-cell transplantation domain with those created by a team of experts in 
the domain. 

1   Introduction 

Case-based reasoning (CBR) systems in biomedicine rely on patients’ cases to propose diagnosis assess-
ment and treatment recommendations in case-based decision-support systems. Often these systems have 
reported that the cases readily available in electronic format are incomplete at best, and have resorted to 
multimodal reasoning systems to complement the cases with knowledge bases expressed in models 
and/or rules. Many times, cases are not even available in electronic format, which requires a tremendous 
amount of time entering data into the CBR systems just to bootstrap it. This context prompts for the de-
sign of advanced automatic knowledge elicitation tools to provide CBR systems with the adequate 
knowledge they need for reasoning, without spending years elicitating this knowledge from experts. 
CaseMiner system presented in this article builds on a current trend to develop case mining systems to 
take advantage of electronically available knowledge sources that may be mined for cases. 

The idea of mining cases from medical literature comes from current trends in text mining research 
from medical literature. Recently, the fast growing number of biomedical publications has motivated the 
development of innovative information extraction and data mining systems and tools [8, 9]. A new field 
in information extraction aims at discovering knowledge from literature in the form of unknown and 
meaningful relationships between concepts found in biomedical bibliographic databases [11, 15] such as 
Medline [24]. This idea of discovering new relations from a bibliographic database was pioneered by 
Swanson [23, 24], who proposes a text mining system that made seven medical discoveries that have 
been later published in relevant medical journals. Following in his tracks, methods and systems have been 
developed to mine for new knowledge from literature as novel concepts and relationships. 
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The system presented here proposes to automate the process of mining for cases from biomedical lit-
erature. It builds on a concept miner learning for relationships between concepts, such as the relationship 
between caloric restriction and aging, and not for isolated concepts. The system presented combines some 
information extraction features and some data mining features. First, it extracts the different parts of a 
document such as title, keywords, abstract, and body, then it mines for concepts and relationships in the 
document, before aggregating these in a prototypical case structure. 

The next section presents case representation for the case mining system. The third section introduces 
the Unified Medical Language System (UMLS) as the ontology guiding the discovery process. The 
fourth section sets forth the CaseMiner system architecture and different components. The fifth section 
presents an evaluation of the system. It is followed by a discussion and a conclusion. 

2   Case Representation 

The goal of the Mémoire project [3] at the University of Washington is to provide a framework for the 
creation and interchange of cases, concepts, and CBR systems in biology and medicine. Its approach is to 
generalize from previous CBR systems built in biomedicine, mostly from Carepartner [3] at first.  
      The cornerstone of the knowledge acquisition process has been the conception of prototypical cases, 
called clinical pathways in this system. This prototypical case structure is important for this article be-
cause it is also the prototypical case structure proposed in Mémoire as a generic prototypical case repre-
sentation structure. Prototypical cases serve as generic cases, and consequently, this is the kind of cases 
that CaseMiner is mining for. The clinical pathways, 91 of them having been implemented in the test 
version of the system, correspond to clinical diagnostic categories for the most part, some of them corre-
sponding also to essential signs and symptoms requiring specific assessment or treatment actions. The 
clinical pathways are knowledge structures represented from the ontology described above, namely: all 
diseases, functions (also known as signs and symptoms), labs, procedures, medications, sites, and plan-
ning actions. Most of the terms naming these objects are standardized using the Unified Medical Lan-
guage System (UMLS) ontology. Only the terms not corresponding to objects in the UMLS have been 
added to the domain specific ontology. In particular, the planning actions used in the Treatment part of a 
prototypical case did not exist in the UMLS and were all created for the system.  
      An example of a prototypical case is provided on Figure 1 (chronic graft versus host disease - a com-
plication of stem-cell transplantation). It shows that a prototypical case comprises three parts: 
1. A list of findings, corresponding to signs and symptoms. 
2. A diagnosis assessment plan, which is a plan to follow for confirming (or informing) the diagnosis. 
3. A treatment/solution plan, which is a plan to follow for treating this disease when confirmed, or a 

solution when the pathway does not correspond to a disease. 
The diagnosis assessment part and the treatment part can also be seen as simplified algorithms, since 

they use IF THEN ELSE structures, and LOOP structures, as well as SEQUENCE structures of actions in 
time, which, when instantiated with actual patients’ data, provide a diagnosis assessment plan, or a treat-
ment plan, tailored to a specific patient. In this way, this knowledge structure allows for sophisticated 
adaptation when reusing a prototypical case. 
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3   UMLS Project 

The “Unified Medical Language System” (UMLS) from the National Library of Medicine (NLM) [18], a 
specialized thesaurus in biomedicine, provides standardized concepts for the creation of a controlled 
domain vocabulary. The UMLS provides a very powerful resource for rapidly creating a robust scientific 
thesaurus in support of precision searching, and a starting point for an ontology of the medical domain. 
Further, the semantic type descriptors for each concept and semantic network may offer some interesting 
opportunities for intelligent searching and mapping of concepts representing research findings, and their 
relationships. 

 

 
 

Figure 1. A clinical pathway, corresponding to a prototypical case, for chronic graft versus host disease 
(CGVHD) 

 
Syntactic and semantic analysis tools for automated Natural Language Processing (NLP) are also 

provided by the National Library of Medicine’s UMLS project [16, 17]. UMLS ultimate goal is to facili-
tate the development of computer systems that behave as if they "understand" the meaning of the lan-
guage of biomedicine and health.  
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By navigating the semantic network provided, it is possible to know which concepts extracted by 
the NLM tools from biomedical documents correspond to diseases, which correspond to findings, which 
correspond to medications, etc.. It is also possible to know which relationships connect different con-
cepts. There is a total of 135 semantic types and 54 relationships provided by the UMLS semantic net-
work. Additionally, it is possible to extend the semantic network, for our purpose with a semantic net-
work of planning actions that can be connected with a ‘treat’ relationship with other concepts. 

4   CaseMiner case miner 

CaseMiner system mines for cases and prototypical cases from biomedical literature. A selection of docu-
ments for a given medical domain is the input to this system. Pertinent documents may be literature arti-
cles, but also textual clinical practice guidelines, and medical case studies. It is important that such docu-
ments should all be related to a given domain, such as in our example stem-cell transplantation.  

Relationship 
Miner

Diagnosis 
Miner

Finding 
Miner

Assessment 
Miner

Treatment 
Miner

Case 
Builder

Prototypical 
Case Builder

Memory 
Builder

Document

 
Figure. 2. CaseMiner architecture 

4.1 Architecture 

ConceptMiner core component is the RelationshipMiner, which mines for triples <concept1-1, relation-
ship-1,2, concept-2> from a document. It also attaches a condition to a triple when it finds it to represent 
the information that IF a condition occurs, then an action or test is undertaken. This can be represented as 
<concept-1, relationship-1,2, concept-2> IF <concept-3, relationship-3,4, concept-4>. An example can 
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be <Patient, startTreatment, PrednisoneAndCyclosporineTherapy> IF <absent, property_of, Immuno-
suppressantAgentNOS>. This structure is called a triple pair. 
       CaseMiner  interprets the results from RelationshipMiner by successively mining for diagnoses in 
DiagnosisMiner, findings in FindingMiner, assessments in AssessmentMiner, and treatments in Treat-
mentMiner. Following, it builds cases from these results in CaseBuilder or PrototypicalCaseBuilder. The 
order between these two components can be altered since in some cases, learnt relationships will be asso-
ciated with conditions, which signals a prototypical case, and in others there will not be any of these 
conditions, which signals a practice case. Generally, from medical articles and clinical practice guide-
lines, the learnt artifact will be a prototypical case. From clinical case studies, the learnt artifact will be a 
practice case. The previous steps deal with prototypical cases and practice cases built from scratch from a 
single document. A next step is to consolidate learning results across documents. This step is called 
MemoryBuilder.  

