Skip to main content

Computational Intelligence in Solving Bioinformatics Problems: Reviews, Perspectives, and Challenges

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 151))

Summary

This chapter presents a broad overview of Computational Intelligence (CI) techniques including Artificial Neural Networks (ANN), Particle Swarm Optimization (PSO), Genetic Algorithms (GA), Fuzzy Sets (FS), and Rough Sets (RS). We review a number of applications of computational intelligence to problems in bioinformatics and computational biology, including gene expression, gene selection, cancer classification, protein function prediction, multiple sequence alignment, and DNA fragment assembly. We discuss some representative methods to provide inspiring examples to illustrate how CI could be applied to solve bioinformatic problems and how bioinformatics could be analyzed, processed, and characterized by computational intelligence. Challenges to be addressed and future directions of research are presented. An extensive bibliography is also included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A.: Intelligent systems: Architectures and perspectives, recent advances in intelligent paradigms and applications. In: Abraham, A., Jain, L., Kacprzyk, J. (eds.) Studies in Fuzziness and Soft Computing, pp. 1–35. Springer, Heidelberg (2002)

    Google Scholar 

  2. Abraham, A.: Nature and scope of AI techniques. In: Sydenham, P., Thorn, R. (eds.) Handbook for Measurement Systems Design, pp. 893–900. John Wiley and Sons Ltd., Chichester (2005)

    Google Scholar 

  3. Alba, E., Luque, G.: A New Local Search Algorithm for the DNA Fragment Assembly Problem. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 1–12. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Alon, U., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, Cell Biology 96, 6745–6750 (1999)

    Article  Google Scholar 

  5. Altman, R.B., Valencia, A., Miyano, S., Ranganathan, S.: Challenges for intelligent systems in biology. IEEE Intelligent Systems 16(6), 14–20 (2001)

    Article  Google Scholar 

  6. Angeleri, E., Apolloni, B., de Falco, D., Grandi, L.: DNA Fragment assembly using neural prediction techniques. Intl. J. Neural Systems 9(6), 523–544 (1999)

    Article  Google Scholar 

  7. Arima, C., Hanai, T.: Gene expression analysis using Fuzzy k-Means Clustering. Genome Informatics 14, 334–335 (2003)

    Google Scholar 

  8. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic algorithms. Oxford University Press, Oxford (1996)

    Google Scholar 

  9. Baker, T.K., et al.: Temporal gene expression analysis of monolayer cultured rat hepatocytes. Chem. Res. Toxicol. 14(9), 1218–1231 (2001)

    Article  Google Scholar 

  10. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. MIT Press, Cambridge (1998)

    Google Scholar 

  11. Baldi, P., Hatfield, G.W.: DNA Microarrays and Gene Expression: From Experiments to Data Analysis and Modeling. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  12. Banerjee, M., Mitra, S., Banka, H.: Evolutionary rough feature selection in gene expression data. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(4), 622–632 (2007)

    Article  Google Scholar 

  13. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  14. Blanco, A., Pelta, D.A., Verdegay, J.L.: Applying a fuzzy sets-based heuristic to the protein structure prediction problem. Intl. J. Intelligent Systems 17(7), 629–643 (2002)

    Article  MATH  Google Scholar 

  15. Bull, L., Kovacs, T. (eds.): Foundations of Learning Classifier Systems. Studies in Fuzziness and Soft Computing, 183 (2005)

    Google Scholar 

  16. Busa-Fekete, R., Kocsor, A., Pongor, S.: Tree-Based Algorithms for Protein Classification. Studies in Computational Intelligence 94, 165–182 (2008)

    Google Scholar 

  17. Chen, S.-M., Lin, C.-H., Chen, S.-J.: Multiple DNA sequence alignment based on genetic algorithms and divide-and-conquer techniques. Intl. J. Applied Science and Engineering 3(2), 89–100 (2005)

