DBAI
Ji4se

TECHNICAL

REPORT

Institut fur Informationssysteme
Abteilung Datenbanken und
Artificial Intelligence
Technische Universit Wien
Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403
Fax: +43-1-58801-18492
sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

HOGNOCONIENT

FACEOEUNEL L,

INSTITUT FUR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

An Iterative Heuristic Algorithm for Tree
Decomposition

DBAI-TR-2007-56

Nysret Musliu

DBAI TECHNICAL REPORT
2007

TU

TECHNISCHE UNIVERSITAT WIEN

DBAI TECHNICAL REPORT
DBAI TECHNICAL REPORTDBAI-TR-2007-56, 2007

An lterative Heuristic Algorithm for Tree
Decomposition

Nysret Musliu-?

Abstract. Many instances of NP-hard problems can be solved efficiently if the tréewid
their corresponding graph is small. Finding the optimal tree decompositions\B-drard
problem and different algorithms have been proposed in the literatugefmration of tree
decompositions of small width. In this paper is presented new iterated |lca@hsalgo-
rithm to find good upper bounds for treewidth of an undirected graple ifEmated local
search algorithm consist from construction phase, and includes theamschfor pertur-
bation of solution, and the mechanism for accepting of solution for the neatida. In
the construction phase the solutions are generated by the heuristics eéiches for good
elimination ordering of nodes of graph, based on moving of only verticéptbduce the
largest clique in the elimination process. We proposed and evaluatecediffeerturba-
tion mechanisms and acceptance criteria. The proposed algorithms areoteSIRACS
instances for vertex coloring, and they are compared with the existingagpes in liter-
ature. The described algorithms have a good time performance and &akmstances
improve the best existing upper bounds for the treewidth.

Technische Universit Wien mailto: musliu@dbai.tuwien.ac.at

Copyright(© 2007 by the authors

TECHNICAL REPORTDBAI-TR-2007-56 2

1 Introduction

The concept of tree decompositions is very important dubeddct that many instances of con-
straint satisfaction problems and in general NP-hard prablcan be solved in polynomial time if
their treewidth is bounded by a constant. The process oirgpproblems with bounded treewidth
includes two phases. In the first phase the tree decompositib small upper bound for treewidth
is generated. The second phase includes solving a probksedlon the generated tree decompo-
sition) with a particular algorithm such as for example dw@programming. The efficiency of
solving of problem based on its tree decompositions depfodsthe width of tree decomposi-
tions. Thus it is of high interest to generate tree decontipos with small width.

Tree decomposition has been used for several applicatidlescombinatorial optimization
problems, expert systems, computational biology etc. Heeofitree decomposition for inference
problems in probabilistic networks is shown in [15]. Kosét¢ral [13] propose the application of
tree decompositions for frequency assignment problerme deeomposition has also been applied
for problem of vertex cover on planar graphs [1]. Furtheg, sblving of partial constraint satis-
faction problems (e.g. MAX-SAT) with tree decompositiorsbd method has been investigated in
[12]. In computational biology tree decompositions hasbesed for protein structure prediction
[20] etc.

In this paper we investigate the generation of tree decoitipos of undirected graphs. The
concept of tree decompositions has been first introduced bgf&omn and Seymour [16]:

Definition 1 (see [16], [11]) LetG = (V, E) be a graph. A tree decomposition Gfis a pair
(T, x), whereT = (I, F) is a tree with node seatand edge sek’, andy = {x; : ¢ € [} is afamily
of subsets oV, one for each node d@f, such that

1. Uierxi =V,
2. for every edgév, w) € F, thereis an € I withv € y; andw € y;, and
3. forall,j,k € 1,if jis on the path fromi to k£ in T', theny; N xx C x;.

The width of a tree decomposition is maxy;| — 1. The treewidth of a grapl, denoted by
tw(G), is the minimum width over all possible tree decompositidi(s.o

Figure 1 shows a grapli- (19 vertices) and a possible tree decompositiot-ofT he width of
shown tree decomposition is 5.

For the given grapld- the treewidth can be found from its triangulation. Furtherwill give
basic definitions, explain how the triangulation of grapim ¢ constructed, and give lemmas
which give relation between the treewidth and the triangalagraph.

Two verticesu andv of graphG(V, E') are neighbours, if they are connected with an edge
e € E. The neighbourhood of vertexis defined asN (v) := {w|w € V, (v,w) € E}. A set of
vertices is clique if they are fully connected. An edge canimg two non-adjacent vertices in the
cycle is called chord. The graph is triangulated if theresexichord in every cycle of length larger
than 3.

TECHNICAL REPORTDBAI-TR-2007-56 3

[123456] [1112171819]
3,4,5I,6,7,8	1 12,16,17,18,19	
5,6,I7,8,9		1215,!6,18,19
7,9	,10	1 1113,14!,15,18,19

Figure 1: A graphG (left) and a tree decomposition 6f (right)

A vertex of a graph is simplicial if its neighbours form a cl@ An ordering of nodes
o(1,2,...,n) of V is called a perfect elimination ordering fof if for any i € {1,2,...,n},
o(i) is a simplicial vertex inG[o (i), ..., o(n)] [5]. In [6] it is proved that the graply is triangu-
lated if and only if it has a perfect elimination ordering v&m an elimination ordering of nodes the
triangulationH of graphG can be constructed as following. Initially = G, then in the process
of elimination of vertices, the next vertex in order to beretiated is made simplicial vertex by
adding of new edges to connect all its neighbours in curiesnhd /7. The vertex is then eliminated
from GG. This process is repeated for all vertices in the ordering.

The process of elimination of nodes from the given gréfik illustrated in Figure 2. Suppose
that we have given the following elimination orderingy, 9, 8, The vertex 10 is first eliminated
from G. When this vertex is eliminated no new edges are added in #yghgt and H (graphH
is not shown in the figure), as all neighbours of node 10 areected. Further from the remained
graphG the vertex is eliminated. To connect all neighbours of vertex 9, two eelges are added
in G andH (edgeg5, 8) and(6, 7)). The process of elimination continues until the triangataH
is obtained. A more detailed description of the algorithmdonstructing a graph’s triangulation
for a given elimination ordering is found in [11].