Figure 2 represents the architecture of the system with its different components. 

4.2 Relationship miner 

The RelationshipMiner component is a precursor system of CaseMiner developed for the Telemakus 
system [10], which consists of a set of domain documents (current focus is the biology of aging), a con-
ceptual schema to represent the main components of each document, and a set of tools to query, visualize, 
maintain, and map the set of documents through their concepts and research findings [10]. For that pur-
pose, this system mines and maps research findings from research literature. At present, knowledge ex-
traction resorts to systems with both manual and automated components. A key area of current work is to 
move towards automating the research concept identification process, through data mining [10]. This is 
exactly why RelationshipMiner was developed.  

The author’s research team developed an automated system to mine for concepts linked by relation-
ships from biomedical literature [4]. This system originally kept only the pairs of concepts in relationship, 
for the indexing purposes of Telemakus project, and not the relationships between these. The system 
since then has been improved both in its concept mining features, and a relationship mining feature has 
been added [5].   

The RelationshipMiner involves two knowledge bases, UMLS database, and domain specific database 
(DSDB), which in particular stores the pre-processed documents that will serve as the input to the system. 
Within DSDB, the domain specific thesaurus represents the standardized vocabulary of the domain. Con-
cept mining involves processing articles already stored in domain-specific database (DSDB) by parsing 
the different parts of a document from their Medline structure. These articles comprise the full text of the 
original articles, parsed in several parts, such as title, summary, section part, figure and table legends, and 
so forth. 

The components of the system are described in Bichindaritz and Akkineni [4] and Bichindaritz [5]. 
Following steps of parsing and analyzing literature articles using in particular NLM’s syntactic and se-
mantic analysis components [16, 17], RelationshipMiner produces triples of the form <first concept, 
relationship, second concept> , such as for example <caloric restriction, effects_of, young age rats>. 
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4.3 Diagnosis, finding, assessment, and treatment miner 

From the relationships triples and pairs of triples discovered by RelationshipMiner, diagnoses are ex-
tracted by mapping the concepts within these relationships with the UMLS semantic network ‘disease’ 
concept type. Similarly, findings are mapped to the UMLS semantic network ‘finding’ concept type, 
assessment with ‘laboratory or test’ concept type, and treatment with ‘clinical drug’, ‘substance’, ‘food’, 
or ‘planning action’. 
 

4.4 Case builder 

After triples are built, and if no triple pair is associated with a specific diagnosis, a case can be built by 
connecting in a case structure the triples associating a patient with his/her list of diagnoses, list of find-
ings, list of assessment results, and list of treatment actions. A mined case is represented on figure 3. 
 
 

Connector   Finding Name  (Properties, Values)   
  diagnosis  Name= LiverChronicGVHD
AN   Nausea    
AN   Anorexi    
AN   PainNOS   site=RightUpperQuadrantAbdomen   
AN   Stoo   color=light 
AN   ImmunosuppressantAgentNOS  status=absent  

Diagnosis Assessment  
Connector   Procedure Name  (Properties, Values)  
  HepaticFunctionPanel  finding=AlkalinePhosphataseMeasurement(ALKP) 

result=elevate  
finding=ASTMeasurement(AST) result=elevated   
finding=ALTMeasurement(ALT)result=elevate   
finding=LDHMeasurement(LDH)result=elevated   

AN   UltrasonographyAbdome nN
OS(USNABD   

finding=Normal  

AN   HepatitisCAntigenMeasurem
ent   

result = Negative  

AN   OralExamination   finding=abnormal  
AN   RequestGIConsul   finding=LiverChronicGVHD  

Treatment Plan  
Condition/Connector  Planning Action Name   

  StartPDNCSPTherapy  
   

Figure  3. Practice case mined 

4.5 Prototypical case builder 

After triples are built, and if some triple pairs are associated with a specific diagnosis, a prototypical case 
can be built for this diagnosis by connecting in a prototypical case structure the triples associating a pa-
tient with his/her list of diagnoses, list of findings, list of assessment results, and list of treatment actions. 
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A summarized example can look like the clinical pathway provided on figure 1, although some elements 
are not learnt now, such as the importance of a finding. 

4.6 Memory builder 

Memory builder is the processing step that takes place after cases and prototypical cases have been built 
from a document. Generally, prototypical cases can be described in different documents, often partially. 
For example, one document describes the symptoms of a disease, while another document describes the 
assessment process, while yet another describes the treatment plan. The link between the different parts is 
established from the knowledge that all these parts are related to a particular diagnosis. If a prototype for 
a disease already exists in memory, the following operations take place: 
� Merge the list of findings that are not contradictory. If some findings are contradictory, connect them 

with an OR. 
� Choose the list of assessment recommendations which is the most complete, or which comes from the 

most authoritative source. 
� Choose the list of treatment recommendations which is the most complete, or which comes from the 

most authoritative source. 
 These steps deal with the conflicts that may arise during the incremental construction of the prototypes 
when documents are processed one by one. Other mechanisms of dealing with conflicts will be studied 
for the future, such as weighing documents based on their pertinence for the domain. 
 For clinical practice cases, the cases are simply added to the memory, since they all correspond to 
different, non identifiable, patients. 

5   Evaluation 

The CaseMiner system was evaluated by comparison with the knowledge-base developed for the FHCRC 
Carepartner system. This knowledge-base comprises in particular 91 prototypical cases developed 
through the course of two years. This evaluation deals with the prototypical case mining feature of the 
system.  
      The documents processed are all related to the hematopoietic stem-cell transplantation domain. 
Therefore the papers were selected manually for their pertinence for this domain. Moreover, only the 
authors from FHCRC were selected, and topics related to diagnosis and treatment, meta analysis articles, 
and clinical practice guidelines available online. A total of 500 articles were selected from over 5,000 
thousand for their pertinence and coverage of the task at hand.  
      The success of the system is determined by the recall and precision ratios. Precision is the ratio of 
matching features to the total number of features identified. Recall is the ratio of matching features to the 
total number of features identified by the manual process. The precision and recall are calculated both at 
the prototypical case level, and at the level of features matched within each prototype. For example, a 
match between a finding of JaundiceNOS between the actual LiverChronicGVHD clinical pathway, and 
the learnt LiverChronicGVHD prototypical case corresponds to a feature match. Results are aggregated 
by averaging the results across all the prototypical cases and all their features. 
    The system is evaluated for all the 500 articles. The average values of recall and precision for the 
documents are shown in Table 1. It shows very encouraging results, even though the process of learning 
prototypical cases is very complex. These results show that the system definitely learns structures very 
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related with what the experts came up with – and so in a much shorter time (one day of processing versus 
2 years with the knowledge elicitation meetings with the team members). Even though the prototypical 
cases may show  some missing information, they provide a sound starting point for case-based reasoning, 
and will be complemented later on by actual clinical cases, the features of which are more complete and 
can compensate for the knowledge gaps in the prototypes. 
 
