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Abstract. Many instances of NP-hard problems can be solved efficiently if the treewidth of
their corresponding graph is small. Finding the optimal tree decompositions is anNP-hard
problem and different algorithms have been proposed in the literature forgeneration of tree
decompositions of small width. In this paper is presented new iterated local search algo-
rithm to find good upper bounds for treewidth of an undirected graph. The iterated local
search algorithm consist from construction phase, and includes the mechanism for pertur-
bation of solution, and the mechanism for accepting of solution for the next iteration. In
the construction phase the solutions are generated by the heuristics which searches for good
elimination ordering of nodes of graph, based on moving of only vertices that produce the
largest clique in the elimination process. We proposed and evaluated different perturba-
tion mechanisms and acceptance criteria. The proposed algorithms are testedon DIMACS
instances for vertex coloring, and they are compared with the existing approaches in liter-
ature. The described algorithms have a good time performance and for several instances
improve the best existing upper bounds for the treewidth.
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1 Introduction

The concept of tree decompositions is very important due to the fact that many instances of con-
straint satisfaction problems and in general NP-hard problems can be solved in polynomial time if
their treewidth is bounded by a constant. The process of solving problems with bounded treewidth
includes two phases. In the first phase the tree decomposition with small upper bound for treewidth
is generated. The second phase includes solving a problem (based on the generated tree decompo-
sition) with a particular algorithm such as for example dynamic programming. The efficiency of
solving of problem based on its tree decompositions dependsfrom the width of tree decomposi-
tions. Thus it is of high interest to generate tree decompositions with small width.

Tree decomposition has been used for several applications,like combinatorial optimization
problems, expert systems, computational biology etc. The use of tree decomposition for inference
problems in probabilistic networks is shown in [15]. Kosteret al [13] propose the application of
tree decompositions for frequency assignment problem. Tree decomposition has also been applied
for problem of vertex cover on planar graphs [1]. Further, the solving of partial constraint satis-
faction problems (e.g. MAX-SAT) with tree decomposition based method has been investigated in
[12]. In computational biology tree decompositions has been used for protein structure prediction
[20] etc.

In this paper we investigate the generation of tree decompositions of undirected graphs. The
concept of tree decompositions has been first introduced by Robertson and Seymour [16]:

Definition 1 (see [16], [11]) LetG = (V,E) be a graph. A tree decomposition ofG is a pair
(T, χ), whereT = (I, F ) is a tree with node setI and edge setF , andχ = {χi : i ∈ I} is a family
of subsets ofV , one for each node ofT , such that

1.
⋃

i∈I χi = V ,

2. for every edge(v, w) ∈ E, there is ani ∈ I with v ∈ χi andw ∈ χi, and

3. for all i, j, k ∈ I, if j is on the path fromi to k in T , thenχi ∩ χk ⊆ χj.

The width of a tree decomposition is maxi∈I |χi| − 1. The treewidth of a graphG, denoted by
tw(G), is the minimum width over all possible tree decompositions of G.

Figure 1 shows a graphG (19 vertices) and a possible tree decomposition ofG. The width of
shown tree decomposition is 5.

For the given graphG the treewidth can be found from its triangulation. Further we will give
basic definitions, explain how the triangulation of graph can be constructed, and give lemmas
which give relation between the treewidth and the triangulated graph.

Two verticesu andv of graphG(V,E) are neighbours, if they are connected with an edge
e ∈ E. The neighbourhood of vertexv is defined as:N(v) := {w|w ∈ V, (v, w) ∈ E}. A set of
vertices is clique if they are fully connected. An edge connecting two non-adjacent vertices in the
cycle is called chord. The graph is triangulated if there exist a chord in every cycle of length larger
than 3.
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Figure 1: A graphG (left) and a tree decomposition ofG (right)

A vertex of a graph is simplicial if its neighbours form a clique. An ordering of nodes
σ(1, 2, . . . , n) of V is called a perfect elimination ordering forG if for any i ∈ {1, 2, . . . , n},
σ(i) is a simplicial vertex inG[σ(i), . . . , σ(n)] [5]. In [6] it is proved that the graphG is triangu-
lated if and only if it has a perfect elimination ordering. Given an elimination ordering of nodes the
triangulationH of graphG can be constructed as following. InitiallyH = G, then in the process
of elimination of vertices, the next vertex in order to be eliminated is made simplicial vertex by
adding of new edges to connect all its neighbours in currentG andH. The vertex is then eliminated
from G. This process is repeated for all vertices in the ordering.