    Google Scholar 

  18. Chen, Y., Pan, Y., Chen, L., Chen, J.: Partitioned optimization algorithms for multiple sequence alignment. In: Proc. 20th Intl. Conf. on Advanced Information Networking and Applications, pp. 618–622 (2006)

    Google Scholar 

  19. Chena, C.-B., Wang, L.-Y.: Rough set-based clustering with refinement using Shannon’s entropy theory. Computers and Mathematics with Applications 52(10-11), 1563–1576 (2006)

    Article  MathSciNet  Google Scholar 

  20. Chu, F., Xie, W., Wang, L.: Gene selection and cancer classification using a fuzzy neural network. In: Proc. IEEE Annual Meeting of Fuzzy Information, pp. 555–559 (2004)

    Google Scholar 

  21. Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D., Ideker, T.: Network-based classification of breast cancer metastasis. Molecular Systems Biology 3(140) (2007)

    Google Scholar 

  22. Cios, K.J., Mamitsuka, H., Nagashima, T., Tadeusiewicz, R.: Computational intelligence in solving bioinformatics problems. Artificial Intelligence in Medicine 35(1-2), 1–8 (2005)

    Article  Google Scholar 

  23. Cohen, J.: Bioinformatics: An introduction for computer scientists. ACM Computing Surveys 36(2), 122–158 (2004)

    Article  Google Scholar 

  24. Das, S., et al.: Swarm Intelligence Algorithms in Bioinformatics. Studies in Computational Intelligence 94, 113–147 (2008)

    Google Scholar 

  25. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discritization of continuous features. In: Proc. XII Intl. Conf. on Machine Learning, pp. 294–301 (1995)

    Google Scholar 

  26. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. PNAS 95(25), 14863–14868 (1998)

    Article  Google Scholar 

  27. Ezziane, Z.: Applications of artificial intelligence in bioinformatics: A review. Expert Systems with Applications 30, 2–10 (2006)

    Article  Google Scholar 

  28. Feng, D.F., Doolittle, R.F.: Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25, 351–360 (1987)

    Article  Google Scholar 

  29. Fernando, D., Fdez-Riverola, F., Glez-Pea, D., Corchado, J.M.: Using fuzzy patterns for gene selection and data reduction on microarray data. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1087–1094. Springer, Heidelberg (2006)

    Google Scholar 

  30. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  31. Fogel, G.B.: Gene expression analysis using methods of computational intelligence. Pharmaceutical Discovery 5(8), 12–18 (2005)

    Google Scholar 

  32. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. John Wiley & Sons, Chichester (1967)

    Google Scholar 

  33. Futschik, M.E., Kasabov, N.K.: Fuzzy clustering of gene expression data. In: Proc. 2002 IEEE Intl. Conf. on Fuzzy Systems, pp. 414–419 (2002)

    Google Scholar 

  34. Gentner, D., Markman, A.B.: Structure mapping in analogy and similarity. American Psychologist 52(1), 45–56 (1997)

    Article  Google Scholar 

  35. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing, Reading (1989)

    MATH  Google Scholar 

  36. Golub, T., et al.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  37. Gruźdź, A., Ihnatowicz, A., Ślȩzak, D.: Interactive Gene Clustering: A Case Study of Breast Cancer Microarray Data. Information Systems Frontiers 8(1), 21–27 (2006)

    Article  Google Scholar 

  38. Gusfield, D.: Introduction to the IEEE/ACM transactions on computational biology and bioinformatics. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 2–3 (2004)

    Article  Google Scholar 

  39. Hamam, Y., Al-Ani, T.: Simulated annealing approach for Hidden Markov Models. In: Proc. 4th WG-7.6 Working Conf. on Optimization-Based Computer-Aided Modeling and Design, ESIEE, France (1996)

    Google Scholar 

  40. Hassnein, A.-E., Abdelhafez, M., Own, H.: Rough sets data analysis: A case of Kuwaiti diabetic children patients. In: Advances in Fuzzy Systems (in press)