Table 1.  Precision and recall ratios 
 

Number of 
Documents 

Prototypical 
case 

Recall 

Prototypical 
case 

Precision 

Feature 
Recall 

Feature 
Precision 

500 95% 62% 70% 65% 
 
 

These results also show that if the system does not learn as much as the experts, it would provide an 
excellent starting point for further refinements with the medical team. The time saved is very significant, 
and moreover the approach presents major advantages. 

Some of the advantages are that the system can be trained continuously and thus could regular update 
its knowledge base. In fact, an explanation of why the results are somewhat different from the clinical 
team creation, is that knowledge has evolved since then, and it may simply be that the current prototypes 
are more current than the ones from the knowledge-base, which date five years now. Another explanation 
is that not all the articles were processed, and that a more judicious choice or more complete choice 
would provide better results. Finally, there is no evidence that the prototypes provided by the human 
experts are always better. What would be an interesting supplemental evaluation would be to compare 
recommendations from the system for both knowledge bases. Unfortunately, this is not possible in this 
particular domain at this time, the grant having ended, but will be attempted in other domains. 

6   Discussion 

Important previous work has been attempted in CBR to either retrieve textual cases [1], or to apply CBR 
to information retrieval [6]. In reality, the present work does not reason from textual cases, as the other 
textual CBR systems. A future extension of this work is to apply CBR to biomedical cases described in 
textual format, where textual CBR will become very pertinent. Pertinent previous work relates to case 
mining, feature mining, and prototype mining. These are addresses in successive paragraphs. 

Case mining refers to the process of mining potentially large data sets for cases [27].  Researchers 
have often noticed that cases simply do not exist in electronic format, that databases do not contain well-
defined cases, and that the cases need to be created before CBR can be applied. Another option is to start 
CBR with an empty case base. When large databases are available, preprocessing these to learn cases for 
future CBR permits to capitalize on the experience dormant in these databases. [27] propose to learn 
cases by linking several database tables. 

Feature mining refers to the process of mining data sets for features. Many CBR systems select the 
features for their cases, and/or generalize them. [26] for example focus on dimension reduction and/or 
feature selection, and shows that this improves the classification and CBR accuracy. In biomedical do-
mains, in particular when data vary continuously, the need to abstract features from streams of data is 
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particularly prevalent. Recent, and notable, examples include [14, 20] who reduce their cases time series 
dimensions through Discrete Fourier Transform. [19] propose an original method for generalizing fea-
tures, using both clustering techniques to group the cases into clusters containing similar cases, and fea-
ture selection techniques.  

Generalized case mining refers to the process of mining databases for generalized and/or abstract 
cases. Generalized cases are called in varied ways, such as prototypical cases, abstract cases, prototypes, 
stereotypes, templates, classes, categories, concepts, and scripts.  Although all these terms refer to slightly 
different concepts, they represent structures that have been abstracted or generalized from real cases 
either by the CBR system, or by an expert. Examples of such systems include systems described in [2, 12, 
13, 21, 22]. 

Finally, many authors learn concepts, and refer to conceptual clustering as their learning methodology 
[25]. [7] use formal concept analysis (FCA) – a mathematical method from data analysis - as another 
induction method for extracting knowledge from case bases, in the form of concepts.  

The abundance of literature in case, feature, and prototype mining shows that this question is essential 
to CBR, as a machine learning methodology. CaseMiner is mostly related to case mining, but differs from 
previous approaches [27] by mining from literature. It does not mine from textual cases as in [26]. One of 
the main advantages of the method proposed here is that it will facilitate the bootstrapping of CBR sys-
tems in biomedicine by providing a starting case base of mostly prototypical cases, which will render the 
methodology readily applicable to a much wider range of domains, in particular those where electronic 
cases are not available, like Carepartner [3]. 

7   Conclusion 

Case mining from medical literature is a very promising approach to building case bases. It has the poten-
tial of spreading the development of CBR systems in many domains where either electronic cases are not 
available, or they are incomplete, which is most frequent, or experts are not available for months or years 
of knowledge elicitation tasks. Moreover, it offers new opportunities for updating case bases from recent 
medical advances, and for leveraging multiple domain CBR. Research ahead in this direction involves 
automatically selecting the body of documents the most adequate for feeding the case mining system, 
detecting out-of-scope documents automatically, studying performance improvement and stability of the 
system, learning more complex case structures and features, combining case mining from databases and 
from literature, and studying the knowledge discovering process in itself from both the case-based ap-
proach, the rule-based approach, and  the model-based approach. 
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Abstract. We are going on to develop a novel method for the detection of 
hygiene-relevant parameters from grains of cereal crops based on intelligent 
image acquisition and interpretation methods as well as data mining methods. 
We present our first case study that describes the data acquisition, the planned 
image analysis and interpretation method as well as the reasoning methods that 
can map the automatic acquired parameters of grain to the relevant hygiene pa-
rameters. The preliminary results show that with the new computer science 
methods it is possible to come up with new insights into the quality control of 
food stuff.  

1 Introduction 

Fungal contamination of cereals is a serious economic problem throughout the world. 
Several fungi cause a reduction of grain quality, especially changes in color and taste 
[Müller et al., 1997], [Herrman et al, 1998], and [Rodeman, 2003]. However the main 
riks of fungal damage arise from the production of toxic compounds, known as 
mycotoxins. Mycotoxins can cause serious adverse health effects. Toxigenic fungi 
that produce mycotoxins in grains of cereals or oil seeds belong to the genera 
Aspergillus, Alternaria, Fusarium and Penicillium. The control of this problem is 
therefore of particularly interest in food safety and quality control programs. 

The aim of the research is the development of an automatic image acquisition and 
image interpretation system for the fast recognition of cereal grains damaged by 
fungi. Thereby should be developed a data acquisition unit that allows taking the 
coverage from the grain and allows to place it under a microscope for the acquisition 
of a digital image. This image should be used in order to automatically determine the 
number and the kind of fungi spores contained on the grain. For that we have to 
develop suitable intelligent image analysis and interpretation methods. Based on the 
enumeration of fungal spore classes we have to develop a method that can map this 
information to the hygiene-relevant parameters. The work we present here reports the 

mailto:ibaiperner@aol.com
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2       

results of our first case study. They show that the proposed methods based on 
intelligent image analysis and data mining are very suitable to capture the desired 
information and allow recognizing formerly unknown information that can be helpful 
to determine the quality of food stuff. 

2 Material  

For the study have been used different quality classes of wheat grains:  

1. visual optical perfect grains from a charge where no fungal grains were included,  
2. fungal damaged grains,  
3. gall-mosquito damaged grains, and  
4. visual optical perfect grains taken from a charge of fungal damaged grains.  
 
In total we had 10 samples from each class. Thirty single grains were taken from each 
sample for further evaluation.  