The process of elimination of nodes from the given graphG is illustrated in Figure 2. Suppose
that we have given the following elimination ordering:10, 9, 8, . . .. The vertex 10 is first eliminated
from G. When this vertex is eliminated no new edges are added in the graphG andH (graphH
is not shown in the figure), as all neighbours of node 10 are connected. Further from the remained
graphG the vertex9 is eliminated. To connect all neighbours of vertex 9, two newedges are added
in G andH (edges(5, 8) and(6, 7)). The process of elimination continues until the triangulation H
is obtained. A more detailed description of the algorithm for constructing a graph’s triangulation
for a given elimination ordering is found in [11].

For generation of tree decomposition during the vertex elimination process, first the nodes of
tree decomposition are created. This is illustrated in Figure 2. When vertex10 is eliminated a
new tree decomposition node is created. This node contains the vertex10 and all other vertices
which are connected with this vertex in current graphG. Further the next tree node with vertices
{5, 6, 7, 8, 9} is created when the vertex9 is eliminated. To the end of elimination process all
tree decomposition nodes will be created. The created tree nodes should be connected, such that
the connectedness condition for the vertices is fulfilled. This is the third condition in the tree
decomposition definition. To fulfil this condition the tree decomposition nodes are connected as
following. The tree decomposition node with vertices{10, 9, 8} that is created when vertex 10 is
eliminated, is connected with the tree decomposition node which will be created when the next
vertex in the ordering which appear in{10, 9, 8} is eliminated. In this case the node{10, 9, 8}
should be connected with the node created when vertex 9 is eliminated, because this is the next
vertex in the ordering that is contained in{10, 9, 8}. This rule is further applied for connection of
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Figure 2: Illustration of the elimination of nodes 10, 9, and8, and generation of tree decomposition
nodes during the construction of triangulated graph

other tree decomposition nodes, and from the graph a part of tree decomposition in Figure 1 will
be constructed.

The treewidth of a triangulated graph can be calculated based on its cliques. For the given
triangulated graph the treewidth is equal to its largest clique minus 1 [7]. Moreover, the largest
clique of trinagulated graph can be calculated in polynomial time. The complexity of calculation
of the largest clique for the triangulated graphs isO(|V | + |E|) [7]. For every graphG = (V,E),
there exists a triangulation ofG, G = (V,E

⋃
Et), with tw(G) = tw(G) . Thus, finding the

treewidth of a graph G is equivalent to finding a triangulation G of G with minimum clique size
(for more information see [11]).

1.1 Algorithms for tree decompositions

For the given graph and integerk, deciding whether the graph has a tree decomposition with a
treewidth at mostk is an NP-hard problem [2]. To solve this problem different complete and
heuristic algorithms have been proposed in the literature.Examples of complete algorithms for
tree decompositions are [18], [8], and [3]. Gogate and Dechter [8] reported good results for tree
decompositions by using the branch and bound algorithm. They showed that their algorithm is
superior compared to the algorithm proposed in [18]. The branch and bound algorithm proposed
in [8] applies different pruning techniques, and provides anytime solutions, which are good upper
bounds for tree decompositions. The algorithm proposed in [3] includes several other pruning and
reduction rules and is used successfully for small graphs.

Heuristic techniques for generation of tree decompositions with small width are mainly based
on searching for a good perfect elimination ordering of graph nodes. Several heuristics that run
in polynomial time have been proposed for finding a good elimination ordering of nodes. These
heuristics select the ordering of nodes based on different criteria, such as the degree of the nodes,
the number of edges to be added to make the node simplicial etc.

Maximum Cardinality Search (MCS) proposed by Tarjan and Yannakakis [19], initially selects
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a random vertex of the graph to be the first vertex in the elimination ordering. The next vertex
will be picked such that it has the highest connectivity withthe vertices previously selected in the
elimination ordering. The ties are broken randomly. MCS repeats this process iteratively until all
vertices are selected.

The min-fill heuristic first picks the vertex which adds the smallest number of edges when elim-
inated (the ties are broken randomly). The selected vertex is made simplicial and it is eliminated
from the graph. The next vertex in the ordering will be any vertex that adds the minimum num-
ber of edges when eliminated from the graph. This process is repeated iteratively until the whole
elimination ordering is constructed.

Minimum degree heuristic picks first the vertex with the minimum degree. Further, the vertex
that has the minimum number of unselected neighbours will bechosen as the next node in the
elimination ordering. This process is repeated iteratively.

MCS, min-fill, and min-degree heuristics run in polynomial time and usually produce tree
decomposition in a reasonable amount of time. According to [8] the min-fill heuristic performs
better than MCS and min-degree heuristic. Although these heuristics give sometimes good upper
bounds for tree decompositions, with more advanced techniques, usually better upper bounds can
be found for most problems. Min-degree heuristic has been improved by Clautiaux et al [5] by
adding a new criterion based on the lower bound of the treewidth for the graph obtained when the
node is eliminated. For other types of heuristics based on the elimination ordering of nodes see
[11].