    Google Scholar 

  41. He, Y., Tang, Y., Zhang, Y.-Q., Sunderraman, R.: Fuzzy-granular gene selection from microarray expression data. In: Proc. 6th IEEE Intl. Conf. on Data Mining - Workshops, pp. 153–157 (2006)

    Google Scholar 

  42. Herrero, J., Valencia, A., Dopazo, J.: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17(2), 126–136 (2001)

    Article  Google Scholar 

  43. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  44. Hong, J.-H., Cho, S.-B.: The classification of cancer based on DNA microarray data that uses diverse ensemble genetic programming. Artificial Intelligence in Medicine 36, 43–58 (2006)

    Article  Google Scholar 

  45. Huang, C.-J., Liao, W.-C.: A comparative study of feature selection methods for probabilistic neural networks in cancer classification. In: Proc. 15th IEEE Intl. Conf. on Tools with Artificial Intelligence, p. 451 (2003)

    Google Scholar 

  46. Hunga, C.-M., Huanga, Y.-M., Changb, M.-S.: Alignment using genetic programming with causal trees for identification of protein functions. Nonlinear Analysis 65, 1070–1093 (2006)

    Article  MathSciNet  Google Scholar 

  47. Hwang, K.B., Cho, D.Y., Wook Park, S.W., Kim, S.D., Zhang, B.Y.: Applying machine learning techniques to analysis of gene expression data: Cancer diagnosis. In: Proc. 1st Conf. on Critical Assessment of Microarray Data Analysis (2000)

    Google Scholar 

  48. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  49. Juliusdottir, T., Keedwell, E., Corne, D., Narayanan, A.: Two-phase EA/k-NN for feature selection and classification in cancer microarray datasets. In: Proc. 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 1–8 (2005)

    Google Scholar 

  50. Kardia, S.L.R.: Context-dependent genetic effects in hypertension. Curr. Hypertens. Rep. 2, 32–38 (2000)

    Article  Google Scholar 

  51. Kelemen, A., Abraham, A., Chen, Y. (eds.): Computational Intelligence in Bioinformatics. Studies in Computational Intelligence. Springer, Heidelberg (2008)

    Google Scholar 

  52. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Intl. Conf. on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  53. Kennedy, J.: Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. In: Proc. 1999 Congress of Evolutionary Computation, pp. 1931–1938 (1999)

    Google Scholar 

  54. Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Academic Press, San Francisco (2001)

    Google Scholar 

  55. Khan, J., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7(6), 673–679 (2001)

    Article  Google Scholar 

  56. Kohonen, T.: Self-organizing maps. Springer, Heidelberg (1995)

    Google Scholar 

  57. Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  58. Li, D., Zhang, W.: Gene selection using rough set theory. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 778–785. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  59. Li, L., Weinberg, C.R., Darden, T.A., Pedersen, L.G.: Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17, 1131–1142 (2001)

    Article  Google Scholar 

  60. Liang, Y., Kelemen, A.: Time course gene expression classification with time lagged recurrent neural network. Studies in Computational Intelligence 94, 149–163 (2008)

    Google Scholar 

  61. Lin, T.-C., et al.: Pattern classification in DNA microarray data of multiple tumor types. Pattern Recognition 39(12), 2426–2438 (2006)

    Article  MATH  Google Scholar 

  62. Lingras, P.: Applications of rough set based k-means, Kohonen SOM, GA Clustering. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 120–139. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  63. Lipman, D.J., Altschul, S.F., Kececioglu, J.D.: A tool for multiple sequence alignment. Proc. Natl. Acad. Sci. USA 86, 4412–4415 (1989)

    Article  Google Scholar 

  64. Luscombe, N.M., Greenbaum, D., Gerstein, M.: What is Bioinformatics? A proposed definition and overview of the field. Yearbook of Medical Informatics, 83–100 (2001)

    Google Scholar 

  65. Mahonya, S., Benosa, P.V., Smithd, T.J., Goldend, A.: Self-organizing neural networks to support the discovery of DNA-binding motifs. Neural Networks 19, 950–962 (2006)