3 Image Data Acquisition 

The main problem was to make the coverage on the grains visible under the 
microscope and make it usable for further digital processing. Therefore we have 
developed a procedure for taking the coverage from grains and bring it onto a medium 
that can be placed under a microscope. From there can be acquired a digital image 
with the help of a digital camera connected with the microscope. 
The method of choice was a water-based extraction method. The grains were placed 
into a boil together with stones. This water-filled boil was shaken for 2 minutes, then 
the water was filled into a centrifuge and the sediment was put on a slide. This slide 
was placed under the microscope and a digital image was taken. There are other 
methods for extracting the coverage from the grain possible but this should not be the 
main topic of this paper. The resulting digital images are shown in Figure 1a-4a. 

4 Intelligent Image Analysis and Interpretation  

4.1 Image Analysis  

The main aim of the image analysis was to recognize possible fungi spores and 
process them further for determination of the type of fungi spore. Here we used our 
novel case-based object recognition method [Perner et al., 2005] developed for 
recognizing biological objects with high variation. For the architecture of such a 
system see Figure 5. The case-based object recognition method uses cases that 
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generalize the original contour of the objects and matches these cases against the 
contour of the objects in the image. During the match a score is calculated that 
describes the goodness of the fit between the object and the case. Note the result of 
this process is not the information about what type of fungi spore is contained in the 
image. The resulting information tells us only if it is highly likely that the considered 
object is a fungi spore or not. Further evaluation is necessary to determine the kind of 
fungi spore. This demonstrates the result in the images, see Figure 1b-4b. One of the 
main problems of such a case-based object recognition method is to fill up the case 
base with a sufficient large enough number of cases. We used our procedure 
described in [Perner et al., 2004] for that. For the study we have 10 different cases, 
which is not enough as we can see in the image but it allows us to demonstrate the 
applicability of the method. The method has to be adapted to the specific image 
quality to show better results as well as more cases have to be learnt by our case 
acquisition procedure. 
 
 

  
Fig. 1a Coverage of Grain with Cladosporium Fig. 1b Segmented Image 

  
Fig. 2a Coverage of Grain with Alternaria 
Alternata 

Fig. 2b Segmented Image 

  
Fig. 3a Coverage of Grain Fig. 3b Segmented Image 



4       

  
Fig. 4a Coverage of Grain with Fusarium 
Spore 

Fig. 4b Segmented Image 

 

 
Fig. 5 Architecture of a Case-Based Object Recognition System 

4.2 Image Interpretation and Data Mining  

After the methods have recognized potential objects that are likely to be fungi spores 
we have to extract more features from the objects that distinguish the object from the 
background and different fungi spores. Of course one feature is already the shape 
information used in the matching process but that is not enough for more detailed 
recognition. The features that have to be calculated for this kind of objects are the 
inner structure, texture and gray level information. We haven’t done that for this kind 
of objects considered in this publication yet. But we know from our past research on 
airborne fungi that it is possible to find automatic extractable features to describe 
fungi spores and use them for classification into different kinds of fungi spores. It is 
left to future work to find the right features for the considered fungi spores in this 
application and to build the feature extraction procedure for them. Based on this 
feature set we can construct the classifier. We use decision tree induction based on 
our tool Decision Master [Perner, 2003]. This gives us a good classifier. 
As the result we will get the information about the kind of fungi spores contained in 
the image and the number of fungi spores versa the kind of fungi spores. 
 



Detection of Hygiene-relevant Parameters from Cereal Grains based on Intelligent Image 
Interpretation and Data Mining      5 

5 Mapping of Image Information to Hygiene Relevant Parameter 
with Data Mining  

In this study the kind and the number of fungi spores was determined manually since 
it was a case study and we haven’t developed the fully automatic system yet. The aim 
of the study was to figure out if the proposed methods can bring out information about 
hygiene-relevant parameters and besides that new information that can be used to 
control the quality of food stuff. From the 4x10 different samples a data base was 
created where the columns of each entry show the class, that is the optical visual 
inspection label, the number of Fusarium spores, the number of 
Alternaria/Ulocladium, the number of Aspergillus/Penicillium, the number of 
Cladosporium, the number of fungi spores with unknown classification and the total 
number of fungi spores. In addition to the enumeration of fungal spores the 
concentration of a main mycotoxin of the genus Fusarium deoxynivalenol (DON) was 
determined by a commercial enzyme immunoassay screening (ELISA test).  

Table 1-4 shows that there is a significant difference in the number and the kind of 
fungi spores for the different charges. Figure 6 shows that DON value corresponds to 
the visually determined class labels. Grain with a low number of Fusarium spores 
have low DON values and grain charges with high number of Fusariam spores have 
high DON values. 
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Fig. 6 Don Value to Number of Fusarium Spores 

 
Decision tree induction with Decision Master [Perner, 2003] on an entropy-based 
criterion was performed in order to find out the relation between the coverage of fungi 
spores and the class label (mycotoxin value). The induction experiment shows that 
there is a relation between the number of Cladosporium spores and Fusarium spores 
respective the class, see Figure 7. It says that grain charges with a high number of 
Cladosporium spores will have a low number of Fusarium spores. That means these 
charges are either perfect charges or gall-mosquitoes damaged charges. Whereas 
charges with low Cladosporium spores can be either charges with a high number of 
Fusarium spores or a low number of Fusarium spores. Note that charge “einwandfrei 
2” (visual perfect grains) has been taken out from a sample with Fusarium damaged 
grains. It seems that the number of Cladosporium spores indicates this fact. The 
number of Alternaria and Aspergillus spores did not have a significant influence in 
this experiment. 

Fig. 7 Decision Tree for the Determination of Grain Quality based on Number and 
Type of Fusarium Spores 
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6 Conclusions  

We have presented our first results on our case study for the detection of hygiene-
relevant parameters from cereal grains based on intelligent image acquisition and 
interpretation methods as well as data mining method. It is a joint work between a 
computer scientist, food experts and microbiologists. We have shown that data 
acquisition is an important task and that it has to do with more than data base 
construction as it is in many data mining experiments. The image acquisition method 
we have demonstrated in this paper works well and can be fully automated. It can also 
be constructed in such a way that the coverage from each single grain can be taken off 
and evaluated based on the intelligent image interpretation and data mining methods. 
The image analysis on case-based object recognition works well for this task but has 
to be tuned so that a better object recognition rate can be achieved. From each single 
object can be extracted image features and these features can be used for 
classification. It is preferable to construct the classifier based on decision tree 
induction methods. Once the type and number of fungi spores has been determined 
this information can be set into relation with the hygiene-relevant parameters. We 
have shown that the number of Fusarium spores correlates with the DON levels which 
is a value used for the determination of the mycotoxin concentration. However when 
considering this experiment as a data mining experiment and applying decision tree 
induction to the created data base some other important information can be extracted 
which are more or less hidden before. The next steps of our work will be to improve 
the image interpretation methods. When we have a fully automatic algorithm we will 
apply our method to a large number of grain samples. The aim is to come up with a 
new measurement method for the determination of hygiene-relevant parameters on 
grains. Besides that we would like to discover formerly unknown relations or 
information based on the material in the coverage of the grain such as different types 
of fungi spores. 
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Abstract. Fuzzy c-means clustering with spatial constraints (FCM_S) can 
consider spatial information of images. But it lacks of enough robust to noise and 
outliers. And computation complexity of FCM_S is high. In this paper, a new 

objective function is presented. Weighted average pixel value of pixel
_

kkx  ( x ) 

is substituted for kx in FCM. 
_

kx denotes an integrative value of kx and its 
neighbor pixels. So the impact of noise or outliers will be reduced in the process 
of clustering. Then image pixels are mapped from the original space into a higher 
dimensional feature space by using Mercer kernel functions. As a result, c-means 
clustering can be performed efficiently in the feature space for that kernel 
functions can induce robust distance measures while the computational 
complexity is low. Some experiments are conducted on images with or without 
noise. The results show that this algorithm is suitable and robust for these images, 
and the running time decreased sharply.  