Metaheuristic approaches have also been used for tree decomposition. Simulated annealing
was used by Kjaerulff [10] for similar problem to tree decomposition. Application of genetic
algorithm for tree decompositions is presented in [14]. Thealgorithm proposed by [14] with some
changes in fitness function has been tested on different problems for tree decompositions in [17].
A tabu search approach for generation of the tree decompositions has been proposed by Clautiaux
et al [5]. The authors reported good results for DIMACS vertexcoloring instances [9]. Their
approach improved the previous results in literature for 53% of instances. Some of the results in
[5] have been further improved by Gogate and Dechter [8]. Thereader is referred to [4] for other
approximation algorithms, and the information for lower bounds algorithms.

In this chapter we propose new heuristic algorithms with theaim of improving existing upper
bounds for tree decomposition and reducing the running timeof algorithms for different problems.
Two simple heuristics for searching in the elimination ordering of nodes are proposed. These local
heuristics are based on changing of positions of nodes in ordering, which cause the largest clique
when eliminated. The proposed heuristics are exploited by anew iterated local search algorithm
in the construction phase. The iterative local search algorithm applies iteratively the construction
heuristic and additionally includes the perturbation mechanism and the solution acceptance crite-
ria. These algorithms have been applied in 62 DIMACS instances for vertex coloring. For several
problems we report new upper bounds for the treewidth, and for most of problems the tree de-
composition is generated in a reasonable amount of time. Ourresults have been compared with the
results reported in [11],[8], [5], and [17] which to our bestknowledge report the best results known
yet in literature considering the width of tree decompositions for these instances. For up to date
information for the best upper and lower bounds for treewidth for different instances the reader is



TECHNICAL REPORTDBAI-TR-2007-56 6

referred to TreewidthLIB:http://www.cs.uu.nl/ hansb/treewidthlib/.

2 An Iterative local search algorithm

As described in the previous section, the generation of treedecomposition with small width can
be done by finding an appropriate elimination ordering whichproduces a triangulated graph with
smallest maximum clique size. In this section we present an algorithm which searches among the
possible ordering of nodes to find a small treewidth for the given graph. The algorithm contains
a local search heuristic for constructing a good ordering, and the iterative process, during which
the algorithm calls the local search techniques with the initial solution that is produced in previous
iteration. The algorithm includes also a mechanism for acceptance of a candidate solution for
the next iteration. Although the constructing phase is veryimportant, choosing the appropriate
perturbation in each iteration as well as the mechanism for acceptance of solution are also very
important to obtain good results using an iterative local search algorithm. The proposed algorithm
is presented in Algorithm 1.

Algorithm 1 Iterative heuristic algorithm - IHA
Generate initial solutionS1

BestSolution = S1

while Termination Criteria is not fulfilleddo
S2 = ConstructionPhase(S1)

if SolutionS2 fulfils the acceptance criteriathen
S1 = S2

else
S1 = BestSolution

end if

Apply perturbation in solutionS1

UpdateBestSolution if solutionS2 has better (or equal) width than the current best solution

end while

RETURNBestSolution

The proposed algorithm starts with an initial solution which takes an order of nodes as they
appear in the input. Better initial solutions can also be constructed by using other heuristics which
run in polynomial time, such as Maximum Cardinality Search, min-fill heuristic, etc. However, as
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the proposed method usually finds fast a solution produced bythese heuristics, our algorithm starts
with very poor initial solution.

After construction of the initial solution the iterative phase starts. In this phase iteratively the
construction method is called, then the solution produced in the construction phase is tested if it
fulfils the acceptance criteria, and the perturbation mechanism is applied. The construction phase
includes the local search procedure which is used to improvethe input solution. We propose two
different local search techniques that can be used in the construction phase. These techniques are
described in Section 2.1. The solution returned from the construction phase will be accepted for
the next iteration if it fulfils the specific criteria determined by the solution acceptance mechanism.
We experimented with different possibilities for the acceptance of the solution returned from the
construction phase. These variants are described in Section 2.3. If the solution does not fulfil the
acceptance criteria this solution will be discarded and thebest current found solution is selected.
In the selected solution the perturbation mechanism is applied. Different possibilities are used for
perturbation. The types of perturbation we used for experimentation are described in Section 2.2.
The perturbed solution is given as an input solution in the next call of the construction phase. This
process continues until the termination criterion is fulfilled. For the termination criteria the time
limit is used.

