Five Determinisation Algorithms

Rob van Glabbeék? and Bas Ploegét

! National ICT Australia, Locked Bag 6016, Sydney, NSW1466sthalia
2 School of Computer Science and Engineering, The Univeositlyew South Wales,
Sydney, NSW 2052, Australia
3 Department of Mathematics and Computer Science, EindhOwérersity of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. Determinisation of nondeterministic finite automata is dl\seidied
problem that plays an important role in compiler theory aystesm verification.
In the latter field, one often encounters automata congistfrmillions or even
billions of states. On such input, the memory usage of aislysls becomes the
major bottleneck. In this paper we present several detéation algorithms, all
variants of the well-known subset construction, that aimetiuce memory usage
and produce smaller output automata. One of them produdesata that are
already minimal. We apply our algorithms to determiniseomata that describe
the possible sequences appearing after a fixed-length raallofar automaton
110, and obtain a significant improvement in both memory and efficiency.

1 Introduction

Finite state automata (or finite state machines) are an ls$tatd and well-studied
model of computation. From a theoretical point of view, tlaeg an interesting object
of study because they are expressive yet conceptually easyderstand and intuitive.
They find applications in compilers, natural language pseitgy, system verification
and testing, but also in fields outside of (theoretical) cotapscience like switching
circuits and chip design. Over the years, many flavours aridnts of finite state ma-
chines have been defined and studied for a large variety pbges.

One of the most classic and elementary type of finite statdqhmads thenondeter-
ministic finite automatofNFA). Typical applications of finite state automata invelv
checking whether some sequence of symbols meets some tiywtéerion, such as
displaying a prescribed pattern or being correct input fgiven program, a problem
that can often be recast as checking whether that sequeacedpted by a given NFA.

A more restrictive type of automaton is teterministic finite automatofDFA).
DFAs are as expressive as NFAs, in the sense that for everythim exists a DFA
that islanguage equivaler(i.e. accepts the same input sequences). Contrary to NFAs,
for any DFA there is a trivial linear time, constant spacdjmanalgorithm to check
whether an input sequence is accepted or not. Consequerityl-analyser generators
like LEx work on DFAs, and so do many implementationss&EP. For this reason, in
many applications it pays to convert NFAs into DFAS, everutffothe worst-case time
and space complexities of this conversion are exponentthk size of the input NFA.

* This author is partially supported by the Netherlands Oggion for Scientific Research
(NWO) under VoLTS grant number 612.065.410.

2 Rob van Glabbeek and Bas Ploeger

Once a language equivalent DFA of an NFA has been found, fiuially minimised
to obtain the smallest such DFA. This minimal DFA is uniqud #re problem of find-
ing it for a given NFA is called theanonisation problem

Another application of NFAs is in the realm pfocess theoryand system verifi-
cationwhere they are used to model the behaviour of distributettsys Typically,
both a specification and an implementation of a system aresepted as NFAs, and
the question arises whether the execution sequences of ehai¢ a subset of those
of another. This is th&ace inclusion problemAlthough PSPACE-hard in general, this
problem is decidable in PTIME once the NFAs are convertealéauivalent DFAS.

As we see, in both the canonisation problem and the tracasiuei problem, de-
terminisation plays an essential role. The standard détésation algorithm is called
subset constructiofseee.g.[11]). Although the determinisation problem is EXPTIME-
hard, this algorithm is renowned for its good performangeractice. For minimisation
of DFAs a lot of algorithms have been proposed, of which Watsesents a taxon-
omy and performance analyses [16]. The algorithm with tret time complexity is by
Hopcroft [10]: O(n log n) wheren is the number of states in the input DFA.

Another algorithm for canonisation is by Brzozowski [2]gknerates the minimal
DFA directly from an input NFA by repeating the process of/&esing” and determin-
ising the automaton twice. Tabakov and Vardi compare baphagrhes to canonisation
experimentally by running them on randomly generated aatarfi5].

On some NFAs, the exponential blow-up by subset constnudtiainavoidable.
However, we have encountered NFAs for which subset cortgiruconsumes a lot of
memory and generates a DFA that is much larger than the miridaa&. Therefore,
our main goal is to find algorithms that are more memory efficéand produce smaller
DFAs than subset construction.

In this paper we present five determinisation algorithmetas subset construc-
tion. For all of them we prove correctness. One algorithmegetes the minimal DFA
directly and hence is eanonisation algorithmHowever, it calculates language inclu-
sion as a subroutine; as deciding language inclusion is B&R#gomplete, it is unattrac-
tive to use in an implementation. The other four produce a @4 is not necessarily
minimal but is usually smaller than the DFA produced by stibsastruction.

We have implemented subset construction and these four igewitams. We have
benchmarked these implementations by running them on NiR&tsdescribe patterns
on the lines of a cellular automaton’s evolution. We compghesimplementations on
the time and memory needed for the complete canonisatiaepsd.e. including min-
imisation) and the size of the DFA after determinisation.

2 Preliminaries

Finite automata.A nondeterministic finite automatdiNFA) A is a tuple(Syr, X,
On, i, Fv) whereSy is a finite set of states)y is a finite input alphabetiy C
Sn x X x Sy is atransition relation € Sy is the initial state and’ys C Sy is a set
of final (or accepting) states. deterministic finite automatoiDFA) is an NFAD such
that for allp € Sp anda € X' there is precisely ongc Sp such thaip, a, q) € 0p.

In graphical representations of DFAs we also allow statashihveat mostone out-
goinga-transition for each alphabet symholFormally speaking, these abbreviate the

Five Determinisation Algorithms 3

DFA obtained by adding a nhon-acceptisigk state as the target of all missing transi-
tions. Note that adding such a state preserves languageaéenie (defined below).

For any alphabet’, >* denotes the set of all finite strings ovEBrandes € X*
denotes the empty string. Any subset’df is called danguage ovep’. For any states
p,q € Sy of an NFAN and stringr € X%, witho = 01 --- 0y, andoy, ..., 0, € Dy
for somen > 0, we writep S\ ¢ to denote the fact that:

Elva" -yPn € SNPO =D A Pn =4 A (p07017p1)7" '7(pn7130'n7pn) € 6/\/

Language semanticsThe language of a state € S, of an NFAN is defined as:
Ln(p) = {0 € X% | 3¢ € Fx.p S ¢}. Thelanguage of an NFAV is defined
as:L(N) = Ly (inx). For any NFASN and M and statep € Sy andg € Sy, pis
language includedh ¢, denotedb Ty, ¢, iff Lar(p) € La(q). Moreover,p andq are
language equivalentienotegp= q, iff pCqAqELp. An NFA N islanguage included
in an NFAM iff ixr T inq and N and M arelanguage equivalentf iy =r ing.

Simulation semanticsGiven NFAsSA and M, arelation? C Sxr x Sy, is asimulation
iff for any p € Syr andgq € Snq, p R g implies:

e pc Fy=qe Fy and
eVae Xy .Vp eSnv.ponvy = I €Su.q2mgd ANp Ry
Given NFAsN andM, for anyp € Sy andg € S
e pissimulated by, denoted C g, iff there exists a simulatio® such thap R g;
e p andq aresimulation equivalendenoted = ¢, iff p S ¢ A q S p;
Clearlyp € ¢ impliesp Cy, gq.

Subset constructiorThe subset construction (or powerset construction) istdredsird

way of determinising a given NFA. For reasons that will beecapparent in the next
sections, we slightly generalise the normal algorithm byraenting it with a functiorf

on sets of states, which is applied to every generated setalfjorithm is Algorithm 1

and shall be referred to aU8sSET(f). It takes an NFAA and generates a DFR.

Of course, it should be the case th\dt=;, D, which depends strongly on the function

f. For normal subset constructionySseT(Z), whereZ is the identity function, it is
known that the language @f is indeed preserved. In the sequel, whenever we use the
term “subset construction” we mean the normal algoritheaSUBSET(Z).

Itis known that in the worst case, determinisation yieldd&\Ehat is exponentially
larger than the input NFA. An example of an NFA that gives tssuch an exponen-
tial blow-up is the NFA that accepts the language specifiethbyregular expression
X*xX™ for some alphabel’, x € ¥ andn > 0. Figure 1(a) shows the NFA for
XY = {a,b} andz = a. This NFA has: + 2 states, whereas the corresponding DFA has
27+1 states and is already minimal.

Aninteresting thing to note is that if the initial state wameepting (Figure 1(b)), the
minimal DFA would consist of only one state with anb-loop: the accepted language
has become~*. However, subset construction still produces the expdalgntarger
DFA first, which should then be reduced to obtain the sintd¢es minimal DFA.

4 Rob van Glabbeek and Bas Ploeger

Algorithm 1 The SUBSET(f) determinisation algorithm
Pre: N = (Sn, X, Onryin, Fiv) is an NFA
Post: D = (SD, XYp,0p,ip, FD) is a DFA
1: Yp = XN, 0p :=0;ip := f({ZN’}), Fp :=0;
2: Sp := {ip}; todo := {ip}; done := ();
3: while todo # () do
4 pick aP € todo;
5 forall a € Y»r do
6 Pi=f({p'€Sx|IpeP.poinp});
7 Sp = S’DU{P,};
8 op := 5'DU{(P,(I,PI)};
9 todo := todo U ({ P’} \ done);
10: end for
11
12
13
14

if 3p € P. p € Fx then
Fp = Fp U {P};
end if
: todo :=todo \ {P};
15: done := done U {P};
16: end while

3 Determinisation using Transition Sets

In this section we show that subset construction can justelsbe done on sets of
transitions as on sets of states. We observe that the cotidritof an NFA state to the
behaviour of a DFA stat@ consists entirely op’s outgoing transitions. We no longer
think of a DFA state as being a set of NFA states, but rathet af $¢FA transitions

Definition 1. Given an NFAN/, atransition tupleis a pair(7, b) whereT € P(Xy x
Syr) is a set of transitions aride B is a boolean.

For every transition tupléT’,b) we define the projection functionet and fin as:

a,b
a a,b a,b a,b
—{ Po @ DPn
@)
a,b
a,b a,b a,b
(b)

Fig. 1. Two NFAs of sizeO(n) for which subset construction produces a DFA of si2€™).
Here initial states are marked by unlabelled incoming astamd final states by double circles.
In case (a) this DFA is already minimal; in case (b) the midiBRA has size 1.

Five Determinisation Algorithms 5

Algorithm 2 The TRANSSET(f) determinisation algorithm
Pre: N = (Sn, X, Onryin, Fiv) is an NFA

Post: D = (SD, XYp,0p,ip, FD) is a DFA

1 Xp := Xn; 6p = 0;ip := f(tuple(in)); Fp :=0;

2: Sp := {ip}; todo := {ip}; done := ();

3: while todo # () do

4 pick aP € todo;

5. forall a € ¥ do

6 P" = f(U(a peser(p) trans(p), 3(a,p) € set(P).p € Fy);
7 Sp = S’DU{P,};

8 op = 5'DU{(P,(I,PI)};

9 todo := todo U ({ P’} \ done);
10: end for
11
12
13
14

if fin(P) then
Fp = Fp U {P};
end if
: todo:=todo \ {P};
15: done := done U {P};
16: end while

set(T,b) = T andfin(T,b) = b. For every state € Sy of NFA N/, trans(p) is the set
of outgoing transitions of andtuple(p) is the transition tuple belonging o

trans(p) = {(a,q) € Znv x Sx | p = q}

tuple(p) = (trans(p),p € Fn).
The DFA stateP C Sx now corresponds to the transition tugl®,) whereT =
Upep trans(p) andb = Jp € P. p € Fjy. We need the booleanto indicate whether
the DFA state is final as this can no longer be determined frametements of the set.
Only the labels and target states of the transitions aredtoecause the source states
are irrelevant and would only make the sets unnecessarijg.la

Given NFA \/, the language of a transition(a,p) € Xx x Sy is defined as:

Ly (a,p) ={ace Xy, | c€Lx(p)}. Thelanguage of a set of transitioSis defined
asLy (T) = U,er La(t) and thelanguage of a transition tupl€r’, b) is defined as:

Lar(T,b) = Lar(T) U {éa} :; fb’.

Language inclusion and equivalence for transitions angsitian tuples can now be
defined in the usual way by means of set inclusion and equality

The determinisation algorithm that uses transition tugesligorithm 2. We shall
refer to it as RANSSET(f) wheref is a function on transition tuples. Again, language
preservation depends on the specific functfobeing used. Fof = 7 this is indeed
the case, which we prove in [7], the full version of this pajusing TRANSSET(Z) for
determinisation can give a smaller DFA thaneSET(Z) as is shown by the example
in Figure 2. Here, RANSSET(Z) happens to produce the minimal DFA directly. This is
generally not the case: on the NFA of Figure 1(bRANSSET(Z) generates a DFA of
size2™+1, while the minimal DFA has size 1.

6 Rob van Glabbeek and Bas Ploeger

Fig. 2. NFA (a) for which the DFA produced bydBseT(Z) (b) is larger than the (minimal) DFA
produced by RANSSET(Z) (c).

4 Determinisation using Closures

We introduce alosureoperation that can be used in theesET algorithm instead of
the identity functionZ. It aims to add NFA states to a given DFA state.(a set of
NFA states) without affecting its language. This resultainalgorithm that generates
smaller DFAs. In particular, we show that if the criterioratid a state is chosen suitably,
SussETwith closure is an algorithm that produces the minimal DFAedily.

Definition 2. For any set of state® C Sy of an NFAN and relationC C Sx x
P(Snr), theclosureof P underC, closec (P), is defined as:

closec(P) ={p€ Sy | pC P}.

The language preordé&t;, can be lifted to operate on states and sets of states in the
following way. Define thdanguage of a set of statd3 of an NFAN as: Ly (P) =
Upep L (p). Language equivalence and inclusion can now be defined on@npi-
nation of states and sets of states, in terms of set equaberd inclusion. For instance,
for a statep € Sy and a set of stateB C Sy, p Ty, P holds if L (p) C Lar(P).

Applying this, the algorithm 8BSET(close,) generates the minimal DFA that is
language equivalent to the input NFA. This statement is gmow [7].

5 Simulation Preorder

Although it ensures that the output DFA oSSET(closer,) is minimal, language
inclusion is an unattractive preorder to use. Deciding leagg inclusion is PSPACE-
complete [13] which implies that known algorithms have apanential time complex-
ity. Moreover, most algorithms involve a determinisati¢epswhich would render our
optimisation useless.

The simulation preordef, [12] is finer than language inclusion on NFAs, meaning
it relates fewer NFAs. However, considering its PTIME coexitly (seee.g.[1, 9]), itis
an attractive way to “approximate” language inclusion @kse [4]). Hence, as a more

Five Determinisation Algorithms 7

N

a

,b b
DRk
i}

Fig. 3. NFA of size O(n) for which SUBSET(close.) generates a DFA of siz&(2") for any
n > 1. The minimal DFA has 1 state.

a

practical alternative to @8SET(closer,) we define the algorithm @ seT(closec). The

required lifting ofC to states and sets of states is as follows. For any gtaté& ys and
set of stated”> C S of an NFAN, we havep C P iff:

e pEFy=3dqeP.qe Fyand
e there exists a simulatioR C Sy x Sxr such that:
Va€ Xy VP €Snv.ponvp = 3¢,¢d €Sv.qePAqgSNvgd ANp R

The correctness of BSET(close-) is established in [7]. The example in Figure 3
shows not only that the resulting DFA is no longer minimal; moreover that it can
be exponentially larger than the minimal DFA. This NFA cansza pattern that repeats
itself n times for anyn > 1. It is based on the NFA of Figure 1(b) interwoven with a
pattern that preventsuBSET(close-) from merging states that will later turn out to be
equivalent. The NFA accepts the language given by the regufaessior{a | b)*.

6 Determinisation using Compressions

Algorithm SuBsET(close-) adds all simulated states to a generated set of states. An-
other option would be to remove all redundant states frorh sLget. More specifically,

we remove every state that is simulated by another stateiseth For this operation to

be well-defined, it is essential that no two different statdhe set are simulation equiv-
alent. This can be achieved by minimising the input NFA usiingulation equivalence
prior to determinisation. In turn, this amounts to compgtime simulation preorder that
was already necessary in the first place.

Definition 3. Givenasef” suchthat-dp,q € P.p # qAp=q. Thencompressg (P)
denotes theompressiowf P underC and is defined as:

compressc (P) ={pe P |Vge P.p#q=p% q}.

The functioncompress~ can be used not only for sets of states but also for transition
tuples. For that, we first defire on the transitions of an NFA/ as follows. For any
(a,p), (b,q) € En x Sy, we have(a, p) S (b, q) iff a =bandp C ¢. By Definition 3
compress~ is now properly defined on sets of transitions and it can bensdd to
transition tuples in a straightforward mannesmpressc (T, b) = (compress (T'),b).

8 Rob van Glabbeek and Bas Ploeger

This way, we obtain two more determinisation algorithmsBSET(compress)
and TRANSSET(compress). Their correctness proofs can be found in [7].

7 Lattice of Algorithms

Figure 4 orders the algorithms described in the previousexin a lattice: we draw
an arrow from algorithmi to algorithmB iff for every input NFA, A produces a DFA
that is at most as large as the one produce@byhe algorithms SBSET(closeg) and
TRANSSET(compress) are in the same class of the lattice, because they always yiel
isomorphic DFAs. The relations of Figure 4 are substardiate[7]; Figures 1(b), 2
and 3 provide counterexamples against further inclusions.

SUBSET(Z)

e

SUBSET(compressc) TRANSSET(Z)
N

SUBSET(closec), TRANSSET(compress)

f

SUBSET(closer,)

\Eg/

Fig. 4. The lattice of algorithms presented in the previous sestion

8 Implementation and Benchmarks

We have implemented the algorithme&sET(Z), TRANSSET(Z), SUBSET(closec),
SUBSET(compress-) and TRANSSET(compressc) in the C++ programming language.
A set of states or transitions is stored as a tree with the eisnin the leaves. All
subtrees are shared among the sets to improve memory efficiehash table provides
fast and efficient lookup of existing subtrees.

The benchmarks are performed on a 32-bits architecture gmnpaving two Intel
Xeon 3.06 GHz CPUs and 4 GB of RAM. It runs Fedora Core 8 Linexnkl 2.6.23.
The code is compiled using the GNU C++ compiler (version).1.

Every benchmark starts off by minimising the NFA using siatign equivalence.
For this we have implemented our partitioning algorithm y@jich is based on [5]
and also computes the simulation preorder on the statesaktulting NFA. Every
determinisation algorithm is applied to this minimised NFfter which the resulting
DFA is minimised by the todksmin of the pCRL toolset [3, 8] (version 2.18.1).

For the benchmarks we consider a one-dimensional cellukanzaton (CA) (see
e.9.[18]), which is represented by a functipn: X — 3 called therule whereX is
an alphabet and is thewidth of the automaton. Given an infinite sequence X>°, a
stepof a CA is an application gb to everyw-length subsequence 6f which produces
a new sequence. The possible finite sequences appearingasraious subsequence

Five Determinisation Algorithms 9

STEP 4 STEP 5
DT [MT |[DS|MS[[Sp|| DT |[MT[DS |MS]| [Sp|
SUBSET(Z) 0.6) 0.4/5.4/2.058370 212.976.7 688.2267.47 663 164
TRANSSET(Z) 1.0 0.4/9.0,2.058094 257.379.11146.9263.Q7 541 244
SUBSET(closeg) 1.6<0.142.1) 0.2 47202 739.11.61) 123.2 6.3 1760089
SUBSET(compressg) < 0.1l< 0.1j0.6{ 0.2 4745 4.3 1.4 16.7 6.4 179144
TRANSSET(compress)|< 0.11< 0.110.7/10.2 472G 4.1 1.6| 229 6.3 176008

Table 1.Benchmark results for canonising NFAs of steps 4 and 5 of O& 11
Legend:D = DeterminisationM = Minimisation,T = Time (sec)S = Space (peak memory use,
MB), |Sp| = Size of DFA after determinisation.

of the infinite sequence obtained aftesteps of a given CA (starting from a random

input sequence) constitute a language that can be destijte®FA [17]. It is known

that for some CA rules, the size of these DFAs increases exyialy inn (cf. [14]).
ForX = {0,1} andw = 3, the CA with number 110 has the following rule:

p={000~ 0,001+~ 1,010+— 1,011+ 1,
100+— 0,101 — 1,110 — 1,111 — 0 }.

It is known to be computationally universal and to exhibi¢ ixponential blow-up
phenomenon described above. We have generated the miniAalfdr steps 1 through

5 of this CA using the various algorithms presented here.rnibst interesting results
are those for steps 4 and 5, which are shown in Table 1. ThéMpAhas 228 states for
step 4 and 1421 for step 5; the minimal DFAs have sizes 1 357&8&4 respectively.
The algorithms that ussompress~ clearly outperform the others, in both memory and
time efficiency. Every algorithm that uses a function othentZ, generates a DFA that
is an order of magnitude smaller than that ofitsounterpart.

9 Conclusions

We have presented a schematic generalisation of the wellskrsubset construction
algorithm that allows for a function to be applied to everygeted set of states. We
have given a similar scheme for a variant of subset congbrutihat operates on sets
of transitions rather than states. Next, we instantiatedelschemes with several set-
expanding or -reducing functions to obtain various detaigaition algorithms. One of
these algorithms even produces the minimal DFA directly,tswse of the PSPACE-
hard language preorder renders it impractical. As our aitm isduce the average-case
workload in practice, we instead use the PTIME-decidabiteuation preorder in the
other algorithms. We have classified all presented algosti a lattice, based on the
sizes of the DFAs they produce. This is a natural criterigrthe worst-case complexi-
ties are the same for all algorithms. To assess their pedioca, we have implemented
and benchmarked them. The case study comprised NFAs degcpiatterns in the el-
ementary cellular automaton with rule number 110. On thgaeeles, the algorithms
that use a function to reduce the computed sets, convinocmgperformed the others.

10 Rob van Glabbeek and Bas Ploeger

Based on our algorithm schemes, many more algorithms caoristracted by sub-
stituting various functions, depending on the specific seadi applications. Moreover,
the functions we defined here could be equipped with anyldeifareorder or partial
order,e.g.from the linear time — branching time spectrum. We also ré&ntiaat our
optimisations to subset construction are particularlydfieral in cases where normal
subset construction leaves a large gap between the gethBiagdeand the minimal one.

Acknowledgementsie would like to thank Jan Friso Groote, Tim Willemse and Se-
bastian Maneth for valuable ideas, discussions and/or antsn

References

1. B.Bloom & R. Paige (1995)Transformational design and implementation of a new efftcie
solution to the ready simulation problemScience of Computer Programmi2g(3), pp.
189-220.

2. J.A. Brzozowski (1963)Canonical regular expressions and minimal state graphsifsfi-
nite events.In Proceedings of the Symposium &fathematical Theory of AutomatdRI
Symposia Series, vol. 12, Polytechnic Press, Polytechstitiite of Brooklyn, pp. 529-561.

. CWI: uCRL Toolset Home Pagét t p: // www. cwi . nl / ~nTrl /.

. D.L. Dill, AJ. Hu & H. Wong-Toi (1992): Checking for language inclusion using simu-
lation preorders. In Proceedings of the Third International Workshop @omputer-Aided
Verification LNCS 575, Springer, pp. 255-265.

5. R. Gentilini, C. Piazza & A. Policriti (2003):From bisimulation to simulation: Coarsest
partition problems.Journal of Automated ReasoniBg(1), pp. 73—-103.

6. R.J. van Glabbeek & B. Ploeger (200&)orrecting a space-efficient simulation algorithm.
To appear in Proc. 20th Int. Conf. @omputer Aided VerificatiolNCS, Springer.

7. R.J.van Glabbeek & B. Ploeger (200B)ve Determinisation AlgorithmsCS-Report 08-14,
Eindhoven University of Technology.

8. J.F. Groote & M.A. Reniers (2001Algebraic process verificatiomn J.A. Bergstra, A. Ponse
& S.A. Smolka, editorsHandbook of Process Algehiélsevier, pp. 1151-1208.

9. M.R. Henzinger, T.A. Henzinger & P.W. Kopke (1995Computing simulations on finite
and infinite graphs. In 36th Annual Symposium otroundations of Computer Science
(FOCS'95), IEEE Computer Society Press, pp. 453-462.

10. J.E. Hopcroft (1971)An nlog n algorithm for minimizing states in a finite automatoim

Z. Kohavi, editor:Theory of Machines and Computatioisademic Press, pp. 189-196.
11. J.E. Hopcroft & J.D. Uliman (1979)iIntroduction to Automata Theory, Languages, and
Computation Addison-Wesley.

12. D.M.R. Park (1981)Concurrency and automata on infinite sequendasProceedings 5th
GI-Conference omheoretical Computer SciendeNCS 104, Springer, pp. 167-183.

13. L.J. Stockmeyer & A.R. Meyer (1973)Word problems requiring exponential timen
Proc. 5th Annual ACM Symposium ofheory of ComputingSTOC’73), ACM, pp. 1-9.

14. K. Sutner (2003)The size of power automatd@heor. Comput. ScR95(1-3), pp. 371-386.

15. D. Tabakov & M.Y. Vardi (2005)Experimental evaluation of classical automata construc-
tions. In Proceedings of the 12th International Conferencé ogic for Programming, Arti-
ficial Intelligence, and ReasoningNCS 3835, Springer, pp. 396-411.

16. B.W. Watson (1995)Taxonomies and Toolkits of Regular Language Algorithit thesis,
Technische Universiteit Eindhoven.

17. S. Wolfram (1984):Computation theory of cellular automat&Communications in Mathe-
matical Physic86(1), pp. 15-57.

18. S. Wolfram (2002)A New Kind of SciencéNolfram Media, Inc.

AW