Keywords: image; segmentation; fuzzy c-means clustering; spatial; kernel 

1   Introduction 

Image segmentation plays an important role in many fields such as Image processing、
Machine vision [1]. The results of segmentation determine the results of image analysis 
and process. And image segmentation is one of classical problems in the field of image 
process. There are more than one thousand algorithms about it. Many scholars have 
classified them [2]. But there is not a common used method that can segment all kinds 
of images efficiently.  

Fuzzy c-means clustering is a method that can classify n  samples into  clusters 
[3]. In last decades, it is wildly used for image segmentation [4]. Image clustering is to 
partition pixels into c-clusters, so members of same cluster are more similar to one 
another than to members of another cluster. Jianwu Liu et al. have used this method to 
segment MRI brain tumor images [5]. Although FCM algorithm can do well in 
segmenting most noise-free images, it fails to segment images with noise and outliers. 
It may lead to nonrobust results due to the use of nonrobust Euclidean distance and 

c



disregard of spatial information of images. As a result, many scholars have did some 
research in these problems. For the first problem, R. J. Hathaway and J.C Bezdek 
proposed that fuzzy c-means clustering uses  distance norm not  norm in FCM 
objective function when the distance between one sample and another one is calculated 
[6]. For the second problem, D. L.Pham [7] and M. N. Ahmed et al. [8] presented that 
spatial information should be incorporated into original FCM objective function. 
Meanwhile, the introduction of  norm distance and spatial constraints increases 
computational complexity. And the robustness is still poor.  

pL 2L

pL

The rest of this paper is organized as follows: In section 2, we introduce fuzzy 
c-means clustering. In section 3, spatial information is incorporated into fuzzy c-means 
clustering. In section 4, we describe the kernel function. Kernel-based fuzzy clustering 
with spatial constraints (KFCM_S) is derived. A new objective function is presented 
in section 5. We use above algorithms to segment colony images in section 6, and 
give conclusions in section 7.  

2   Fuzzy c-means Clustering 

Assume that there are N pixels in a colony image. Let these pixels be the dataset 
. Every pixel sample has three attributes, i.e., the values of R、

G、B. If the segmentation results need to be very good, many other attributes, such as 
texture information、grads information, can be added to. 

N
},,,{ 21 NxxxX L=

In order to partition these pixels into c  clusters, we just need to minimize the 

value of objective function J mathematically. Where 
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and ; denotes a weighting exponent on each fuzzy 

membership. The minimizing value of can be derived by evaluating the centroids 

 and membership functions  that satisfy a zero gradient condition. So, we can 
obtain that: 
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3   Fuzzy c-means Clustering with Spatial Constraints 

M. N. Ahmed, S. M. Yamany, N. Mohamed proposed a modification to FCM [8]. They 
introduced a term that allows the labeling of a pixel to be influenced by the labels in its 
immediate neighborhood. In other words, the modification considers spatial constraints 
and aims at keeping continuity on neighboring pixel values around a pixel. Such a 
regularization is useful in segmenting scans corrupted by salt and pepper noises. The 
modified objective function is given by  
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Where denotes the set of neighbors that exit in a window around ;  is the 

cardinality of . The effect of the neighbor term is controlled by the parameter 
kN kx RN

kN α . 
The relative importance of the regularizing term is inversely proportional to the 
signal-to-noise ratio (SNR) of colony images. A lower SNR requires a higher value of 
α . 

The objective function can be minimized under the constraint of U as stated in 
section 3. Similarly, we can get the following equation: 
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4   Kernel-based Fuzzy c-means Clustering with Spatial Constraints 

4.1   Kernel Function 

The success of support vector machine has greatly drawn people’s attention in kernel 
function. The spirit of kernel function is a mapping from an input space to a feature 
space with higher dimension. If the operation of mapped vectors is only inner product, 
we need not to know the detailed mapping form. We can reduce the operation and 
overcome curse of dimensionality by substituting kernel function for inner product. 
Every liner algorithm that only uses inner products can be easily extended to a 
nonlinear version only through the kernels satisfying Mercer’s conditions [9]. 

Assume that samples in colony image input space are , these pixel 
samples are mapped into a feature space by a nonlinear mapping 

Nixi ,,2,1, L=
Φ . Then we derive 

)(,),(),( 21 Nxxx ΦΦΦ L . Inner product in input space can be denoted by Mercer 

kernel in feature space, i.e. ))()((),( jiji xxxxK Φ•Φ= [10]. 
There are some common used Mercer kernel functions: 
Polynomial kernel: , where d  is a user-defined 

parameter. 
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Gaussian kernel: is a user-defined 

parameter. 
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Some more kernel functions can be found in [11]. In this paper, we use the Gaussian 
kernel for its robustness [12]. 

4.2   Kernel-based Fuzzy c-means Clustering with Spatial Constraints 

We can construct the kernelized version of fuzzy c-means clustering with spatial 
constraints algorithm and modify its objective function by the mapping Φ  as follows: 



( ) 2||)(|| ik vx Φ−Φ =  ( ) ( )( ) ( )( )ik
T

ik vxvx Φ−ΦΦ−Φ ( )
= ( ) ( )( ) ( ) ( )( )k

T
ik

T
k xvxx ΦΦ−ΦΦ ( ) ( )( ) ( ) ( )( )i

T
ii

T
k vvvx ΦΦ+ΦΦ−  

= ( ) ( ) ( ikiikk vxKvvKxxK ,2,, )−+  

= ( )( )ik vxK ,12 −  

Similarly, =( ) 2||)(|| ir vx Φ−Φ ( )( )ir vxK ,12 − . 
Thus, 

( )( )∑∑
= =

Φ −=
c

i

N

k
ik

m
ikm vxKuJS

1 1

,1 ( )( )∑∑ ∑
= = ∈

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−+

c

i

N

k Nx
ir

m
ik

R Kr

vxKu
N 1 1

,1α
 

Parameters used in  stand for the same meaning as they are used in . Φ
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The algorithm can be presented in the following steps: 
(1) Fix the number c  of these clusters and initial centroids, set ε >0 to a very small 
value; 
(2) Calculate the value of , and update the partition matrix U ; iku
(3) Calculate the value of , and update the centroids V ; iv
(4) Repeat steps (2) 、 (3) until the termination criterion is statisfied : 

ε<− |||| oldnew VV . 
We segmented some colony images by KFCM_S. Fig.1 is a colony image, Fig.2 is 

the segmented image by KFCM_S. And Fig.3 is a colony image with salt and pepper 
noise, Fig.4 is its’ segmented image. Here the parameters c =2, ε =0.001, m=2.0, 

=2.0, α β =0.00002. From the results, we can see that colony parts can be segmented 
from the whole image well and the algorithm performs well on the image with salt and 
pepper noise.  