For generation of tree decomposition during the vertexialtion process, first the nodes of
tree decomposition are created. This is illustrated in gl When vertex0 is eliminated a
new tree decomposition node is created. This node contiansgdrtex10 and all other vertices
which are connected with this vertex in current gr@phFurther the next tree node with vertices
{5,6,7,8,9} is created when the verteéxis eliminated. To the end of elimination process all
tree decomposition nodes will be created. The created ttdesnshould be connected, such that
the connectedness condition for the vertices is fulfillechisTis the third condition in the tree
decomposition definition. To fulfil this condition the treeabmposition nodes are connected as
following. The tree decomposition node with vertige$), 9, 8} that is created when vertex 10 is
eliminated, is connected with the tree decomposition nodelhwwill be created when the next
vertex in the ordering which appear {10, 9,8} is eliminated. In this case the node0, 9, 8}
should be connected with the node created when vertex 9nmsnatied, because this is the next
vertex in the ordering that is contained{ih0, 9, 8}. This rule is further applied for connection of

TECHNICAL REPORTDBAI-TR-2007-56 4

| 7010 | | 56789 | | 345678 |

Figure 2: lllustration of the elimination of nodes 10, 9, &)@nd generation of tree decomposition
nodes during the construction of triangulated graph

other tree decomposition nodes, and from the graph a part@idecomposition in Figure 1 will
be constructed.

The treewidth of a triangulated graph can be calculateddbaséts cliques. For the given
triangulated graph the treewidth is equal to its largesfugiminus 1 [7]. Moreover, the largest
clique of trinagulated graph can be calculated in polynbtma@e. The complexity of calculation
of the largest clique for the triangulated graph®i3V'| + |E|) [7]. For every graplG = (V, E),
there exists a triangulation &, G = (V, EU E;), with tw(G) = tw(G) . Thus, finding the
treewidth of a graph G is equivalent to finding a triangulaii® of G with minimum clique size
(for more information see [11]).

1.1 Algorithms for tree decompositions

For the given graph and integér deciding whether the graph has a tree decomposition with a
treewidth at mosk is an NP-hard problem [2]. To solve this problem differentnpdete and
heuristic algorithms have been proposed in the literatéeamples of complete algorithms for
tree decompositions are [18], [8], and [3]. Gogate and Dexdi8] reported good results for tree
decompositions by using the branch and bound algorithm.y Bhewed that their algorithm is
superior compared to the algorithm proposed in [18]. Thadieand bound algorithm proposed
in [8] applies different pruning techniques, and providegtene solutions, which are good upper
bounds for tree decompositions. The algorithm proposed]imfludes several other pruning and
reduction rules and is used successfully for small graphs.

Heuristic techniques for generation of tree decompostigith small width are mainly based
on searching for a good perfect elimination ordering of grapdes. Several heuristics that run
in polynomial time have been proposed for finding a good elaton ordering of nodes. These
heuristics select the ordering of nodes based on differéeria, such as the degree of the nodes,
the number of edges to be added to make the node simplicial etc

Maximum Cardinality Search (MCS) proposed by Tarjan and Ykakia [19], initially selects

TECHNICAL REPORTDBAI-TR-2007-56 5

a random vertex of the graph to be the first vertex in the eltiom ordering. The next vertex
will be picked such that it has the highest connectivity viith vertices previously selected in the
elimination ordering. The ties are broken randomly. MCS atp¢his process iteratively until all
vertices are selected.

The min-fill heuristic first picks the vertex which adds theadlest number of edges when elim-
inated (the ties are broken randomly). The selected vestexaide simplicial and it is eliminated
from the graph. The next vertex in the ordering will be anyteethat adds the minimum num-
ber of edges when eliminated from the graph. This procesgpisated iteratively until the whole
elimination ordering is constructed.

Minimum degree heuristic picks first the vertex with the mmnim degree. Further, the vertex
that has the minimum number of unselected neighbours withmsen as the next node in the
elimination ordering. This process is repeated iterafivel

MCS, min-fill, and min-degree heuristics run in polynomiah& and usually produce tree
decomposition in a reasonable amount of time. AccordingidHe min-fill heuristic performs
better than MCS and min-degree heuristic. Although thesestas give sometimes good upper
bounds for tree decompositions, with more advanced teaksiqusually better upper bounds can
be found for most problems. Min-degree heuristic has begmaued by Clautiaux et al [5] by
adding a new criterion based on the lower bound of the tra&viad the graph obtained when the
node is eliminated. For other types of heuristics based erelimination ordering of nodes see
[11].

Metaheuristic approaches have also been used for tree gesdion. Simulated annealing
was used by Kjaerulff [10] for similar problem to tree decarspion. Application of genetic
algorithm for tree decompositions is presented in [14]. dlgerithm proposed by [14] with some
changes in fitness function has been tested on differentgamsbfor tree decompositions in [17].
A tabu search approach for generation of the tree deconusitas been proposed by Clautiaux
et al [5]. The authors reported good results for DIMACS venrtejoring instances [9]. Their
approach improved the previous results in literature f&58 instances. Some of the results in
[5] have been further improved by Gogate and Dechter [8]. fElagler is referred to [4] for other
approximation algorithms, and the information for loweuhds algorithms.

In this chapter we propose new heuristic algorithms withatime of improving existing upper
bounds for tree decomposition and reducing the running ¢tihaégorithms for different problems.
Two simple heuristics for searching in the elimination enag of nodes are proposed. These local
heuristics are based on changing of positions of nodes ierimgl which cause the largest clique
when eliminated. The proposed heuristics are exploited hgvaiterated local search algorithm
in the construction phase. The iterative local search @tgarapplies iteratively the construction
heuristic and additionally includes the perturbation nagedm and the solution acceptance crite-
ria. These algorithms have been applied in 62 DIMACS instaif@evertex coloring. For several
problems we report new upper bounds for the treewidth, ananfast of problems the tree de-
composition is generated in a reasonable amount of timer&3uits have been compared with the
results reported in [11],[8], [5], and [17] which to our b&sbwledge report the best results known
yet in literature considering the width of tree decomposisi for these instances. For up to date
information for the best upper and lower bounds for treewfdt different instances the reader is

TECHNICAL REPORTDBAI-TR-2007-56 6
referred to TreewidthLIB:http://www.cs.uu.nl/ hansbénedthlib/.

2 An lterative local search algorithm

As described in the previous section, the generation ofdem®mposition with small width can

be done by finding an appropriate elimination ordering wigobduces a triangulated graph with
smallest maximum clique size. In this section we presenigorithm which searches among the
possible ordering of nodes to find a small treewidth for thegigraph. The algorithm contains
a local search heuristic for constructing a good orderingl, the iterative process, during which
the algorithm calls the local search techniques with thgirsolution that is produced in previous
iteration. The algorithm includes also a mechanism for pizoee of a candidate solution for
the next iteration. Although the constructing phase is vBrgortant, choosing the appropriate
perturbation in each iteration as well as the mechanismdoeatance of solution are also very
important to obtain good results using an iterative localsle algorithm. The proposed algorithm
is presented in Algorithm 1.

Algorithm 1 Iterative heuristic algorithm - IHA
Generate initial solutio'1

BestSolution = S1

while Termination Criteria is not fulfilledlo
S2 = ConstructionPhase(S1)

if SolutionS2 fulfils the acceptance criterthen

S1 =52
else

S1 = BestSolution
end if

Apply perturbation in solutiory'1
UpdateBestSolution if solution S2 has better (or equal) width than the current best solution
end while

RETURN BestSolution

The proposed algorithm starts with an initial solution whtekes an order of nodes as they
appear in the input. Better initial solutions can also be tacted by using other heuristics which
run in polynomial time, such as Maximum Cardinality Searcm-fill heuristic, etc. However, as

TECHNICAL REPORTDBAI-TR-2007-56 7

the proposed method usually finds fast a solution producélddse heuristics, our algorithm starts
with very poor initial solution.

After construction of the initial solution the iterative gge starts. In this phase iteratively the
construction method is called, then the solution produceithié construction phase is tested if it
fulfils the acceptance criteria, and the perturbation meishais applied. The construction phase
includes the local search procedure which is used to imptiteeénput solution. We propose two
different local search techniques that can be used in thsticartion phase. These techniques are
described in Section 2.1. The solution returned from thestantion phase will be accepted for
the next iteration if it fulfils the specific criteria detemmaid by the solution acceptance mechanism.
We experimented with different possibilities for the adegge of the solution returned from the
construction phase. These variants are described in 8680 If the solution does not fulfil the
acceptance criteria this solution will be discarded andoib&t current found solution is selected.
In the selected solution the perturbation mechanism iseghpDifferent possibilities are used for
perturbation. The types of perturbation we used for expeniation are described in Section 2.2.
The perturbed solution is given as an input solution in the oall of the construction phase. This
process continues until the termination criterion is fldil For the termination criteria the time
limit is used.

2.1 Local search techniques

We propose two local search methods for generation of a golatian which will be used as an
initial solution with some perturbation in the next call bketsame local search algorithm. Both
techniques are based on the idea of moving only those veriticthe ordering, which cause the
largest clique during the elimination process. The matwvetor using this method is the reduction
of the number of solutions that should be evaluated. Theplicgiosed technique (LS1) is presented
in Algorithm 2.

The proposed algorithm applies a simple heuristic. In threecu solution a vertex is chosen
randomly among the vertices that produce the largest cligtiee elimination process. Then the
selected vertex is moved from its position. We experimemtitl two types of moves. In the first
variant the vertex is inserted in a random position in themigation ordering, while in the second
variant the vertex is swapped with another vertex locatealr@indomly selected position, i.e. the
two chosen vertices change their position in the elimimaticdering. The swap move was shown
to give better results. The heuristic will stop if the sabutis not improved after a certain number
of iterations. We experimented with differem AX NotImprovments. LS1 alone is a simple
heuristic and usually can not produce good results for tee@hposition. However, by using this
heuristic as a construction heuristic in the iterated Ieearch algorithm (see Algorithm 1) good
results for tree decomposition are obtained.

The second proposed heuristic (LS2) is presented in Algori8. This technique is similar
to algorithm LS1. However, this technique differs from LSdnsidering the exploration of the
neighbourhood. In LS2 in some of iterations the neighboodhof solution consist from only
one solution which is generated with swapping of vertex saéhmination ordering which causes
the largest clique, with another vertex located in the ramglachosen position. The use of this

TECHNICAL REPORTDBAI-TR-2007-56 8

Algorithm 2 Local Search Algorithm 1 - LS1 (InputSolution)
BestLSSolution = InputSolution
NrNotImprovments = 0

while NrNotImprovments < MAX NotImprovments do
In current solution [nputSolution) select a vertex in the elimination ordering which causes
the largest clique when eliminated - ties are broken rangafrthere are several vertices
which cause the clique equal with the largest clique

Swap this vertex with another vertex located in a randombsei position

if the current solution is better thafest LS Solution then
BestLSSolution = InputSolution
NrNotImprovments = 0

else
NrNotImprovments + +

end if

end while

RETURN Best LS Solution

neighbourhood in particular iteration will depend from th@&ameterp, which determines the
probability of applying this neighbourhood in each itepati We experimented with different val-
ues for parameter. With probability 1 — p, other type of neighbourhood will be explored. The
neighbourhood of current solution in this case consistsfadl solutions which can be obtained
by swapping of a vertex in the elimination ordering whichsasithe largest clique, with the ver-
tices in the elimination ordering, which are its neighbourbe best solution from the generated
neighbourhood is selected for the next iteration in the I$&e that in this technique the number
of solutions that have to be evaluated is much larger tharsih ILn particular in the first phase of
search the node which causes the largest clique usually &g neighbours and thus the number
of solution to be evaluated when the second type of neigltomar is used is equal to the size of
the largest clique produced during the elimination process

2.2 Perturbation

During the perturbation phase the solution obtained byl leearch procedure is perturbed and the
newly obtained solution is used as an initial solution fa tiew call of the local search technique.
The main idea is to avoid the random restart. Instead of randstart the solution is perturbed
with a bigger move(s) as those applied in the local seardintque. This enables some diversifi-
cation that helps to escape from the local optimum, but a/behinning from scratch (as in case

TECHNICAL REPORTDBAI-TR-2007-56 9

Algorithm 3 Local Search Algorithm 2 - LS2 (InputSolution)
BestLSSolution = InputSolution
NrNotImprovments = 0

while NrNotImprovments < MAX NotImprovments do
With probability p:

Select a vertex in the elimination ordering which causeddigest clique (ties are broken
randomly)

Swap this vertex with another vertex located in the randashlysen position

With probability 1 — p:
Select a vertex in the elimination ordering which causeddigest clique (ties are broken
randomly)

Generate neighbourhood of the solution by swapping thetselerertex with its neighbours,
i.e. all solutions are generated by swapping the selecteexveith its neighbours

Select the best solution from the generated neighbourhood

if the current solution is better thdfest LS Solution then
Best LS Solution = CurrentSolution
NrNotImprovments = 0

else
NrNotImprovments + +

end if

end while

RETURN BestLS Solution

of random restart), which is very time consuming. We propbsee perturbation mechanisms for
the solution:

e RandPert:V vertices are chosen randomly and they are moved into nevoramesitions
in the ordering.

e MaxCliquePer: All nodes that produce the maximal clique im éfimination ordering are
inserted in a new randomly chosen positions in the ordering.

TECHNICAL REPORTDBAI-TR-2007-56 10

e DestroyPartPert: All nodes between two positions (seteca@domly) in the ordering are
inserted in the new randomly chosen positions in the orderin

The perturbation RandPert just perturbs the solution witlrgelr random move and would be
kind or random restart iV is very large. KeepingV smaller avoids restarting from completely new
solution, and the perturbed solution is not to differentrirthe previous solution. MaxCliquePer
concentrates on moving of only vertices which produce makichque in the elimination order-
ing. The basic idea for this perturbation is to apply a teghaisimilar to min-conflict heuristic,
by considering for moving only the vertices that makes thdthvof tree decomposition large. De-
stroyPartPert is similar to RandPert, except that the slewbdes to be moved are located near
each other in the elimination ordering.

Determining the number of nodéé that will be moved is complex and may be dependent on
the problem. To avoid this problem we propose an adaptiveifition mechanism that takes
into consideration the feedback from the search process.ntimber of noded’ varies from 2
to some numbey (determined experimentally), and the algorithm begin&wihall perturbation
with N = 2. If during the iterative process (for a determined numbeitexfations) the local
search technique produces solutions with same tree widtméoe than 20% of cases, the size of
perturbation is increased by 1, otherwise the sizéVolill be decreased by 1. This enables an
automatic change of perturbation size based on the repetfisolutions with the same width.

We applied each perturbation mechanism separately, anticsddly considered combination
of two perturbations. The mixed perturbation applies (ig&lithm 1) two perturbations: Rand-
Pert, and MaxCliquePer. The algorithm starts with RandPedywatchs alternatively between two
perturbations if the solution is not improved for a detereasimumber of iterations. Note that we
experimented with different sizes of perturbation sizesefach type of perturbation. The experi-
mental evaluation of different perturbations is preseimesiection 3.

2.3 Acceptance of solution in iterated algorithm

Different techniques can be applied for acceptance of theiso obtained by the local search
technique. If the solution is accepted it will be perturbed aill serve as an initial solution for
the next call of one of the local search techniques. We expmaried with the following variants
for acceptance of solution for the next iteration (see Althon 1):

e Solution returned from the construction phase is acceptédibit has a better width than
the best current existing solution.

e Solution returned from the construction phase is alwaysgted.

e Solution is accepted if its treewidth is smaller than thewrnelth of the best yet found solution
pluszx, wherez is an integer.

The first variant for acceptance of solution is very restréctIn this variant the solution from
the construction phase will be accepted only if it improves best existing solution. Otherwise,
the best existing solution is perturbed and it is used ad sgdution for next call of the construction

TECHNICAL REPORTDBAI-TR-2007-56 11

phase. In second variant of acceptance of solution, tret@etocal search applies the perturbation
in a solution returned from the construction phase, inddeetty from the quality of produced
solution. The third variant is between the first and the sda@miant, and in this case the solution
which does not improve the best existing solution can be@eddor the next iteration, if its width

is smaller than the best found width plus some bound.

3 Evaluation of algorithms

The algorithms described in Section 2 are experimentaflietein DIMACS vertex coloring in-
stances. Using our algorithm we experimented with two psepolocal search techniques for
construction phase, different perturbation, differertegatance criteria, swap move, and different
termination criteria for the local search procedures. Hgorithm LS2 we experimented with
different probabilities fop. Considering the acceptance of solution in iterated locatcewe
experimented with three variants described in Section 2a8.the third variant we experimented
with x = 2 andz = 3. We did experiments with three types of perturbations: Ranigifax-
CliquePer, and DestroyPartPer. Additionally, we experiteeénvith combination of RandPert and
MaxCliquePer. For each type of perturbation mechanism weraxgnted with different pertur-
bation sizes.

In Table 1 results for different perturbations mechanisors20 DIMACS problems are pre-
sented. These problems are selected among the hardestmgoipl each class of DIMACS prob-
lems. The results for all problems and the comparison wethréisults in the literature are presented
in the next section. The perturbation mechanisms shownbteThare the following:

e (P1) RandPert with size of perturbation 3

e (P2) RandPert with the size of perturbation 8

e (P3) MaxCliquePer

e (P4) DestroyPartPer with perturbation size 5

e (P5) DestroyPartPer with perturbation size 10

e (P6) Mixed perturbation (RandPert+MaxCliquePer) with thee if perturbation 3
e (P7) Mixed perturbation with perturbation size 8

e (P8) Mixed perturbation with the adaptive perturbationtfvgize 2-11)

In the Mixed perturbation are used both RandPert and Max(lgueerturbations. Initially
RandPert withV = 2 — 11 is applied. Further the algorithm switches alternativedyween two
perturbations RandPert and MaxCliquePer, when IHA runs fOrtEdations without improvement
of best existing solution.