    Article  Google Scholar 

  66. Mamitsuka, H.: Finding the biologically optimal alignment of multiple sequences. Artificial Intelligence in Medicine 35(1-2), 9–18 (2005)

    Article  Google Scholar 

  67. Meksangsouy, P., Chaiyaratana, N.: DNA fragment assembly using an ant colony system algorithm. In: Proc. Congress on Evolutionary Computation (2003)

    Google Scholar 

  68. Midelfart, H., Komorowski, J., Nørsett, K., Yadetie, F., Sandvik, A.K., Lægreid, A.: Learning rough set classifiers from gene expressions and clinical data. Fundamenta Informaticae 53, 155–183 (2002)

    MathSciNet  Google Scholar 

  69. Mitra, S.: An evolutionary rough partitive clustering. Pattern Recognition Letters 25, 1439–1449 (2004)

    Article  Google Scholar 

  70. Mitra, S., Hayashi, Y.: Bioinformatics with soft computing. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 36, 616–635 (2006)

    Article  Google Scholar 

  71. Mitra, S., Banka, H., Paik, J.H.: Evolutionary fuzzy biclustering of gene expression data. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 284–291. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  72. Mohamed, S., Rubin, D., Marwala, T.: Multi-class Protein Sequence Classification Using Fuzzy ARTMAP. In: Proc. IEEE Intl. Conf. on Systems, Man, and Cybernetics, pp. 1676–1681 (2006)

    Google Scholar 

  73. Moore, J.H., Williams, S.M.: New strategies for identifying gene-gene interactions in hypertension. Ann. Med. 34, 88–95 (2002)

    Article  Google Scholar 

  74. Motsinger, A.A., Dudek, S.M., Hahn, L.W., Ritchie, M.D.: Comparison of Neural Network Optimization Approaches for Studies of Human Genetics. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 103–114. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  75. Nasser, S., Vert, G.L., Nicolescu, M., Murray, A.: Multiple Sequence Alignment using Fuzzy Logic. In: Proc. IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, pp. 304–311 (2007)

    Google Scholar 

  76. Nguyen, H.S.: Approximate Boolean reasoning: Foundations and applications in data mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  77. Ning, S., Ziarko, W., Hamilton, J., Cercone, N.: Using rough sets as tools for knowledge discovery. In: Proc. 1st Intl. Conf. on Knowledge Discovery and Data Mining, pp. 263–268 (1995)

    Google Scholar 

  78. Notredame, C., Higgins, D.G.: SAGA: sequence alignment by genetic algorithm. Nucleic Acids Research 24(8), 1515–1524 (1996)

    Article  Google Scholar 

  79. Okada, Y., et al.: Knowledge-assisted recognition of cluster boundaries in gene expression data. Artificial Intelligence in Medicine 35(1-2), 171–183 (2005)

    Article  MathSciNet  Google Scholar 

  80. Pan, Y.: Protein structure prediction and understanding using machine learning methods. In: Proc. IEEE Intl. Conf. on Granular Computing, pp. 13–20 (2005)

    Google Scholar 

  81. Paul, T.K.: Gene expression based cancer classification using evolutionary and non-evolutionary methods. Technical Report No. 041105A1, Dept. of Frontier Informatics, University of Tokyo, Japan (2004)

    Google Scholar 

  82. Pawlak, Z.: Rough sets. Intl. J. Comp. Inform. Science 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  83. Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning About Data. Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

  84. Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough sets. Communications of the ACM 38(11), 88–95 (1995)

    Article  Google Scholar 

  85. Peterson, D.A., Thaut, M.H.: Model and feature selection in microarray classification Peterson. In: Proc. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 56–60 (2004)

    Google Scholar 

  86. Polkowski, L.: Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg (2003)

    Google Scholar 

  87. Quackenbush, J.: Computational analysis of microarray data. National Review of Genetics 2, 418–427 (2001)

    Article  Google Scholar 

  88. Rasmussen, T.K., Krink, T.: Improved Hidden Markov Model training for multiple sequence alignment by a particle swarm optimization-evolutionary algorithm hybrid. BioSystems 72, 5–17 (2003)