  
Fig. 1. Colony image with few noise      Fig. 2. Segmented result by KFCM_S 
 

  
Fig. 3. Colony image with some       Fig. 4. Segmented result by KFCM_S 

           salt and pepper noise 

5   Fast Fuzzy c-means Clustering with Spatial Constraints 

Even though KFCM_S performs well on normal images or images with noise, it costs 
too much time. Fig.1 and Fig.3 are images with 236×201 pixels. The running time of 
KFCM_S is about 68.5 seconds. In order to decrease the running time at the same time 
spatial information is considered, we present a new objective 
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that exit in a window around , 
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kx krx denotes the rth pixel in the neighbor set. Through 
the weighted average value, spatial information can be considered. If there are a few of 
noises in the image,  needs to be much larger and  need to be much smaller. In 

this case, the pixel belongs to which class mainly depends on . While there are 
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much noises in the image,  needs to become smaller and  need to become larger. 

So the pixel belongs to which class depends on the integrative information of 

and its neighbors.  
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6   Results 

There are two groups of images. Images of group 1 are the colony image with few noise 
and its segmented images by BCV、FCM、KFCM_S、FFCM_S、FKFCM_S, while 
images of group 2 are the colony image with salt and pepper noise and its segmented 
images.  

Here the colony images have 236×201 pixels. When the colony image with few 
noise is processed, parameters c =2; ε =0.001; 
m=2.0; =2.0;α β =0.00002; =4; =4; . While the colony 
image with salt and pepper noise is processed, c=2;

RN kw 1, 1,2,3,4krw r= =
ε =0.001; 



m=2.0; =2.0;α β =0.00002; =4; =1; . RN kw 1, 1,2,3,4krw r= =
 

  
        (a)                                 (b) 
 

  
(c)                                 (d) 

 

  
(e)                                (f) 

Fig. 5. Colony image segmentation example. (a) Original colony image. (b) BCV result. (c) FCM 
result. (d) KFCM_S result. (e) FFCM_S result. (f) FKFCM_S result. 
 



  
                   (a)                                 (b) 

  
(c)                                 (d) 

  
                   (e)                                 (f)  
Fig. 6. Colony image with salt and pepper noise segmentation example. (a) Original colony 
image with salt and pepper noise. (b) BCV result. (c) FCM result. (d) KFCM_S result. (e) 
FFCM_S result. (f) FKFCM_S result. 

Table 1.  Running time of algorithm FCM、FCM_S、KFCM_S、FFCM_S、FKFCM_S on two 
colony images(ms). 

 FCM FCM_S  KFCM_S FFCM_S FKFCM_S 
Original colony image  1000 3543 69086 2633 3894 

Original image with salt and 
pepper noise 

1036 3684  68680 2781 3883 



7   Conclusion 

FCM does well in segmenting images with few noise and outliers. But if there are some 
noises in an image, spatial information needs to be considered. FCM_S realizes the 
goal by adding spatial information to the objective function. But the Euclidean distance 
is not robust. Kernel functions can perform transformation from an input space with 
low dimension into a feature space with low dimension. KFCM_S is performing FCM 
in the kernelized feature space. And KFCM_S performs well on images with noises, 
but its computational complexity is very high. In this paper, we improved the objective 
function of original KFCM_S. In the process of images with many noises are 
segmented, though the segmenting result of FKFCM_S can’t be better than the result of 
KFCM_S, the running time decreases sharply. And FKFCM_S can adapt different 
noise condition by adjusting the weight values of currently processed pixel and its 
neighbor pixels 
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Abstract. Uneven illumination creates difficulty for image processing and segmentation in 
general. This paper shows that an algorithm technique involving image classification and val-
ley-edge based fragment delineation is a highly efficient way of delineating densely packed 
rock particles for the images of uneven illumination. The paper shows the usefulness of this 
technique for complicated rock particles. The reason for the powerfulness of the technique is 
that image classification and fragment delineation are highly cooperative processes. Moreover, 
valley-edge detection is a nonlinear filter picking up evidence of valley-edges by only consid-
ering the strongest response for a number of directions. The algorithm has been compared to 
the other existing algorithms. The result shows that it is not affected much by fragment surface 
noise and image uneven illumination. It is robust for densely packed rock particles. 

1   Introduction 

In most applications, the quality of rock particle images varies too much, which make 
image segmentation hard. Therefore, this research subject becomes a hot topic in the 
world during last twenty years. Today, a number of image systems have been devel-
oped for measuring fragments in different application environments such as frag-
ments on/in gravitational flows, conveyor belts, rockpiles, and laboratories [1-5].  

In a rock particle image of size 768x576 pixels (e.g. ordinary CCD camera), the 
number of fragments may reach up to 2000. Moreover, if there is no clear void space 
(background) between fragments, the fragments often overlap and touch each other. 
If the illumination on the fragment surface is uneven, the light intensities of fragments 
are different; and if in some cases, rock types are varying, the edges between frag-
ments are weak. All the mentioned characteristics of rock particle images make seg-
mentation algorithm development hard. It is not practical to have the same segmenta-
tion procedure for images irrespective of quality and size distribution.  Hence, it is 
crucial to extract qualitative information about a rock particle image to characterize 
images before starting segmentation. Characterization of rock particle images have 
been thoroughly investigated by extensive tests on hundreds of images, using several 
packages of commercial software for image segmentation, and some previous image 
segmentation algorithms[1-3] coded by the authors. 

mailto:wxwang@ee.uestc.edu.cn
mailto:znn525d@yahoo.com


The paper stresses that our general approach is that of using two building blocks 
for algorithms, which is called “image classification” and “image segmentation”. It is 
the cooperation between image classifications and “image segmentation” which cre-
ates good delineation of rock particles. 

Image classification was recognized to be essential in segmentation of rock parti-
cles. Therefore, it was started by developing procedures [6], for crude determination 
of number of rock particles in an image, the basic idea being that “edge density” is a 
rough measure of average size in images of densely packed fragments. It stresses: our 
segmentation algorithm is based on grey value valleys which is a grey-value structure 
occurring more frequently than traditional step edges. However, without knowledge 
of scale (approximate size of rock particles in the image) such an approach would be 
hard to realize. In fact, this goes for any segmentation technique which normally 
“handles” the problem by adjustment of various smoothing parameters, thresholds etc. 
Since it needs an automatic image segmentation procedure the algorithm performs 
“image classification” first, to avoid making “smoothing parameters” crucial for good 
results. 

2 Rock particle image classification algorithm  

Because of the large variation of rock particle patterns and quality, the image classifi-
cation algorithm produces five different labels for the classes: Class 1: images in 
which most of the fragments are of small size; Class 2: images in which most of the 
fragments are of medium size; Class 3: images in which most of the fragments are of 
relative large size; Class 4: images with mixed fragments of different sizes; and Class 
5: images with many void spaces. 

If most fragments in an image are very small, the fine-detail information in the im-
age is very important for image segmentation, and the segmentation algorithm must 
avoid destroying the information. On the contrary, if fragments are large, it is neces-
sary to remove the detailed information on the rock particle surface, because it may 
cause image over-segmentation. If most fragments are of relative large size (e.g. 200 
pixels for each fragment), the segmentation algorithm should include a special image 
enhancement routine that can eliminate noise of rock particle surface, while keeping 
real edges from being destroyed.  

There is also a special class of images, Class 5. This class refers to any of Classes 
1 to 4 on a clear background, hence only partially dense. In this special case, Canny 
edge detection [7] is a good tool for delineating background boundaries for clusters of 
rock particles. To classify images, the edge density is used. Edge density may reflect 
average size and surface texture patterns. The underlying question here is not only 
whether or not edge density is used for estimating average fragment size, but rather, 
more generally: Is this number useful for classifying images of densely packed rock 
particles into size categories, and, can this classification facilitate segmentation of 
rock particles? 

A direct method for estimating edge density may be based on, e.g., a Canny edge 
detector [5]. An indirect method for estimating edge density may also be based on 
moment-preserving thresholding [2], applied to a smoothed gradient magnitude im-



age (instead of the original image), whereby a crude estimate of edge density is based 
on information in a gradient magnitude histogram. The method described below is 
more accurate, but both methods are useful. 

By size of fragments, it means diameter or approximate diameter of fragments. 
Under the assumption of closely packed fragments of –roughly- elliptical-like shape, 
it shows that there is a relation between on one hand average size and on the other 
edge density, an average shape factor, and variance of size. If the variation of size is 
not too large, edge density and average shape factor are sufficient for estimating av-
erage size, it maybe within an accuracy of 5 to 10 percent (as investigated), if the 
direct method is used.  

Edge-density based average size estimation is a relatively computationally inex-
pensive way of obtaining average size. If using some specially tailored hardware card 
for quick convolutions for image smoothing, the rest of the operations only require a 
few operations per pixel. For the direct approach, Canny edges only require a few 
comparisons and multiplications per pixel, and the same holds for moment calcula-
tions in the indirect approach. Thus, edge-density based approaches should be possi-
ble to use in real-time applications in processing of image sequences. Author has 
performed a series of experiments with edge density-based average size estimation.  

Edge density δ  will be measured. It denotes estimated edge density by δ̂ . One 
possible way of calculating δ̂  is to divide the total number of edge pixels in an image 
by the total number of pixels . totn
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where = number of edge pixels. en
  Let the original image be and its gradient magnitude image , 

and * be convolution. A smoothed image 
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),( yxg∇ is the vector field of gradients of g , which in practice is stored as a 

pair of images: ∇ . )), y(),,((),( xgyxgyxg yx= gM g ∇=  is the gradient 

magnitude image of the smoothed image g . The smoothing parameter gaussσ  is the 

so-called scale parameter. 
  A Canny edge image is defined as maxima of gradient magnitude in the gradient 

direction. In a discrete grid, then, pixels corresponding to such maxima will be edge 
pixels and the binary image where 0 means edge pixel and nonzero value non-edge 
pixel, is an edge image denoted ),( yxgε , or, more precisely, );,( gaussg yx σε . 



Our edge density δ̂  will always be based on a value calculated in anen gε edge 

image. 
 The Canny edge detector compares three -values locally in the gradient direc-

tion, . For instance, if the edge runs along the y-direction, then and 
gM

),( yxg∇
),1(),( yxMyxM gg +≥ is required for assigning the label edge pixel to a pixel 

at . Normally, a threshold, denoted by here, is used to eliminate edge pixel 

candidates of low contrast by requiring

),( yx Mt

Mg tyxM >),( . This gradient magnitude 

threshold could be adaptive to each image,  which normally yields a -value in the 

range 5% to 10% of maximal -value in the image, the exact value of  

Mt

gM Mt epend-

ing on whether there is a peak in the -histogram in that interval and its position.  gM
 Consider the case of an image containing closely packed rock particles, which can 

be approximated by ellipses in the image plane. The approximation is not done for the 
purpose of describing individual fragment shape, but for setting up a model for relat-
ing edge density to average size. The concept size is defined below. 

  The ellipses are indexed . Let minor and major axes be and , 

with , 

ni ,,2,1 L= iW iL

ii LW < iii LWr = . We use  as a measure of size, and call it length. 

Denote area and perimeter by  and respectively. Assume that there are no 
boundaries in the interior of the ellipses. Define the following edge density con-
cept
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where E( ) is the complete elliptic integral. 
  The last equality is due to the mean value theorem of inte-

grals: ∫ , which also applies to sums if we replace 

discrete functions by continuous step functions 
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L  is average length ( LnL ∑= −1 ), and  the sample variance of L defined 
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the “average shape factor”.(When all ellipses are of  the same form ri = r, ∀ i, it is 
easily seen that ssi =  .) One may note that the shape factor is closely related to 

compactness P2/A. The approximation 2/)1(5.0)1( 22 xr +≈− πE  comes 
from Spiegel (1992, p7), [8], and is fairly well known. 

  With known average shape factor= s , average size L  in a single frame can be 
solved from Eq.7, using Eqs.8-9: 
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  We now have a relation between average length L  and a kind of edge den-
sity *δ

)
. The measured edge density in our experiments δ

)
 is related to *δ

)
 by 

*δ
)

=β·δ
)

 where β ≈  1.2 accounts for the empty space between fragments (not in-
cluded in A∑ ), as discussed earlier. Now, introduce the quantity LLL /~ σσ = , 

which is a kind of normalized standard deviation. Then, LLLL LL ⋅+=+ 22 ~/ σσ , 
leading to 

)~1(ˆ 2
L

sL
σδβ +⋅

=         (11) 

  Of course, we should not expect to be able to calculate the average )( 1ξr ) and 

)( 2ξr  exactly. An approximation )( 1ξrrm ≈ , )( 2ξrrm ≈  may be calculated from 
crudely split-merge segmented data by using a kind of “equivalent ellipse” concept, 
yielding an estimate 

mm rrs 21)24( +⋅=        (12) 
which is the shape factor we use in the experiments. 

If there are clear dark void spaces in an image, the algorithm can also be used. Be-
fore the classification, the void spaces can be detected by a simple thresholding algo-



rithm or by a Canny edge detector along the between-class boundaries. Based on 
estimates of average number of fragments, images are labeled automatically into four 
classes. 

3 Rock particle delineation algorithm 

An algorithm has been proved to be useful for rock particles. This is not just a fortui-
tous coincidence. Rather, densely packed rock particles, typically, are separated by 
dark valleys (of variable width), if defining “valley” not too locally. A valley needs 
not to be symmetric. It could not be steeply sloping on one side and gently sloping on 
the other. Classic edge detection register any change in grey value above a threshold, 
and works either locally (bad for our data), or, more globally after isotropic smooth-
ing. 

For the details on the algorithm we refer to [9]. Here we emphases on the experi-
mental results using that algorithm on rock particles instead, and emphasize which 
parts of the valley edge segmentation are gaining from cooperation with the image 
classification algorithm and its five classes. We suggest that image classification is a 
reasonable way of handling scale or multiple scales, in a segmentation procedure. 