2.1 Local search techniques

We propose two local search methods for generation of a good solution which will be used as an
initial solution with some perturbation in the next call of the same local search algorithm. Both
techniques are based on the idea of moving only those vertices in the ordering, which cause the
largest clique during the elimination process. The motivation for using this method is the reduction
of the number of solutions that should be evaluated. The firstproposed technique (LS1) is presented
in Algorithm 2.

The proposed algorithm applies a simple heuristic. In the current solution a vertex is chosen
randomly among the vertices that produce the largest cliquein the elimination process. Then the
selected vertex is moved from its position. We experimentedwith two types of moves. In the first
variant the vertex is inserted in a random position in the elimination ordering, while in the second
variant the vertex is swapped with another vertex located ina randomly selected position, i.e. the
two chosen vertices change their position in the elimination ordering. The swap move was shown
to give better results. The heuristic will stop if the solution is not improved after a certain number
of iterations. We experimented with differentMAXNotImprovments. LS1 alone is a simple
heuristic and usually can not produce good results for tree decomposition. However, by using this
heuristic as a construction heuristic in the iterated localsearch algorithm (see Algorithm 1) good
results for tree decomposition are obtained.

The second proposed heuristic (LS2) is presented in Algorithm 3. This technique is similar
to algorithm LS1. However, this technique differs from LS1 considering the exploration of the
neighbourhood. In LS2 in some of iterations the neighbourhood of solution consist from only
one solution which is generated with swapping of vertex in the elimination ordering which causes
the largest clique, with another vertex located in the randomly chosen position. The use of this
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Algorithm 2 Local Search Algorithm 1 - LS1 (InputSolution)
BestLSSolution = InputSolution
NrNotImprovments = 0

while NrNotImprovments < MAXNotImprovments do
In current solution (InputSolution) select a vertex in the elimination ordering which causes
the largest clique when eliminated - ties are broken randomly if there are several vertices
which cause the clique equal with the largest clique

Swap this vertex with another vertex located in a randomly chosen position

if the current solution is better thanBestLSSolution then
BestLSSolution = InputSolution
NrNotImprovments = 0

else
NrNotImprovments + +

end if

end while

RETURNBestLSSolution

neighbourhood in particular iteration will depend from theparameterp, which determines the
probability of applying this neighbourhood in each iteration. We experimented with different val-
ues for parameterp. With probability1 − p, other type of neighbourhood will be explored. The
neighbourhood of current solution in this case consists from all solutions which can be obtained
by swapping of a vertex in the elimination ordering which causes the largest clique, with the ver-
tices in the elimination ordering, which are its neighbours. The best solution from the generated
neighbourhood is selected for the next iteration in the LS2.Note that in this technique the number
of solutions that have to be evaluated is much larger than in LS1. In particular in the first phase of
search the node which causes the largest clique usually has many neighbours and thus the number
of solution to be evaluated when the second type of neighbourhood is used is equal to the size of
the largest clique produced during the elimination process.

2.2 Perturbation

During the perturbation phase the solution obtained by local search procedure is perturbed and the
newly obtained solution is used as an initial solution for the new call of the local search technique.
The main idea is to avoid the random restart. Instead of random restart the solution is perturbed
with a bigger move(s) as those applied in the local search technique. This enables some diversifi-
cation that helps to escape from the local optimum, but avoids beginning from scratch (as in case
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Algorithm 3 Local Search Algorithm 2 - LS2 (InputSolution)
BestLSSolution = InputSolution
NrNotImprovments = 0

while NrNotImprovments < MAXNotImprovments do
With probability p:

Select a vertex in the elimination ordering which causes thelargest clique (ties are broken
randomly)

Swap this vertex with another vertex located in the randomlychosen position

With probability 1 − p:
Select a vertex in the elimination ordering which causes thelargest clique (ties are broken
randomly)

Generate neighbourhood of the solution by swapping the selected vertex with its neighbours,
i.e. all solutions are generated by swapping the selected vertex with its neighbours

Select the best solution from the generated neighbourhood

if the current solution is better thanBestLSSolution then
BestLSSolution = CurrentSolution
NrNotImprovments = 0

else
NrNotImprovments + +

end if

end while

RETURNBestLSSolution

of random restart), which is very time consuming. We proposethree perturbation mechanisms for
the solution:

• RandPert:N vertices are chosen randomly and they are moved into new random positions
in the ordering.

• MaxCliquePer: All nodes that produce the maximal clique in the elimination ordering are
inserted in a new randomly chosen positions in the ordering.
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• DestroyPartPert: All nodes between two positions (selected randomly) in the ordering are
inserted in the new randomly chosen positions in the ordering.

The perturbation RandPert just perturbs the solution with a larger random move and would be
kind or random restart ifN is very large. KeepingN smaller avoids restarting from completely new
solution, and the perturbed solution is not to different from the previous solution. MaxCliquePer
concentrates on moving of only vertices which produce maximal clique in the elimination order-
ing. The basic idea for this perturbation is to apply a technique similar to min-conflict heuristic,
by considering for moving only the vertices that makes the width of tree decomposition large. De-
stroyPartPert is similar to RandPert, except that the selected nodes to be moved are located near
each other in the elimination ordering.

Determining the number of nodesN that will be moved is complex and may be dependent on
the problem. To avoid this problem we propose an adaptive perturbation mechanism that takes
into consideration the feedback from the search process. The number of nodesN varies from 2
to some numbery (determined experimentally), and the algorithm begins with small perturbation
with N = 2. If during the iterative process (for a determined number ofiterations) the local
search technique produces solutions with same tree width for more than 20% of cases, the size of
perturbation is increased by 1, otherwise the size ofN will be decreased by 1. This enables an
automatic change of perturbation size based on the repetition of solutions with the same width.

We applied each perturbation mechanism separately, and additionally considered combination
of two perturbations. The mixed perturbation applies (in Algorithm 1) two perturbations: Rand-
Pert, and MaxCliquePer. The algorithm starts with RandPert, an switchs alternatively between two
perturbations if the solution is not improved for a determined number of iterations. Note that we
experimented with different sizes of perturbation sizes for each type of perturbation. The experi-
mental evaluation of different perturbations is presentedin Section 3.

2.3 Acceptance of solution in iterated algorithm

Different techniques can be applied for acceptance of the solution obtained by the local search
technique. If the solution is accepted it will be perturbed and will serve as an initial solution for
the next call of one of the local search techniques. We experimented with the following variants
for acceptance of solution for the next iteration (see Algorithm 1):

• Solution returned from the construction phase is accepted only if it has a better width than
the best current existing solution.

• Solution returned from the construction phase is always accepted.

• Solution is accepted if its treewidth is smaller than the treewidth of the best yet found solution
plusx, wherex is an integer.

The first variant for acceptance of solution is very restrictive. In this variant the solution from
the construction phase will be accepted only if it improves the best existing solution. Otherwise,
the best existing solution is perturbed and it is used as input solution for next call of the construction
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phase. In second variant of acceptance of solution, the iterated local search applies the perturbation
in a solution returned from the construction phase, independently from the quality of produced
solution. The third variant is between the first and the second variant, and in this case the solution
which does not improve the best existing solution can be accepted for the next iteration, if its width
is smaller than the best found width plus some bound.

3 Evaluation of algorithms

The algorithms described in Section 2 are experimentally tested in DIMACS vertex coloring in-
stances. Using our algorithm we experimented with two proposed local search techniques for
construction phase, different perturbation, different acceptance criteria, swap move, and different
termination criteria for the local search procedures. For algorithm LS2 we experimented with
different probabilities forp. Considering the acceptance of solution in iterated local search we
experimented with three variants described in Section 2.3.For the third variant we experimented
with x = 2 andx = 3. We did experiments with three types of perturbations: RandPert, Max-
CliquePer, and DestroyPartPer. Additionally, we experimented with combination of RandPert and
MaxCliquePer. For each type of perturbation mechanism we experimented with different pertur-
bation sizes.

In Table 1 results for different perturbations mechanisms for 20 DIMACS problems are pre-
sented. These problems are selected among the hardest problems in each class of DIMACS prob-
lems. The results for all problems and the comparison with the results in the literature are presented
in the next section. The perturbation mechanisms shown in Table 1 are the following:

• (P1) RandPert with size of perturbation 3

• (P2) RandPert with the size of perturbation 8

• (P3) MaxCliquePer

• (P4) DestroyPartPer with perturbation size 5

• (P5) DestroyPartPer with perturbation size 10

• (P6) Mixed perturbation (RandPert+MaxCliquePer) with the size of perturbation 3

• (P7) Mixed perturbation with perturbation size 8

• (P8) Mixed perturbation with the adaptive perturbation (with size 2-11)

In the Mixed perturbation are used both RandPert and MaxCliquePer perturbations. Initially
RandPert withN = 2 − 11 is applied. Further the algorithm switches alternatively between two
perturbations RandPert and MaxCliquePer, when IHA runs for 100 iterations without improvement
of best existing solution.
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Table 1: Comparision of different perturbation mechanisms