    Article  Google Scholar 

  89. Raychaudhuri, S., Stuart, J.M., Altman, R.B.: Principal components analysis to summarize microarray experiments: Application to sporulation rime series. In: Proc. Pacific Symposium on Biocomputing, pp. 452–463 (2000)

    Google Scholar 

  90. Ritchie, M.D., et al.: Optimization of neural network architecture using genetic programming improves detection of gene-gene interactions in studies of human diseases. BMC Bioinformatics 4(28) (2003)

    Google Scholar 

  91. Ritchie, M.D., et al.: Genetic programming neural networks: A powerful bioinformatics tool for human genetics. Applied Soft Computing 7, 471–479 (2007)

    Article  Google Scholar 

  92. Ruffino, F., Costacurta, M., Muselli, M.: Evaluating switching neural networks for gene selection. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 557–562. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  93. Segal, E., et al.: Decoding global gene expression programs in liver cancer by noninvasive imaging. Nature Biotechnology 25, 675–680 (2007)

    Article  Google Scholar 

  94. Setubal, J., Meidanis, J.: Introduction to Computational Molecular Biology. Intl Thomson Publishing (1999)

    Google Scholar 

  95. Ślȩzak, D., Wróblewski, J.: Rough Discretization of Gene Expression Data. In: Proc. 2006 Intl. Conf. on Hybrid Information Technology, pp. 265–267 (2006)

    Google Scholar 

  96. Ślȩzak, D., Wróblewski, J.: Roughfication of numeric decision tables: The case study of gene expression data. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 316–323. Springer, Heidelberg (2007)

    Google Scholar 

  97. Spellman, E.M., Brown, P.L., Brown, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  98. Stolcke, A., Omohundro, S.: Hidden Markov Model induction by Bayesian model merging. NIPS 5, 11–18 (1993)

    Google Scholar 

  99. Sun, L., Miao, D., Zhang, H.: Gene selection with rough sets for cancer classification. In: Proc. 4th Intl. Conf. on Fuzzy Systems and Knowledge Discovery, pp. 167–172 (2007)

    Google Scholar 

  100. Sushmita, M.: An evolutionary rough partitive clustering. Pattern Recognition Letters 25, 1439–1449 (2004)

    Article  Google Scholar 

  101. Tamayo, P., et al.: Interpreting patterns of gene expression with self organizing maps: Methods and applications to hematopoietic differentiation. PNAS 96, 2907–2912 (1999)

    Article  Google Scholar 

  102. Tang, Y., Jin, B., Zhang, Y.-Q.: Granular support vector machines with association rules mining for protein homology prediction. Artificial Intelligence in Medicine 35(1-2), 121–134 (2005)

    Article  MATH  Google Scholar 

  103. Tantar, A.A., Melab, N., Talbi, E.G., Parent, B., Horvath, D.: A parallel hybrid genetic algorithm for protein structure prediction on the computational grid. Future Generation Computer Systems 23(3), 398–409 (2007)

    Article  Google Scholar 

  104. Tasoulis, D.K., Plagianakos, V.P., Vrahatis, M.N.: Computational intelligence algorithms and DNA microarrays. Studies in Computational Intelligence 94, 1–31 (2008)

    Article  Google Scholar 

  105. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22), 4673–4680 (1994)

    Article  Google Scholar 

  106. Tomida, S., Hanai, T., Honda, H., Kobayashi, T.: Gene expression analysis using Fuzzy ART. Genome Informatics 12, 245–246 (2001)

    Google Scholar 

  107. Toronen, P., Kolehmainen, M., Wong, G., Castren, E.: Analysis of gene expression data using self-organizing maps. FEBS letters 451, 142–146 (1999)