In the example, a valley point P is surrounded by strong negative and positive dif-
ferences in the diagonal directions: 

045 <∇ , and 045 >Δ , , and 0135 <∇ 0135 >Δ , whereas, , and 

, , and  

00 ≈∇
00 ≥Δ 090 ≈∇ 090 ≈Δ

where are forward differences:  Δ ( ) ( jifjif ,1,145 )−++=Δ , and  ∇  are 

backward differences: ( ) ( 1,1,45 )−−−=∇ jifjif , etc. for other directions. We 

use ( αα ∇ )−Δmax  as a measure of the strength of a valley point candidate. It 
should be noted that we use sampled grid coordinates, which are much more sparse 
than the pixel grid nx ≤≤0 , my ≤≤0 .  is the original grey value image after 
weak smoothing. What should be stressed about the valley edge detector is: 

f

(a) It uses four instead of two directions; 
(b) It studies value differences of well separated points: the sparse 1±i  corresponds 
to Lx ±  and 1±j  corresponds to Ly ± , where 1>>L ; 

(c)  It is nonlinear: only the most valley-like directional response ( )αα ∇−Δ  is used. 

By valley-like, we mean  ( )αα ∇−Δ  value. To manage valley detection in cases of 
broader valleys, there is a slight modification whereby weighted averages of 
( αα ∇ )−Δ - expressions are used. 

( ) ( ) ( ) ( )ABAB PwPwPwPw αααα ∇−∇−Δ+Δ 1221 , 

where ,  are neighbors of detecting point P, opposite.  For example,  
and  are in our experiments. 

AP BP 21 =w
32 =w



Without image classification, there is a substantial difficulty choosing an appropri-
ate L, the spacing between sampled points. Let L refer to spacing in an image of 
given resolution, where the given resolution may be a down sampling of the original 
image resolution.   

Since the image classification described earlier leads to an automatic down-
sampling (see Eqs. (1) and (2)) of images belonging to Class 2 or Class 3, large or 
medium-sized objects, the choice of L is not critical. 

For Class 4 images – mixed size images – multiple values of L are used. Within 
each detected coarse-scale fragment, edge density variations in the un-shrunk image 
(may) trigger a new valley-detection search. The L-value has not changed, numeri-
cally, but we are operating in higher resolution variations of the image (Class 2 and 
Class 1), hence L in terms of the original image decreases. 

After valley edge point detection, we have pieces of valley edges, and a valley 
edge tracing subroutine, filling gaps is needed (Some thinning is also needed.). We 
refer to [9] for details.  

After the above procedure, the remaining thing is to close the boundaries or con-
tours for each of the fragments. If valley edge image is of the same size of the original 
image, it firstly detects end points and junction points of edges on the valley edge 
image, then calculates the orientations for each of the points, subsequently, detects 
flatness, weakness of the curves between the two corresponding points which are 
oriented in the similar directions and have a relative short distance, choose the best 
fitting curve for the connection of the two corresponding points, which is repeated 
until no end points exists. If valley edge image is of the size less than the one of the 
original image that means that the valley edge image is resulted from a shrunk frag-
ment image. In this case, it remaps valley edges to the original image; it does not just 
simply enlarge the edges, and it uses the valley edges as cues to search possible edge 
locations in the large image based on grey level information. After edge remapping, it 
carries out boundary closing operation in the same way as before described. 

As a background process, there is a simple grey value thresholding subroutine 
which before classification creates a binary image with quite dark regions as the bel-
low-threshold class. If this dark space covers more than a certain percentage of the 
image, and has few holes, background is separated from fragments by a Canny edge 
detector [7] along the between-class boundaries. 

In that case, the image is then classified into Class 1 to 4, only after separation of 
background. This special case is not unusual in rock particle data. This is reasonable 
cooperative process. If background is easily separable from brighter rock particles 
this is done, and dense sub-clusters are handled by the image classification and val-
ley-edge segmentation. This part of the segmentation process is specific for rock 
particle images where part of a homogeneous (dark) background is discernible. 

To test the segmentation algorithm, we have taken a number of different fragment 
images from a laboratory, a rockpile, and a moving conveyor belt. It is often that 
there is a lot of noise on the surface of fragments, which gives problems for image 
segmentation, over-segmentation and under-segmentation. Since surface noise and 
3D geometry of rock particles create step edges in most cases, and our new algorithm 
is studied based valley edge detection, it disregards step edges. Therefore it works not 
only for less surface noise image, and also works for the images of serious surface 



noise. The other existing algorithms [10-12] have difficulties to process this kind of 
images. 

When one acquires (or takes) rock particle images in the field, the lightning is un-
controlled; therefore, it cannot be avoided having uneven illumination images. Un-
even illumination is a serious problem for image processing and image segmentation 
not only for rock particles and also for other object. Uneven illumination correction is 
a hot topic in the research of image processing. In general, the regular shadows can 
be removed by using some standard filters, but for the random shadows, there is no 
standard filter or algorithm can be used for uneven illumination correction. 

 

 
(a) (b) 

Fig. 1 Fragment delineation for a typical image under uneven illumination: (a) original image; 
and (b) fragment delineation result. 
 

Rock particles are in field, lightning is from the natural sun (light strength varies 
from time to time) , some natural objects (e.g. clouds, forest, mountains) and large 
man-made objects (e.g. trucks, trans) maybe nearby the area one wants to take images, 
which may create uneven illumination (i.e. shadows) on the images. Some times, in a 
fragment image, it includes high lightning area and dark shadows, which make image 
segmentation extremely difficult. It is not possible to use the segmentation algorithms 
based on grey level similarity. In the newly studied fragment delineation algorithm, 
since it uses valley edges as cues for object delineation, it is not affected by uneven 
illumination much. As examples, we show two uneven illumination images in Figs. 1-
2. The image in Fig. 1(a) has random shadows. By using the new algorithm, the frag-
ment delineation results are satisfactory too. 



 
 (a) (b) 
Fig. 2 Fragment delineation for the image of random shadows: (a) original image; and (b) 
fragment delineation result. 

4   Conclusions  

In this paper, a new image algorithm for delineating densely packed rock particles has 
been studied; it is a combination of image classification algorithm and fragment de-
lineation algorithm. The rock particle image classification algorithm was developed 
based on edge density and average size estimation. The edge density is obtained by 
using Canny edge detection, and size estimation is from a deduction of series of 
mathematics formulae. For general-purpose rock particle image segmentation by 
valley-edge detection, the classification algorithm produces image class labels (5 
classes), useful in subsequent image segmentation. Without image classification, 
image down–scale cannot be carried out correctly, and valley edge could not detect 
edges clearly. The fragment delineation algorithm was studied based on both valley-
edge detection and valley-edge tracing; it differs from traditional edge based segmen-
tation algorithms, as compared to the other edge detectors, the studied edge detection 
algorithm is more suitable for densely packed rock particles. The delineation algo-
rithm uses valley edges as cues for boundary tracing and closing, it also uses multiple 
scale technique to remap fragment boundaries.  

The presented rock particle delineation algorithm has been tested for a number of 
rock particle images where fragments packed densely. The algorithm has been com-
pared to the other widely used fragment image segmentation algorithms, the result 
shows that it is much robust than the other algorithms for densely packed rock parti-
cles under the condition of uneven illumination, it is not affected much by the surface 
noise of rock particles and image uneven illumination which affect the other existing 
algorithms seriously. Therefore, it is powerful and suitable for rock particle images. 
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