TECHNICAL REPORTDBAI-TR-2007-56 12

Table 1: Comparision of different perturbation mechanisms

Instance P1 P2 P3 P4 P5 P6 P7 P8
gamesl120.col| 33 33.4 | 32.8 33 33.2 | 322 | 324 | 324
queenl4l4 145 | 146 | 146.6| 143.6| 144.6| 142.6| 145.6| 143.2
queenl5l5 | 168.4| 168.4| 168 | 168.4| 169.2| 167.2| 167 | 165.4
queenl6l6 | 189.2| 193.4| 194.2| 191.4| 193.2| 191.4| 191 | 190.8
inithx.i.3.col 35 35 35 35 35 35 35 35
miles500.col | 24.2 | 25.2 | 23.2 | 246 | 25.4 | 24.2 | 23.8 | 24.2
myciel7.col 67.2 66 67.2 | 67.2 | 66.6 69 66 66
schooll.col 189 | 195.2| 226.4| 189.8| 196.2| 193.4| 199.4| 187.4
schoollnsh | 186.2| 174 | 181.6| 165.6| 169.2| 173 | 165.8| 170.6
zeroin.i.3.col | 32.8 | 32.8 | 32.6 | 32.8 33 32.6 33 32.6
le4505a.col | 263.6| 280.6| 301.4| 271.4| 290.2| 272 | 278.8| 279.4
le45Q15b.col | 278.4| 284.6| 287.4| 279.6| 290.6| 278.4| 282 | 279.6
le45025a.col | 240 | 245.4| 253 | 244.4| 251.8| 234.8| 240.8| 240.2
le45025b.col | 237.4| 244.6| 248.2| 241.6| 253.2| 235.4| 243.2| 235.8
le45025c.col | 331.2| 339.8| 353.6| 336.8| 339.8| 340 | 336.4| 334
le45025d.col | 337.4| 346 | 351.6| 341 | 343.6| 337 | 339 | 337.2
DSJC125.1.col 61.6 | 62.2 | 61.2 | 61.2 | 63.2 63 62 61.8
DSJC125.5.col 108.2| 108.4| 108 | 108.4| 108.4| 108.2| 108.2| 108
DSJC250.1.co| 171.2| 172.6| 176 | 172 | 176.2| 171.6| 171.6| 171.6
DSJC250.5.co| 230.6| 231.2| 231 | 230.2| 231 | 230.6| 231 | 230.2

The results in Table 1 presents the average width of treendlgasitions over 5 runs for each
example. Maximal run time of each run is 500 seconds, andigfogitom stops after 200 seconds
of non improvement of the best solution. Based on the resivisig the Table 1 we can conclude
that considering the tree width the best results are oldamith the perturbation P8. Similar
results are obtained with perturbations P1 and P6. Pettarbahich includes only moving of
nodes with largest cliques gives the worse results and iergéfor other perturbations, if the size
of perturbation is large the results are worse.

The current best results presented in this paper are odtawith the iterative heuristic al-
gorithm (IHA) and these parameters: LS1 algorithm (see Aflgm 2) is used in the con-
struction phase and this algorithm stops if the solutionsdoet improve for 10 iterations
(M AX NotImprovments = 10). In the perturbation phase are used both RandPert and Max-
CliquePer perturbations. Initially RandPert with = 2 — 11 is applied. Further the algorithm
switches alternatively between two perturbations RanditettMaxCliquePer, when IHA runs for
100 iterations without improvement of a solution. For adirepof solution in IHA the third vari-
ant is used. The solution produced in construction phasecesied if its width is smaller than the
width of the best current solution plus 3.

TECHNICAL REPORTDBAI-TR-2007-56 13

3.1 Comparision with results in literature

In this section we report on computational results obtawét the current implementation of
methods described in this paper. The results for 62 DIMAC&exearoloring instances are given.
These instances have been used for testing of several nsefitvottee decompositions proposed
in the literature (see [11], [5], and [8]). Our algorithmss/edeen implemented in C++ and the
current experiments were performed with a Intel Pentium 4 GBbiz, 1GB RAM.

We compare our results with the results reported in [11],45H [8]. Additionally we include
the recent results obtained by Genetic Algorithm [17]. Tésuits reported in [11] are obtained in
Pentium 3, 800 Mhz processor. Results reported in [5] ararddavith Pentium 3, 1GHz pro-
cessor, and the results reported in [8] are obtained withitherd, 2.4 Ghz, 2GB RAM machine.
Genetic algorithm [17] has been evaluated in a Intel(R) X&b)(3.20 GHz, 4 GB RAM. To
our best knowledge these papers present the best existiey bpunds for treewidth for these 62
instances.

In Tables 2, and 3 the results for the treewidth for DIMACS @raploring instances are pre-
sented. First and second columns of the table present ttemoes and the number of nodes and
edges for each instance. In column KBH are shown the bestseshihined by algorithms in [11].
The TabuS column presents the results reported in [5], whdecolumn BB shows the results
obtained with the branch and bound algorithm proposed in@@llumns GA-best and GA-AVG
represents results obtained with Genetic Algorithm [17]luBm GA-best presents the best width
obtained in 10 runs, and the column GA-AVG gives the averdgesewidth over 10 runs. The
last two columns present results obtained by our algorittopgsed in this paper with the settings
which were given in the previous section. In our algorithm executed 10 runs for each instance.
In column IHA-best is given the best width obtained in 10 rtorseach instance, and the column
IHA-AVG gives the average of treewidth over 10 runs.

In Tables 4, and 5 for each instance is given the time (in s#sjoneeded to produce the
treewidth presented in Tables 2, and 3 for all algorithmse fiime results given in [8] present the
time in which the best solutions are found. The results giagb] present the time of the overall
run of the algorithm in one instance (number of iteration20600 and the algorithm stops after
10000 non-improving solutions). The running time of GA [i1¥presented in column GA. For our
algorithm are given the average time in which the best smius found (IHA-best) and the time
of the overall run of algorithm (IHA-total) in each instan@erage over ten runs is taken). IHA
algorithm stops for easy instances after 10 seconds of nprorament of solution, for middle
instances after 200 seconds, and for harder instancesl@f@0 seconds of non improvement of
solution. The maximal running time of algorithm for eachtame is set to be 10000 seconds.

Based on the results given in Tables Tables 2, 3, 4, and 5 wduttnthat considering the
best result over 10 runs, our algorithm gives better re$ait85 instances compared to [11] for
the upper bound of treewidth, whereas algorithm in [11] gitsetter results than our algorithm
for no problem. Comparing KBH to IHA average over 10 runs, KBHegibetter results for 7
instances, and IHA-AVG for 35 instances. Compared to therdhgo proposed in [5] our approach
gives better upper bounds for 25 instances, whereas digoiit [5] gives no better upper bounds
than our algorithm. Comparing TabusS to our average, TabuSkggtter results for 21 instances,

TECHNICAL REPORTDBAI-TR-2007-56 14

whereas IHA-AVG gives better results for 18 instances. laritcompared to branch and bound
algorithm proposed in [8] our algorithm gives better uppeurds for treewidth for 24 instances,
whereas the branch and bound algorithm gives better resoiftgoared to our algorithm for 3
instances. Comparing this algorithm to our average, thisralgn gives better results for 11
examples, whereas IHA-AVG is better for 24 instances. Camgig comparison of GA and IHA,
for the best width over 10 runs, our algorithm gives bettsults for 20 problems, whereas GA
gives better results for 5 problems. For the average widthOimuns, IHA-AVG is better than
GA-AVG in 29 examples, whereas GA-AVG is better than IHA-AWMG12 examples. Overall our
algorithm is very good compared to other algorithms considehe width, and it gives new upper
bounds for 14 instances (cells of table in bold).

Considering the time, a direct comparison of algorithms aarbe done, as the algorithms are
executed in computers with different processors and mentdoyvever, as we can see based on
the results in Tables 4, and 5 our algorithm gives good timéopmance and for some instances
it decreases significantly the time needed for generatiomeef decompositions. Based on our
experiments the efficiency of our algorithm is due to appjyehLS1 algorithm in the construction
phase of IHA. In LS1 only one solution is evaluated duringheieration. When using LS2 the
number of solutions to be evaluated during most of iteratisrmuch larger.

4 Conclusions

In this paper, we presented a new heuristic algorithm foririmén upper bound of tree decom-
positions for a given undirected graph. The proposed alyorhas a structure of iterated local
search algorithm and it includes different perturbatiorchamisms and different variants for ac-
ceptance of solution for the next iteration. For the cordiom phase two simple local search
based heuristics are proposed. Although the proposedractigé heuristics are simple, the whole
iterated local search algorithm that uses these heuristgonstruction phase gives good results
for tree decomposition. In particular using of construetivethod which includes only moving of
the nodes that produce the largest clique in the eliminairolering has been shown to be more
efficient.

The proposed algorithm has been applied in 62 DIMACS vertéxric instances. Addition-
ally the results of our algorithm have been compared withbest existing upper bounds for width
of tree decomposition for these instances. The results shatour algorithm achieves good re-
sults for the upper bound of treewidth for different size mdtances. In particular the algorithm
improves the best existing treewidth upper bounds for masyances, and it has a good time
performance.

For the future work we are considering the hybridization of algorithm with the genetic
algorithm for generation of tree decomposition. Furtheendhe algorithms described in this
chapter can be used for generation of generalized hypedgeemposition (GHD). General-
ized hypertree decomposition is a concept than includegiaclal condition and it is applied
directly into the hypergraph. Good tree decomposition gyaoduce good generalized hyper-
tree decomposition and the methods used for tree deconguosdn be extended to generate GHD.

TECHNICAL REPORTDBAI-TR-2007-56

15

Table 2: Algorithms comparison regarding treewidth for BA®IS graph coloring instances

Instance |\V|/|E| | KBH | TabuS| BB | GA-best| GA-AVG | IHA-best| IHA-AVG
anna 138/986 12 12 12 12 12 12 12
david 87/812 13 13 13 13 13 13 13
huck 74 /602 10 10 | 10 10 10 10 10
homer 561/3258| 31 31 31 31 31 31 31.2
jean 80 /508 9 9 9 9 9 9 9

games120| 120/638 | 37 33 - 32 32 32 32.2

queenss 25/160 18 18 18 18 18 18 18

gueenco 36/290 26 25 25 26 26 25 25

queen’/ 49 /476 35 35 35 35 35.2 35 35

gueend8 64 /728 46 46 46 45 46 45 45.3

gqueen99 81/1056 59 58 59 58 58.5 58 58.1

queenl010 | 100/1470| 73 72 72 72 72.4 72 72.3
queenllll | 121/1980| 89 88 89 87 88.2 87 87.7
queenl2l2 | 144/2596| 106 | 104 | 110 104 105.7 103 104.4
queenl3l3 | 169/3328| 125 | 122 | 125 121 123.1 121 122.2
queenl4l4d | 196/4186| 145 | 141 | 143 141 144 140 142.6
queenl515 | 225/5180| 167 | 163 | 167 162 164.8 162 166.3
queenl6l6 | 256/6320| 191 | 186 | 205 186 188.5 186 188.2
fpsol2.i.1 | 269/11654| 66 66 66 66 66 66 66
fpsol2.i.2 | 363/8691| 31 31 31 32 32.6 31 31.1

fpsol2.i.3 | 363/8688| 31 31 31 31 32.3 31 31.2

inithx.i.1 | 519/18707, 56 56 | 56 56 56 56 56

inithx.i.2 | 558/13979 35 35 31 35 35 35 35

inithx.i.3 | 559/13969 35 35 31 35 35 35 35

miles1000 | 128/3216| 49 49 49 50 50 49 49.2
miles1500 | 128/5198 | 77 77 77 77 77 77 77

miles250 125/ 387 9 9 9 10 10 9 9.3

miles500 | 128/1170| 22 22 22 24 24.1 22 23.5

miles750 | 128/2113| 37 36 | 37 37 37 36 36.9

mulsol.i.1 | 138/3925| 50 50 | 50 50 50 50 50
mulsol.i.2 | 173/3885| 32 32 32 32 32 32 32
mulsol.i.3 | 174/3916| 32 32 32 32 32 32 32
mulsol.i.4 | 175/3946| 32 32 32 32 32 32 32
mulsol.i.5 | 176/3973| 31 31 31 31 31 31 31

myciel3 11/20 5 5 5 5 5 5 5

myciel4 23/71 11 10 10 10 10 10 10

myciel5 47 /236 20 19 19 19 19 19 19

myciel6 95/755 35 35 35 35 35 35 354

myciel7 191/2360| 74 66 54 66 66 66 67.2

schooll | 385/19095 244 | 188 - 185 192.5 178 190.5

schoollnsh| 352 /14612 192 | 162 - 157 163.1 152 156.4

TECHNICAL REPORTDBAI-TR-2007-56

16

Table 3: Algorithms comparison regarding treewidth for BA®IS graph coloring instances

Instance | |V|/|E| | KBH | TabuS| BB | GA-best| GA-AVG | IHA-best| IHA-AVG
zeroin.i.1| 126/4100| 50 50 - 50 50 50 50

zeroin.i.2 | 157/3541| 33 32 - 32 32.7 32 32.7
zeroin.i.3 | 157/3540| 33 32 - 32 32.9 32 32.6
le4505a | 450/5714| 310 | 256 | 307 243 248.3 244 250

le4505b | 450/5734 | 313 | 254 | 309 248 249.9 246 249.3
le4505c | 450/9803| 340 | 272 | 315 265 267.1 266 273

le4505d | 450/9757| 326 | 278 | 303 265 265.6 265 267.2
le45015a| 450/8168| 296 | 272 - 265 268.7 262 267.9
le45015b | 450/8169| 296 | 270 |289| 265 269 258 266.7
le45015c | 450/16680 376 | 359 |372| 351 352.8 350 355.4
le45015d | 450/16750, 375 | 360 | 371 353 356.9 355 357.5
le45025a| 450/8260| 255 | 234 | 255 225 228.2 216 222.6
le45025b | 450/8263| 251 | 233 | 251 227 234.5 219 227.2
le45025c | 450/17343| 355 | 327 | 349 320 327.1 322 327.4
le45025d | 450/ 17425 356 | 336 | 349 327 330.1 328 332.3
dsjc125.1| 125/736 | 67 65 | 64 61 61.9 60 61.1
dsjc125.5| 125/3891| 110 | 109 | 109| 109 109.2 108 108

dsjc125.9| 125/6961| 119 | 119 | 119 119 119 119 119

dsjc250.1| 250/3218| 179 | 173 | 176 169 169.7 167 168.6
dsjc250.5| 250/ 15668 233 | 232 | 231 230 231.4 229 230.1
dsjc250.9| 250/ 27897 243 | 243 | 243 243 243.1 243 243

Acknowledgments: This paper was supported by the Austrian Science Fund (FW@qir Nr.

P17222-N04, Complementary Approaches to Constraint Satiisfac

References

[1] J. Alber, F. Dorn, and R. Niedermeier. Experimental estibin of a tree decomposition based
algorithm for vertex cover on planar graphBiscrete Applied Mathematic445:210-219,
2004.

[2] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexitfyfinding embeddings in a
k-tree. SIAM J. Alg. Disc. Meth8:277-284, 1987.

TECHNICAL REPORTDBAI-TR-2007-56

17

Table 4: Algorithms comparison regarding time needed folegation of tree decompositions

Instance V|/|E| KBH TabuS BB GA | IHA-best | IHA-total
anna 138 /986 1.24 2776.93 1.64 213 0.1 11
david 8717812 0.56 796.81 77.6538 | 154 0.1 11
huck 74 /602 0.24 488.76 0.041 120 0.1 11
homer 561/3258 | 556.82 | 157716.56] 10800 | 1118 127 327.8
jean 80/508 0.29 513.76 0.05 120 0 11

gamesl120| 120/638 5.2 2372.71 - 462 145.8 346.8
queens5 25/160 0.04 100.36 5.409 33 0.1 11
gueeng6 36/290 0.16 225.55 81.32 51 0.1 11.1
queen’/ 49/ 476 0.51 322.4 543.3 92 0.1 11
queen838 64 /728 1.49 617.57 10800 | 167 28.8 229.8
queen9 81/1056 3.91 1527.13 10800 | 230 5.2 206.2
queenl010 | 100/1470| 9.97 3532.78 10800 | 339 28.3 229.3
queenll1l | 121/1980| 23.36 | 5395.74 | 10800 | 497 29.6 230.6
queenl212 | 144/2596| 49.93 | 10345.14| 10800 | 633 | 106.7 304.2
queenl3l3 | 169/3328| 107.62 | 16769.58| 10800 | 906 | 3266.12 10001
queenl4l4 | 196/4186| 215.36 | 29479.91| 10800 | 1181| 5282.2 10001
queenl5l5 | 225/5180| 416.25 | 47856.25| 10800 | 1544| 3029.51 10001
queenl6l6 | 256 /6320 | 773.09 | 73373.12| 10800 | 2093| 7764.57 10001
fpsol2.i.1 | 269 /11654, 319.34 | 63050.58 | 0.587076| 1982 4.8 15.8
fpsol2.i.2 | 363/8691 | 8068.88| 78770.05| 0.510367| 1445 8.4 19.4
fpsol2.i.3 | 363/8688| 8131.78| 79132.7 | 0.492061| 1462 8.7 19.7

inithx.i.1 | 519/18707| 37455.1| 101007.52 26.3043 | 3378 10.2 21.2

inithx.i.2 | 558 /13979 37437.2| 121353.69 0.05661 | 2317 11.7 22.7

inithx.i.3 | 559 /13969 36566.8| 119080.85 0.02734 | 2261 10.6 21.6

miles1000 | 128/3216| 14.39 5696.73 10800 | 559 54.2 255.2
miles1500 | 128/5198 | 29.12 6290.44 6.759 | 457 0.7 11.7

miles250 125/387 | 10.62 1898.29 1.788 242 2.9 13.9

miles500 | 128/1170| 4.37 4659.31 | 1704.62 | 442 81 282

miles750 | 128/2113| 8.13 3585.68 10800 | 536 112.2 313.2

mulsol.i.1 | 138/3925| 240.24 | 3226.77 1.407 671 0.1 11

mulsol.i.2 | 173/3885| 508.71 | 12310.37| 3.583 584 0.8 11.8
mulsol.i.3 | 174/3916 | 527.89 | 9201.45 3.541 579 0.5 115
mulsol.i.4 | 175/3946 | 535.72 | 8040.28 3.622 578 0.9 11.9
mulsol.i.5 | 176/3973 | 549.55| 13014.81| 3.651 584 1.1 12.1

myciel3 11/20 0 72.5 0.059279| 14 0.1 11

myciel4 23/71 0.02 84.31 0.205 34 0.1 11

myciel5 471236 2 211.73 112.12 | 80 0.1 11

myciel6 95/ 755 29.83 1992.42 10800 | 232 0.4 11.4

myciel7 191/2360| 634.32 | 19924.58| 10800 | 757 18.2 219.2

schooll | 385/19095| 41141.1| 137966.73 - 4684 | 4688.3 10001

schoollnsh| 352 /14612 2059.52| 180300.1 - 4239| 4971.8 10001

TECHNICAL REPORTDBAI-TR-2007-56

18

Table 5: Algorithms comparison regarding time needed folegation of tree decompositions