    Article  Google Scholar 

  108. Unger, R.: The genetic algorithm approach to protein structure prediction. Structure and Bonding 110, 153–175 (2004)

    Google Scholar 

  109. Valdes, J.J., Barton, A.J.: Relevant attribute discovery in high dimensional data: Application to breast cancer gene expressions. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 482–489. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  110. van de Vijver, M.J., et al.: A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002)

    Article  Google Scholar 

  111. Wang, D., Lee, N.K., Dillon, T.S.: Extraction and optimization of fuzzy protein sequences classification rules using GRBF neural networks. Neural Information Processing - Letters and Reviews 1(1), 53–57 (2003)

    Google Scholar 

  112. Wang, Y., et al.: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005)

    Google Scholar 

  113. Wen, X., et al.: Large scale temporal gene expression mapping of cns development. Proc. Natl. Acad. Sci. USA, Neurobiology 95, 334–339 (1998)

    Article  Google Scholar 

  114. Wetcharaporn, W., Chaiyaratana, N., Tongsima, S.: DNA fragment assembly by ant colony and nearest neighbour heuristics. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1008–1017. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  115. Weyde, T., Dalinghaus, K.: A neuro-fuzzy system for sequence alignment on two levels. Mathware and Soft Computing XI(2-3), 197–210 (2004)

    Google Scholar 

  116. Xiao, X., Dow, E.R., Eberhart, R.C., Miled, Z.B., Oppelt, R.J.: Gene clustering using self-organizing maps and particle swarm optimization. In: Proc. 17th Intl. Symposium on Parallel and Distributed Processing (2003)

    Google Scholar 

  117. Xie, W., Chu, F., Wang, L.: Fuzzy neural network applications for gene selection and cancer classification. In: Proc. Artificial Intelligence and Soft Computing (2004)

    Google Scholar 

  118. Yang, Q., Wu, X.: Challenging problems in data mining research. Intl. J. Information Technology and Decision Making 5(4), 597–604 (2006)

    Article  Google Scholar 

  119. Yeung, K.Y., Ruzzo, W.L.: Principal component analysis for clustering gene expression data. Bioinformatics 17, 763–774 (2001)

    Article  Google Scholar 

  120. Yuhui, Y., Lihui, C., Goh, A., Wong, A.: Clustering gene data via associative clustering neural network. In: Proc. 9th Intl. Conf. on Information Processing, pp. 2228–2232 (2002)

    Google Scholar 

  121. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  122. Zhang, G.-Z., Huang, D.-S.: Aligning multiple protein sequence by an improved genetic algorithm. In: Proc. IEEE Intl. Joint Conf. on Neural Networks, pp. 1179–1183 (2004)

    Google Scholar 

  123. Zhang, J., Lee, R., Wang, Y.J.: Support vector machine classifications for microarray expression data set. In: Proc. 5th Intl. Conf. on Computational Intelligence and Multimedia Applications, pp. 67–71 (2003)

    Google Scholar 

  124. Zhang, Q.: An approach to rough set decomposition of incomplete information systems. In: Proc. 2nd IEEE Conf. on Industrial Electronics and Applications, pp. 2455–2460 (2007)

    Google Scholar 

  125. Ziarko, W.: Variable precision rough sets model. J. Computer and Systems 46(1), 39–59 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  126. NIH: http://www.bisti.nih.gov (last accessed December 2007)

  127. Special Issue on Bioinformatics. IEEE Computer 35 (July 2002)

    Google Scholar 

  128. http://en.wikipedia.org/wiki/DNA_microarray (last accessed December 2007)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hassanien, AE., Milanova, M.G., Smolinski, T.G., Abraham, A. (2008). Computational Intelligence in Solving Bioinformatics Problems: Reviews, Perspectives, and Challenges. In: Smolinski, T.G., Milanova, M.G., Hassanien, AE. (eds) Computational Intelligence in Biomedicine and Bioinformatics. Studies in Computational Intelligence, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70778-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70778-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70776-9

  • Online ISBN: 978-3-540-70778-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics