
Five Determinisation Algorithms

Rob van Glabbeek1,2 and Bas Ploeger3⋆

1 National ICT Australia, Locked Bag 6016, Sydney, NSW1466, Australia
2 School of Computer Science and Engineering, The Universityof New South Wales,

Sydney, NSW 2052, Australia
3 Department of Mathematics and Computer Science, EindhovenUniversity of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. Determinisation of nondeterministic finite automata is a well-studied
problem that plays an important role in compiler theory and system verification.
In the latter field, one often encounters automata consisting of millions or even
billions of states. On such input, the memory usage of analysis tools becomes the
major bottleneck. In this paper we present several determinisation algorithms, all
variants of the well-known subset construction, that aim toreduce memory usage
and produce smaller output automata. One of them produces automata that are
already minimal. We apply our algorithms to determinise automata that describe
the possible sequences appearing after a fixed-length run ofcellular automaton
110, and obtain a significant improvement in both memory and time efficiency.

1 Introduction

Finite state automata (or finite state machines) are an established and well-studied
model of computation. From a theoretical point of view, theyare an interesting object
of study because they are expressive yet conceptually easy to understand and intuitive.
They find applications in compilers, natural language processing, system verification
and testing, but also in fields outside of (theoretical) computer science like switching
circuits and chip design. Over the years, many flavours and variants of finite state ma-
chines have been defined and studied for a large variety of purposes.

One of the most classic and elementary type of finite state machine is thenondeter-
ministic finite automaton(NFA). Typical applications of finite state automata involve
checking whether some sequence of symbols meets some syntactic criterion, such as
displaying a prescribed pattern or being correct input for agiven program, a problem
that can often be recast as checking whether that sequence isaccepted by a given NFA.

A more restrictive type of automaton is thedeterministic finite automaton(DFA).
DFAs are as expressive as NFAs, in the sense that for every NFAthere exists a DFA
that islanguage equivalent(i.e. accepts the same input sequences). Contrary to NFAs,
for any DFA there is a trivial linear time, constant space, online algorithm to check
whether an input sequence is accepted or not. Consequently,lexical-analyser generators
like LEX work on DFAs, and so do many implementations ofGREP. For this reason, in
many applications it pays to convert NFAs into DFAs, even though the worst-case time
and space complexities of this conversion are exponential in the size of the input NFA.
⋆ This author is partially supported by the Netherlands Organisation for Scientific Research

(NWO) under VoLTS grant number 612.065.410.

2 Rob van Glabbeek and Bas Ploeger

Once a language equivalent DFA of an NFA has been found, it is usually minimised
to obtain the smallest such DFA. This minimal DFA is unique and the problem of find-
ing it for a given NFA is called thecanonisation problem.

Another application of NFAs is in the realm ofprocess theoryandsystem verifi-
cation where they are used to model the behaviour of distributed systems. Typically,
both a specification and an implementation of a system are represented as NFAs, and
the question arises whether the execution sequences of one NFA are a subset of those
of another. This is thetrace inclusion problem. Although PSPACE-hard in general, this
problem is decidable in PTIME once the NFAs are converted into equivalent DFAs.

As we see, in both the canonisation problem and the trace inclusion problem, de-
terminisation plays an essential role. The standard determinisation algorithm is called
subset construction(seee.g.[11]). Although the determinisation problem is EXPTIME-
hard, this algorithm is renowned for its good performance inpractice. For minimisation
of DFAs a lot of algorithms have been proposed, of which Watson presents a taxon-
omy and performance analyses [16]. The algorithm with the best time complexity is by
Hopcroft [10]:O(n log n) wheren is the number of states in the input DFA.

Another algorithm for canonisation is by Brzozowski [2]. Itgenerates the minimal
DFA directly from an input NFA by repeating the process of “reversing” and determin-
ising the automaton twice. Tabakov and Vardi compare both approaches to canonisation
experimentally by running them on randomly generated automata [15].

On some NFAs, the exponential blow-up by subset construction is unavoidable.
However, we have encountered NFAs for which subset construction consumes a lot of
memory and generates a DFA that is much larger than the minimal DFA. Therefore,
our main goal is to find algorithms that are more memory efficient and produce smaller
DFAs than subset construction.

In this paper we present five determinisation algorithms based on subset construc-
tion. For all of them we prove correctness. One algorithm generates the minimal DFA
directly and hence is acanonisation algorithm. However, it calculates language inclu-
sion as a subroutine; as deciding language inclusion is PSPACE-complete, it is unattrac-
tive to use in an implementation. The other four produce a DFAthat is not necessarily
minimal but is usually smaller than the DFA produced by subset construction.

We have implemented subset construction and these four new algorithms. We have
benchmarked these implementations by running them on NFAs that describe patterns
on the lines of a cellular automaton’s evolution. We comparethe implementations on
the time and memory needed for the complete canonisation process (i.e. including min-
imisation) and the size of the DFA after determinisation.

2 Preliminaries

Finite automata.A nondeterministic finite automaton(NFA) N is a tuple(SN , ΣN ,

δN , iN , FN) whereSN is a finite set of states,ΣN is a finite input alphabet,δN ⊆
SN×ΣN×SN is a transition relation,iN ∈ SN is the initial state andFN ⊆ SN is a set
of final (or accepting) states. Adeterministic finite automaton(DFA) is an NFAD such
that for allp∈SD anda∈ΣD there is precisely oneq∈SD such that(p, a, q) ∈ δD.

In graphical representations of DFAs we also allow states that haveat mostone out-
goinga-transition for each alphabet symbola. Formally speaking, these abbreviate the

Five Determinisation Algorithms 3

DFA obtained by adding a non-acceptingsink state as the target of all missing transi-
tions. Note that adding such a state preserves language equivalence (defined below).

For any alphabetΣ, Σ∗ denotes the set of all finite strings overΣ andε ∈ Σ∗

denotes the empty string. Any subset ofΣ∗ is called alanguage overΣ. For any states
p, q ∈ SN of an NFAN and stringσ ∈ Σ∗N with σ = σ1 · · ·σn andσ1, . . . , σn ∈ ΣN
for somen ≥ 0, we writep

σ
−→N q to denote the fact that:

∃p0, . . . , pn ∈ SN . p0 = p ∧ pn = q ∧ (p0, σ1, p1), . . . , (pn−1, σn, pn) ∈ δN .

Language semantics.The language of a statep ∈ SN of an NFAN is defined as:
LN (p) = {σ ∈ Σ∗N | ∃q ∈ FN . p

σ
−→N q}. The language of an NFAN is defined

as:L(N) = LN (iN). For any NFAsN andM and statesp ∈ SN andq ∈ SM, p is
language includedin q, denotedp ⊑L q, iff LN (p) ⊆ LM(q). Moreover,p andq are
language equivalent, denotedp≡Lq, iff p⊑Lq∧q⊑Lp. An NFAN is language included
in an NFAM iff iN ⊑L iM andN andM arelanguage equivalentiff iN ≡L iM.

Simulation semantics.Given NFAsN andM, a relationR ⊆ SN×SM is asimulation
iff for any p ∈ SN andq ∈ SM, p R q implies:

• p ∈ FN ⇒ q ∈ FM and

• ∀a ∈ ΣN . ∀p′ ∈ SN . p
a
−→N p′ ⇒ ∃q′ ∈ SM . q

a
−→M q′ ∧ p′ R q′.

Given NFAsN andM, for anyp ∈ SN andq ∈ SM:

• p is simulated byq, denotedp ⊂
→ q, iff there exists a simulationR such thatp R q;

• p andq aresimulation equivalent, denotedp →← q, iff p ⊂
→ q ∧ q ⊂

→ p;

Clearlyp ⊂
→ q impliesp ⊑L q.

Subset construction.The subset construction (or powerset construction) is the standard
way of determinising a given NFA. For reasons that will become apparent in the next
sections, we slightly generalise the normal algorithm by augmenting it with a functionf
on sets of states, which is applied to every generated set. The algorithm is Algorithm 1
and shall be referred to as SUBSET(f). It takes an NFAN and generates a DFAD.
Of course, it should be the case thatN ≡L D, which depends strongly on the function
f . For normal subset construction, SUBSET(I), whereI is the identity function, it is
known that the language ofN is indeed preserved. In the sequel, whenever we use the
term “subset construction” we mean the normal algorithm,i.e. SUBSET(I).

It is known that in the worst case, determinisation yields a DFA that is exponentially
larger than the input NFA. An example of an NFA that gives riseto such an exponen-
tial blow-up is the NFA that accepts the language specified bythe regular expression
Σ∗xΣn for some alphabetΣ, x ∈ Σ andn ≥ 0. Figure 1(a) shows the NFA for
Σ = {a, b} andx = a. This NFA hasn + 2 states, whereas the corresponding DFA has
2n+1 states and is already minimal.

An interesting thing to note is that if the initial state wereaccepting (Figure 1(b)), the
minimal DFA would consist of only one state with ana, b-loop: the accepted language
has becomeΣ∗. However, subset construction still produces the exponentially larger
DFA first, which should then be reduced to obtain the single-state, minimal DFA.

4 Rob van Glabbeek and Bas Ploeger

Algorithm 1 The SUBSET(f) determinisation algorithm
Pre: N = (SN , ΣN , δN , iN , FN) is an NFA
Post: D = (SD, ΣD, δD, iD, FD) is a DFA
1: ΣD := ΣN ; δD := ∅; iD := f({iN }); FD := ∅;
2: SD := {iD}; todo := {iD}; done := ∅;
3: while todo 6= ∅ do
4: pick aP ∈ todo;
5: for all a ∈ ΣN do
6: P ′ := f({p′ ∈ SN | ∃p ∈ P . p

a
−→N p′});

7: SD := SD ∪ {P ′};
8: δD := δD ∪ {(P, a, P ′)};
9: todo := todo ∪ ({P ′} \ done);

10: end for
11: if ∃p ∈ P . p ∈ FN then
12: FD := FD ∪ {P};
13: end if
14: todo := todo \ {P};
15: done := done ∪ {P};
16: end while

3 Determinisation using Transition Sets

In this section we show that subset construction can just as well be done on sets of
transitions as on sets of states. We observe that the contribution of an NFA statep to the
behaviour of a DFA stateP consists entirely ofp’s outgoing transitions. We no longer
think of a DFA state as being a set of NFA states, but rather a set of NFA transitions.

Definition 1. Given an NFAN , a transition tupleis a pair(T, b) whereT ∈ P(ΣN ×
SN) is a set of transitions andb ∈ B is a boolean.

For every transition tuple(T, b) we define the projection functionsset and fin as:

p0 p1 · · · pn
pn+1

a, b

a a, b a, b a, b

(a)

q0 q1 · · · qn
qn+1

a, b

a a, b a, b a, b

(b)

Fig. 1. Two NFAs of sizeO(n) for which subset construction produces a DFA of sizeO(2n).
Here initial states are marked by unlabelled incoming arrows, and final states by double circles.
In case (a) this DFA is already minimal; in case (b) the minimal DFA has size 1.

Five Determinisation Algorithms 5

Algorithm 2 The TRANSSET(f) determinisation algorithm
Pre: N = (SN , ΣN , δN , iN , FN) is an NFA
Post: D = (SD, ΣD, δD, iD, FD) is a DFA
1: ΣD := ΣN ; δD := ∅; iD := f(tuple(iN)); FD := ∅;
2: SD := {iD}; todo := {iD}; done := ∅;
3: while todo 6= ∅ do
4: pick aP ∈ todo;
5: for all a ∈ Σ do
6: P ′ := f(

S

(a,p)∈set(P) trans(p), ∃(a, p) ∈ set(P) . p ∈ FN);
7: SD := SD ∪ {P ′};
8: δD := δD ∪ {(P, a, P ′)};
9: todo := todo ∪ ({P ′} \ done);

10: end for
11: if fin(P) then
12: FD := FD ∪ {P};
13: end if
14: todo := todo \ {P};
15: done := done ∪ {P};
16: end while

set(T, b) = T andfin(T, b) = b. For every statep∈SN of NFA N , trans(p) is the set
of outgoing transitions ofp andtuple(p) is the transition tuple belonging top:

trans(p) = {(a, q) ∈ ΣN × SN | p
a
−→N q}

tuple(p) = (trans(p), p ∈ FN).