Instance | |V|/|E)| KBH TabuS BB GA | IHA-best| IHA-total
zeroin.i.1 | 126/4100 17.78 2595.92 - 641 0.1 111

zeroin.i.2 | 157/3541| 448.74 4825.51 - 594 43 244

zeroin.i.3 | 157/3540| 437.06 8898.8 - 585 22 223

le4A505a | 450/5714| 7836.99 | 130096.77| 10800 | 6433| 7110.3 10001
le4505b | 450/5734 | 7909.11 | 187405.33 10800 | 6732| 5989.9 10001
le4505c | 450/9803 | 103637.17| 182102.37| 10800 | 5917 | 4934.8 10001
le4505d | 450/9757 | 96227.4 | 182275.69 10800 | 5402| 4033.8 10001
le45015a| 450/8168 | 6887.15 | 117042.59 - 6876, 6191 10001
le45015b | 450/8169| 6886.84 | 197527.14 10800 | 6423 | 6385.7 10001
le45015c | 450/16680] 122069 | 143451.73 10800 | 4997 | 4368.9 10001
le45015d | 450/ 16750, 127602 | 117990.3| 10800 | 4864 | 3441.8 10001
le4A5025a| 450/8260| 4478.3 | 143963.41 10800 | 6025| 7377.9 10001
le45025b | 450/8263 | 4869.97 | 184165.21 10800 | 6045| 6905.8 10001
le45025c | 450/17343) 10998.68 | 151719.58 10800 | 6189| 5345.9 10001
le45025d | 450/ 17425 11376.02| 189175.4| 10800 | 6712| 4118.9 10001
dsjc125.1| 125/736 171.54 1532.93 | 10800 | 501 | 334.95 10001
dsjc125.5| 125/3891 38.07 2509.97 | 10800 | 261 66.0 267.0
dsjc125.9| 125/6961 55.6 1623.44 | 260.879| 110 0.1 11.0

dsjc250.1| 250/3218 | 5507.86 | 28606.12| 10800 | 1878 | 4162.4 10001
dsjc250.5| 250/ 15668 1111.66 | 14743.35| 10800 | 648 | 753.5 10001
dsjc250.9| 250/27897| 1414.58 | 30167.7 | 10800 | 238 0.5 11.3

[3] E. Bachoore and H. Bodlaender. A branch and bound algorithiraxact, upper, and lower
bounds on treewidthAAIM 2006, LNCS4041:255-266, 2006.

[4] H. L. Bodlaender. Discovering treewidthechnical report UU-CS-2005-018, Utrecht Uni-

versity, 2005.

[5] F. Clautiaux, A. Moukrim, S. Kgre, and J. Carlier. Heuristic and meta-heurisistic method

for computing graph treewidtrRAIRO Oper. Res38:13-26, 2004.

[6] D. R. Fulkerson and O.A. Gross. Incidence matrices aretvial graphs Pacific Journal of
Mathematics15:835—-855, 1965.

[7] F. Gavril. Algorithms for minimum coloring, maximum due, minimum coloring cliques
and maximum independent set of a chordal greglAM J. Comput.1:180-187, 1972.

TECHNICAL REPORTDBAI-TR-2007-56 19

[8] Vibhav Gogate and Rina Dechter. A complete anytime atgorifor treewidth.In Proceed-
ings of the 20th Annual Conference on Uncertainty in Artifitidelligence, UAI-04 pages
201-208, 2004.

[9] D. S. Johnson and M. A. Trick. Clique, coloring, and satilsfiity: Second DIMACS im-
plementation challengeSeries in Discrete Mathematics and Theoretical Computezriae,
American Mathematical Societ®6, 1993.

[10] U. Kjaerulff. Optimal decomposition of probabilisticetworks by simulated annealing.
Statistics and Computin@(1):2-17, 1992.

[11] A. Koster, H. Bodlaender, and S. van Hoesel. Treewidthm@atational experiment€lec-
tronic Notes in Discrete Mathematics 8, Elsevier SciencdiBhrs 2001.

[12] A. Koster, S. van Hoesel, and A. Kolen. Solving partiahstraint satisfaction problems with
tree-decompositionNetworks 40(3):170-180, 2002.

[13] Arie M.C.A. Koster, Stan P.M. van Hoesel, and Antoon Wdlen. Optimal solutions for fre-
quency assignment problems via tree decomposi@aph Theoretic Concepts in Computer
Science: 25th International Workshop, WG'99, LNCS 1665, Bg-35Q 1999.

[14] P. Larranaga, C.M.H Kujipers, M. Poza, and R.H. Murga. @weposing bayesian networks:
triangulation of the moral graph with genetic algorithr8satistics and Computing (1):19—
34, 1997.

[15] S. Lauritzen and D. Spiegelhalter. Local computatiaits probabilities on graphical struc-
tures and their application to expert systerdsurnal of the Royal Statistical Society, Series
B, 50:157-224, 1988.

[16] N.Robertson and P. D. Seymour. Graph minors. II: alparit aspects of tree-widtldournal
Algorithms 7:309-322, 1986.

[17] Werner Schafhauser. New heuristic methods for treempositions and generalized hyper-
tree decompositions. Master’s thesis, Vienna Univerdifiiechnology, 2006.

[18] K. Shoikhet and D. Geiger. A practical algorithm for fing optimal triangulationsln Proc.
of National Conference on Atrtificial Intelligence (AAAI'SYages 185-190, 1997.

[19] R.E. Tarjan and M. Yannakakis. Simple linear-time aitjon to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reducebchypergraphsSIAM J. Comput.
13:566-579, 1984.

[20] Jinbo Xu, Feng Jiao, and Bonnie Berger. A tree-decomipositpproach to protein structure
prediction.IEEE Computational Systems Bioinformatics Confere2665.