Instance P1 P2 P3 P4 P5 P6 P7 P8
games120.col 33 33.4 32.8 33 33.2 32.2 32.4 32.4
queen1414 145 146 146.6 143.6 144.6 142.6 145.6 143.2
queen1515 168.4 168.4 168 168.4 169.2 167.2 167 165.4
queen1616 189.2 193.4 194.2 191.4 193.2 191.4 191 190.8
inithx.i.3.col 35 35 35 35 35 35 35 35
miles500.col 24.2 25.2 23.2 24.6 25.4 24.2 23.8 24.2
myciel7.col 67.2 66 67.2 67.2 66.6 69 66 66
school1.col 189 195.2 226.4 189.8 196.2 193.4 199.4 187.4
school1nsh 186.2 174 181.6 165.6 169.2 173 165.8 170.6
zeroin.i.3.col 32.8 32.8 32.6 32.8 33 32.6 33 32.6
le4505a.col 263.6 280.6 301.4 271.4 290.2 272 278.8 279.4
le45015b.col 278.4 284.6 287.4 279.6 290.6 278.4 282 279.6
le45025a.col 240 245.4 253 244.4 251.8 234.8 240.8 240.2
le45025b.col 237.4 244.6 248.2 241.6 253.2 235.4 243.2 235.8
le45025c.col 331.2 339.8 353.6 336.8 339.8 340 336.4 334
le45025d.col 337.4 346 351.6 341 343.6 337 339 337.2
DSJC125.1.col 61.6 62.2 61.2 61.2 63.2 63 62 61.8
DSJC125.5.col 108.2 108.4 108 108.4 108.4 108.2 108.2 108
DSJC250.1.col 171.2 172.6 176 172 176.2 171.6 171.6 171.6
DSJC250.5.col 230.6 231.2 231 230.2 231 230.6 231 230.2

The results in Table 1 presents the average width of tree decompositions over 5 runs for each
example. Maximal run time of each run is 500 seconds, and the algorithm stops after 200 seconds
of non improvement of the best solution. Based on the results give in the Table 1 we can conclude
that considering the tree width the best results are obtained with the perturbation P8. Similar
results are obtained with perturbations P1 and P6. Perturbation which includes only moving of
nodes with largest cliques gives the worse results and in general for other perturbations, if the size
of perturbation is large the results are worse.

The current best results presented in this paper are obtained with the iterative heuristic al-
gorithm (IHA) and these parameters: LS1 algorithm (see Algorithm 2) is used in the con-
struction phase and this algorithm stops if the solution does not improve for 10 iterations
(MAXNotImprovments = 10). In the perturbation phase are used both RandPert and Max-
CliquePer perturbations. Initially RandPert withN = 2 − 11 is applied. Further the algorithm
switches alternatively between two perturbations RandPertand MaxCliquePer, when IHA runs for
100 iterations without improvement of a solution. For accepting of solution in IHA the third vari-
ant is used. The solution produced in construction phase is accepted if its width is smaller than the
width of the best current solution plus 3.
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3.1 Comparision with results in literature

In this section we report on computational results obtainedwith the current implementation of
methods described in this paper. The results for 62 DIMACS vertex coloring instances are given.
These instances have been used for testing of several methods for tree decompositions proposed
in the literature (see [11], [5], and [8]). Our algorithms have been implemented in C++ and the
current experiments were performed with a Intel Pentium 4 CPU3GHz, 1GB RAM.

We compare our results with the results reported in [11], [5], and [8]. Additionally we include
the recent results obtained by Genetic Algorithm [17]. The results reported in [11] are obtained in
Pentium 3, 800 Mhz processor. Results reported in [5] are obtained with Pentium 3, 1GHz pro-
cessor, and the results reported in [8] are obtained with Pentium-4, 2.4 Ghz, 2GB RAM machine.
Genetic algorithm [17] has been evaluated in a Intel(R) Xeon(TM) 3.20 GHz, 4 GB RAM. To
our best knowledge these papers present the best existing upper bounds for treewidth for these 62
instances.

In Tables 2, and 3 the results for the treewidth for DIMACS graph coloring instances are pre-
sented. First and second columns of the table present the instances and the number of nodes and
edges for each instance. In column KBH are shown the best results obtained by algorithms in [11].
The TabuS column presents the results reported in [5], whilethe column BB shows the results
obtained with the branch and bound algorithm proposed in [8]. Columns GA-best and GA-AVG
represents results obtained with Genetic Algorithm [17]. Column GA-best presents the best width
obtained in 10 runs, and the column GA-AVG gives the average of treewidth over 10 runs. The
last two columns present results obtained by our algorithm proposed in this paper with the settings
which were given in the previous section. In our algorithm are executed 10 runs for each instance.
In column IHA-best is given the best width obtained in 10 runsfor each instance, and the column
IHA-AVG gives the average of treewidth over 10 runs.

In Tables 4, and 5 for each instance is given the time (in seconds) needed to produce the
treewidth presented in Tables 2, and 3 for all algorithms. The time results given in [8] present the
time in which the best solutions are found. The results givenin [5] present the time of the overall
run of the algorithm in one instance (number of iterations is20000 and the algorithm stops after
10000 non-improving solutions). The running time of GA [17]is presented in column GA. For our
algorithm are given the average time in which the best solution is found (IHA-best) and the time
of the overall run of algorithm (IHA-total) in each instance(average over ten runs is taken). IHA
algorithm stops for easy instances after 10 seconds of non improvement of solution, for middle
instances after 200 seconds, and for harder instances after10000 seconds of non improvement of
solution. The maximal running time of algorithm for each instance is set to be 10000 seconds.

Based on the results given in Tables Tables 2, 3, 4, and 5 we conclude that considering the
best result over 10 runs, our algorithm gives better resultsfor 35 instances compared to [11] for
the upper bound of treewidth, whereas algorithm in [11] gives better results than our algorithm
for no problem. Comparing KBH to IHA average over 10 runs, KBH gives better results for 7
instances, and IHA-AVG for 35 instances. Compared to the algorithm proposed in [5] our approach
gives better upper bounds for 25 instances, whereas algorithm in [5] gives no better upper bounds
than our algorithm. Comparing TabuS to our average, TabuS give better results for 21 instances,
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whereas IHA-AVG gives better results for 18 instances. Further, compared to branch and bound
algorithm proposed in [8] our algorithm gives better upper bounds for treewidth for 24 instances,
whereas the branch and bound algorithm gives better resultscompared to our algorithm for 3
instances. Comparing this algorithm to our average, this algorithm gives better results for 11
examples, whereas IHA-AVG is better for 24 instances. Considering comparison of GA and IHA,
for the best width over 10 runs, our algorithm gives better results for 20 problems, whereas GA
gives better results for 5 problems. For the average width in10 runs, IHA-AVG is better than
GA-AVG in 29 examples, whereas GA-AVG is better than IHA-AVGin 12 examples. Overall our
algorithm is very good compared to other algorithms considering the width, and it gives new upper
bounds for 14 instances (cells of table in bold).

Considering the time, a direct comparison of algorithms can not be done, as the algorithms are
executed in computers with different processors and memory. However, as we can see based on
the results in Tables 4, and 5 our algorithm gives good time performance and for some instances
it decreases significantly the time needed for generation oftree decompositions. Based on our
experiments the efficiency of our algorithm is due to applying of LS1 algorithm in the construction
phase of IHA. In LS1 only one solution is evaluated during each iteration. When using LS2 the
number of solutions to be evaluated during most of iterations is much larger.

4 Conclusions

In this paper, we presented a new heuristic algorithm for finding an upper bound of tree decom-
positions for a given undirected graph. The proposed algorithm has a structure of iterated local
search algorithm and it includes different perturbation mechanisms and different variants for ac-
ceptance of solution for the next iteration. For the construction phase two simple local search
based heuristics are proposed. Although the proposed constructive heuristics are simple, the whole
iterated local search algorithm that uses these heuristicsin a construction phase gives good results
for tree decomposition. In particular using of construction method which includes only moving of
the nodes that produce the largest clique in the eliminationordering has been shown to be more
efficient.

The proposed algorithm has been applied in 62 DIMACS vertex coloring instances. Addition-
ally the results of our algorithm have been compared with thebest existing upper bounds for width
of tree decomposition for these instances. The results showthat our algorithm achieves good re-
sults for the upper bound of treewidth for different size of instances. In particular the algorithm
improves the best existing treewidth upper bounds for many instances, and it has a good time
performance.

For the future work we are considering the hybridization of our algorithm with the genetic
algorithm for generation of tree decomposition. Furthermore, the algorithms described in this
chapter can be used for generation of generalized hypertreedecomposition (GHD). General-
ized hypertree decomposition is a concept than includes additional condition and it is applied
directly into the hypergraph. Good tree decomposition usually produce good generalized hyper-
tree decomposition and the methods used for tree decomposition can be extended to generate GHD.
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Table 2: Algorithms comparison regarding treewidth for DIMACS graph coloring instances

Instance |V |/|E| KBH TabuS BB GA-best GA-AVG IHA-best IHA-AVG
anna 138 / 986 12 12 12 12 12 12 12
david 87 / 812 13 13 13 13 13 13 13
huck 74 / 602 10 10 10 10 10 10 10

homer 561 / 3258 31 31 31 31 31 31 31.2
jean 80 / 508 9 9 9 9 9 9 9

games120 120 / 638 37 33 - 32 32 32 32.2
queen55 25 / 160 18 18 18 18 18 18 18
queen66 36 / 290 26 25 25 26 26 25 25
queen77 49 / 476 35 35 35 35 35.2 35 35
queen88 64 / 728 46 46 46 45 46 45 45.3
queen99 81 / 1056 59 58 59 58 58.5 58 58.1

queen1010 100 / 1470 73 72 72 72 72.4 72 72.3
queen1111 121 / 1980 89 88 89 87 88.2 87 87.7
queen1212 144 / 2596 106 104 110 104 105.7 103 104.4
queen1313 169 / 3328 125 122 125 121 123.1 121 122.2
queen1414 196 / 4186 145 141 143 141 144 140 142.6
queen1515 225 / 5180 167 163 167 162 164.8 162 166.3
queen1616 256 / 6320 191 186 205 186 188.5 186 188.2
fpsol2.i.1 269 / 11654 66 66 66 66 66 66 66
fpsol2.i.2 363 / 8691 31 31 31 32 32.6 31 31.1
fpsol2.i.3 363 / 8688 31 31 31 31 32.3 31 31.2
inithx.i.1 519 / 18707 56 56 56 56 56 56 56
inithx.i.2 558 / 13979 35 35 31 35 35 35 35
inithx.i.3 559 / 13969 35 35 31 35 35 35 35
miles1000 128 / 3216 49 49 49 50 50 49 49.2
miles1500 128 / 5198 77 77 77 77 77 77 77
miles250 125 / 387 9 9 9 10 10 9 9.3
miles500 128 / 1170 22 22 22 24 24.1 22 23.5
miles750 128 / 2113 37 36 37 37 37 36 36.9
mulsol.i.1 138 / 3925 50 50 50 50 50 50 50
mulsol.i.2 173 / 3885 32 32 32 32 32 32 32
mulsol.i.3 174 / 3916 32 32 32 32 32 32 32
mulsol.i.4 175 / 3946 32 32 32 32 32 32 32
mulsol.i.5 176 / 3973 31 31 31 31 31 31 31
myciel3 11 / 20 5 5 5 5 5 5 5
myciel4 23 / 71 11 10 10 10 10 10 10
myciel5 47 / 236 20 19 19 19 19 19 19
myciel6 95 / 755 35 35 35 35 35 35 35.4
myciel7 191 / 2360 74 66 54 66 66 66 67.2
school1 385 / 19095 244 188 - 185 192.5 178 190.5

school1nsh 352 / 14612 192 162 - 157 163.1 152 156.4
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Table 3: Algorithms comparison regarding treewidth for DIMACS graph coloring instances

Instance |V |/|E| KBH TabuS BB GA-best GA-AVG IHA-best IHA-AVG
zeroin.i.1 126 / 4100 50 50 - 50 50 50 50
zeroin.i.2 157 / 3541 33 32 - 32 32.7 32 32.7
zeroin.i.3 157 / 3540 33 32 - 32 32.9 32 32.6
le4505a 450 / 5714 310 256 307 243 248.3 244 250
le4505b 450 / 5734 313 254 309 248 249.9 246 249.3
le4505c 450 / 9803 340 272 315 265 267.1 266 273
le4505d 450 / 9757 326 278 303 265 265.6 265 267.2
le45015a 450 / 8168 296 272 - 265 268.7 262 267.9
le45015b 450 / 8169 296 270 289 265 269 258 266.7
le45015c 450 / 16680 376 359 372 351 352.8 350 355.4
le45015d 450 / 16750 375 360 371 353 356.9 355 357.5
le45025a 450 / 8260 255 234 255 225 228.2 216 222.6
le45025b 450 / 8263 251 233 251 227 234.5 219 227.2
le45025c 450 / 17343 355 327 349 320 327.1 322 327.4
le45025d 450 / 17425 356 336 349 327 330.1 328 332.3
dsjc125.1 125 / 736 67 65 64 61 61.9 60 61.1
dsjc125.5 125 / 3891 110 109 109 109 109.2 108 108
dsjc125.9 125 / 6961 119 119 119 119 119 119 119
dsjc250.1 250 / 3218 179 173 176 169 169.7 167 168.6
dsjc250.5 250 / 15668 233 232 231 230 231.4 229 230.1
dsjc250.9 250 / 27897 243 243 243 243 243.1 243 243
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