The DFA stateP ⊆ SN now corresponds to the transition tuple(T, b) whereT =
⋃

p∈P trans(p) andb ≡ ∃p ∈ P . p ∈ FN . We need the booleanb to indicate whether
the DFA state is final as this can no longer be determined from the elements of the set.
Only the labels and target states of the transitions are stored because the source states
are irrelevant and would only make the sets unnecessarily large.

Given NFA N , the language of a transition(a, p) ∈ ΣN × SN is defined as:
LN (a, p) = {aσ∈Σ∗N | σ∈LN (p)}. Thelanguage of a set of transitionsT is defined
asLN (T) =

⋃

t∈T LN (t) and thelanguage of a transition tuple(T, b) is defined as:

LN (T, b) = LN (T) ∪

{

{ε} if b

∅ if ¬b.

Language inclusion and equivalence for transitions and transition tuples can now be
defined in the usual way by means of set inclusion and equality.

The determinisation algorithm that uses transition tuplesis Algorithm 2. We shall
refer to it as TRANSSET(f) wheref is a function on transition tuples. Again, language
preservation depends on the specific functionf being used. Forf = I this is indeed
the case, which we prove in [7], the full version of this paper. Using TRANSSET(I) for
determinisation can give a smaller DFA than SUBSET(I) as is shown by the example
in Figure 2. Here, TRANSSET(I) happens to produce the minimal DFA directly. This is
generally not the case: on the NFA of Figure 1(b), TRANSSET(I) generates a DFA of
size2n+1, while the minimal DFA has size 1.

6 Rob van Glabbeek and Bas Ploeger

p0

p2p1 p3

p4

a
b

b

a, b
a

b

(a)

q0

q2q1

q3

a b

a, b a, b

(b)

r0

r1

r2

a, b

a, b

(c)

Fig. 2.NFA (a) for which the DFA produced by SUBSET(I) (b) is larger than the (minimal) DFA
produced by TRANSSET(I) (c).

4 Determinisation using Closures

We introduce aclosureoperation that can be used in the SUBSET algorithm instead of
the identity functionI. It aims to add NFA states to a given DFA state (i.e. a set of
NFA states) without affecting its language. This results inan algorithm that generates
smaller DFAs. In particular, we show that if the criterion toadd a state is chosen suitably,
SUBSET with closure is an algorithm that produces the minimal DFA directly.

Definition 2. For any set of statesP ⊆ SN of an NFAN and relation⊑ ⊆ SN ×
P(SN), theclosureof P under⊑, close⊑(P), is defined as:

close⊑(P) = {p ∈ SN | p ⊑ P}.

The language preorder⊑L can be lifted to operate on states and sets of states in the
following way. Define thelanguage of a set of statesP of an NFAN as:LN (P) =
⋃

p∈P LN (p). Language equivalence and inclusion can now be defined on anycombi-
nation of states and sets of states, in terms of set equivalence and inclusion. For instance,
for a statep ∈ SN and a set of statesP ⊆ SN , p ⊑L P holds ifLN (p) ⊆ LN (P).

Applying this, the algorithm SUBSET(close⊑L
) generates the minimal DFA that is

language equivalent to the input NFA. This statement is proven in [7].

5 Simulation Preorder

Although it ensures that the output DFA of SUBSET(close⊑L
) is minimal, language

inclusion is an unattractive preorder to use. Deciding language inclusion is PSPACE-
complete [13] which implies that known algorithms have an exponential time complex-
ity. Moreover, most algorithms involve a determinisation step which would render our
optimisation useless.

The simulation preorder⊂→ [12] is finer than language inclusion on NFAs, meaning
it relates fewer NFAs. However, considering its PTIME complexity (seee.g.[1, 9]), it is
an attractive way to “approximate” language inclusion (seealso [4]). Hence, as a more

Five Determinisation Algorithms 7

p0

p2

p1

p3 p4

p1,1

p1,2

p1,3 · · ·

pn,1

pn,2

pn,3 p5 p6

a, b

a, b

a

a

b

a

a, b

a, b

a

b

a, b

a, b

a

b

a, b a, b

Fig. 3. NFA of sizeO(n) for which SUBSET(close⊂
→

) generates a DFA of sizeO(2n) for any
n ≥ 1. The minimal DFA has 1 state.

practical alternative to SUBSET(close⊑L
) we define the algorithm SUBSET(close⊂

→

). The
required lifting of⊂→ to states and sets of states is as follows. For any statep ∈ SN and
set of statesP ⊆ SN of an NFAN , we havep ⊂

→ P iff:

• p ∈ FN ⇒∃q ∈ P . q ∈ FN and

• there exists a simulationR ⊆ SN × SN such that:

∀a ∈ ΣN . ∀p′ ∈ SN . p
a
−→N p′ ⇒ ∃q, q′ ∈ SN . q ∈ P ∧ q

a
−→N q′ ∧ p′ R q′.

The correctness of SUBSET(close⊂
→

) is established in [7]. The example in Figure 3
shows not only that the resulting DFA is no longer minimal, but moreover that it can
be exponentially larger than the minimal DFA. This NFA contains a pattern that repeats
itself n times for anyn ≥ 1. It is based on the NFA of Figure 1(b) interwoven with a
pattern that prevents SUBSET(close⊂

→

) from merging states that will later turn out to be
equivalent. The NFA accepts the language given by the regular expression(a | b)∗.

6 Determinisation using Compressions

Algorithm SUBSET(close⊂
→

) adds all simulated states to a generated set of states. An-
other option would be to remove all redundant states from such a set. More specifically,
we remove every state that is simulated by another state in the set. For this operation to
be well-defined, it is essential that no two different statesin the set are simulation equiv-
alent. This can be achieved by minimising the input NFA usingsimulation equivalence
prior to determinisation. In turn, this amounts to computing the simulation preorder that
was already necessary in the first place.

Definition 3. Given a setP such that¬∃p, q ∈ P . p 6= q∧p →← q. Thencompress⊂
→

(P)

denotes thecompressionof P under⊂→ and is defined as:

compress⊂
→

(P) = {p ∈ P | ∀q ∈ P . p 6= q ⇒ p 6⊂→ q}.

The functioncompress⊂
→

can be used not only for sets of states but also for transition
tuples. For that, we first define⊂→ on the transitions of an NFAN as follows. For any
(a, p), (b, q) ∈ ΣN ×SN , we have(a, p) ⊂→ (b, q) iff a = b andp ⊂

→ q. By Definition 3
compress⊂

→

is now properly defined on sets of transitions and it can be extended to
transition tuples in a straightforward manner:compress⊂

→

(T, b) = (compress⊂
→

(T),b).

8 Rob van Glabbeek and Bas Ploeger

This way, we obtain two more determinisation algorithms: SUBSET(compress⊂
→

)
and TRANSSET(compress⊂

→

). Their correctness proofs can be found in [7].

7 Lattice of Algorithms

Figure 4 orders the algorithms described in the previous sections in a lattice: we draw
an arrow from algorithmA to algorithmB iff for every input NFA,A produces a DFA
that is at most as large as the one produced byB. The algorithms SUBSET(close⊂

→

) and
TRANSSET(compress⊂

→

) are in the same class of the lattice, because they always yield
isomorphic DFAs. The relations of Figure 4 are substantiated in [7]; Figures 1(b), 2
and 3 provide counterexamples against further inclusions.

SUBSET(I)

TRANSSET(I)SUBSET(compress⊂
→

)

SUBSET(close⊂
→

), TRANSSET(compress⊂
→

)

SUBSET(close⊑L
)

Fig. 4. The lattice of algorithms presented in the previous sections.

8 Implementation and Benchmarks

We have implemented the algorithms SUBSET(I), TRANSSET(I), SUBSET(close⊂
→

),
SUBSET(compress⊂

→

) and TRANSSET(compress⊂
→

) in the C++ programming language.
A set of states or transitions is stored as a tree with the elements in the leaves. All
subtrees are shared among the sets to improve memory efficiency. A hash table provides
fast and efficient lookup of existing subtrees.

The benchmarks are performed on a 32-bits architecture computer having two Intel
Xeon 3.06 GHz CPUs and 4 GB of RAM. It runs Fedora Core 8 Linux, kernel 2.6.23.
The code is compiled using the GNU C++ compiler (version 4.1.2).

Every benchmark starts off by minimising the NFA using simulation equivalence.
For this we have implemented our partitioning algorithm [6]which is based on [5]
and also computes the simulation preorder on the states of the resulting NFA. Every
determinisation algorithm is applied to this minimised NFA, after which the resulting
DFA is minimised by the toolltsmin of the µCRL toolset [3, 8] (version 2.18.1).

For the benchmarks we consider a one-dimensional cellular automaton (CA) (see
e.g.[18]), which is represented by a functionρ : Σw → Σ called therule whereΣ is
an alphabet andw is thewidthof the automaton. Given an infinite sequenceσ ∈ Σ∞, a
stepof a CA is an application ofρ to everyw-length subsequence ofσ, which produces
a new sequence. The possible finite sequences appearing as a continuous subsequence

Five Determinisation Algorithms 9

STEP 4 STEP 5
DT MT DS MS |SD| DT MT DS MS |SD|

SUBSET(I) 0.6 0.4 5.4 2.0 58 370 212.576.7 688.2267.27 663 165
TRANSSET(I) 1.0 0.4 9.0 2.0 58 094 257.379.11 146.9263.07 541 248
SUBSET(close⊂

→

) 1.6 < 0.1 2.1 0.2 4 7202 739.71.61 123.2 6.3 176 008

SUBSET(compress⊂
→

) < 0.1 < 0.1 0.6 0.2 4 745 4.3 1.4 16.7 6.4 179 146
TRANSSET(compress⊂

→

) < 0.1 < 0.1 0.7 0.2 4 720 4.1 1.6 22.9 6.3 176 008

Table 1.Benchmark results for canonising NFAs of steps 4 and 5 of CA 110.
Legend:D = Determinisation,M = Minimisation,T = Time (sec),S = Space (peak memory use,
MB), |SD| = Size of DFA after determinisation.

of the infinite sequence obtained aftern steps of a given CA (starting from a random
input sequence) constitute a language that can be describedby a DFA [17]. It is known
that for some CA rules, the size of these DFAs increases exponentially inn (cf. [14]).

ForΣ = {0, 1} andw = 3, the CA with number 110 has the following rule:

ρ = { 000 7→ 0, 001 7→ 1, 010 7→ 1, 011 7→ 1,

100 7→ 0, 101 7→ 1, 110 7→ 1, 111 7→ 0 }.

It is known to be computationally universal and to exhibit the exponential blow-up
phenomenon described above. We have generated the minimal DFAs for steps 1 through
5 of this CA using the various algorithms presented here. Themost interesting results
are those for steps 4 and 5, which are shown in Table 1. The input NFA has 228 states for
step 4 and 1 421 for step 5; the minimal DFAs have sizes 1 357 and18 824 respectively.
The algorithms that usecompress⊂

→

clearly outperform the others, in both memory and
time efficiency. Every algorithm that uses a function other thanI, generates a DFA that
is an order of magnitude smaller than that of itsI-counterpart.

9 Conclusions

We have presented a schematic generalisation of the well-known subset construction
algorithm that allows for a function to be applied to every generated set of states. We
have given a similar scheme for a variant of subset construction that operates on sets
of transitions rather than states. Next, we instantiated these schemes with several set-
expanding or -reducing functions to obtain various determinisation algorithms. One of
these algorithms even produces the minimal DFA directly, but its use of the PSPACE-
hard language preorder renders it impractical. As our aim isto reduce the average-case
workload in practice, we instead use the PTIME-decidable simulation preorder in the
other algorithms. We have classified all presented algorithms in a lattice, based on the
sizes of the DFAs they produce. This is a natural criterion, as the worst-case complexi-
ties are the same for all algorithms. To assess their performance, we have implemented
and benchmarked them. The case study comprised NFAs describing patterns in the el-
ementary cellular automaton with rule number 110. On these examples, the algorithms
that use a function to reduce the computed sets, convincingly outperformed the others.

10 Rob van Glabbeek and Bas Ploeger

Based on our algorithm schemes, many more algorithms can be constructed by sub-
stituting various functions, depending on the specific needs and applications. Moreover,
the functions we defined here could be equipped with any suitable preorder or partial
order,e.g. from the linear time – branching time spectrum. We also remark that our
optimisations to subset construction are particularly beneficial in cases where normal
subset construction leaves a large gap between the generated DFA and the minimal one.

Acknowledgements.We would like to thank Jan Friso Groote, Tim Willemse and Se-
bastian Maneth for valuable ideas, discussions and/or comments.

References

1. B. Bloom & R. Paige (1995):Transformational design and implementation of a new efficient
solution to the ready simulation problem.Science of Computer Programming24(3), pp.
189–220.

2. J.A. Brzozowski (1963):Canonical regular expressions and minimal state graphs fordefi-
nite events.In Proceedings of the Symposium onMathematical Theory of Automata, MRI
Symposia Series, vol. 12, Polytechnic Press, Polytechnic Institute of Brooklyn, pp. 529–561.

3. CWI: µCRL Toolset Home Page.http://www.cwi.nl/∼mcrl/.
4. D.L. Dill, A.J. Hu & H. Wong-Toi (1992): Checking for language inclusion using simu-

lation preorders. In Proceedings of the Third International Workshop onComputer-Aided
Verification, LNCS 575, Springer, pp. 255–265.

5. R. Gentilini, C. Piazza & A. Policriti (2003):From bisimulation to simulation: Coarsest
partition problems.Journal of Automated Reasoning31(1), pp. 73–103.

6. R.J. van Glabbeek & B. Ploeger (2008):Correcting a space-efficient simulation algorithm.
To appear in Proc. 20th Int. Conf. onComputer Aided Verification, LNCS, Springer.

7. R.J. van Glabbeek & B. Ploeger (2008):Five Determinisation Algorithms. CS-Report 08-14,
Eindhoven University of Technology.

8. J.F. Groote & M.A. Reniers (2001):Algebraic process verification.In J.A. Bergstra, A. Ponse
& S.A. Smolka, editors:Handbook of Process Algebra, Elsevier, pp. 1151–1208.

9. M.R. Henzinger, T.A. Henzinger & P.W. Kopke (1995):Computing simulations on finite
and infinite graphs. In 36th Annual Symposium onFoundations of Computer Science
(FOCS’95), IEEE Computer Society Press, pp. 453–462.

10. J.E. Hopcroft (1971):An n log n algorithm for minimizing states in a finite automaton.In
Z. Kohavi, editor:Theory of Machines and Computations, Academic Press, pp. 189–196.

11. J.E. Hopcroft & J.D. Ullman (1979):Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley.

12. D.M.R. Park (1981):Concurrency and automata on infinite sequences.In Proceedings 5th
GI-Conference onTheoretical Computer Science, LNCS 104, Springer, pp. 167–183.

13. L.J. Stockmeyer & A.R. Meyer (1973):Word problems requiring exponential time.In
Proc. 5th Annual ACM Symposium onTheory of Computing(STOC’73), ACM, pp. 1–9.

14. K. Sutner (2003):The size of power automata.Theor. Comput. Sci.295(1-3), pp. 371–386.
15. D. Tabakov & M.Y. Vardi (2005):Experimental evaluation of classical automata construc-

tions. In Proceedings of the 12th International Conference onLogic for Programming, Arti-
ficial Intelligence, and Reasoning, LNCS 3835, Springer, pp. 396–411.

16. B.W. Watson (1995):Taxonomies and Toolkits of Regular Language Algorithms. PhD thesis,
Technische Universiteit Eindhoven.

17. S. Wolfram (1984):Computation theory of cellular automata.Communications in Mathe-
matical Physics96(1), pp. 15–57.

18. S. Wolfram (2002):A New Kind of Science. Wolfram Media, Inc.

