
ar
X

iv
:0

90
5.

12
48

v1
 [

cs
.F

L
]

 8
 M

ay
 2

00
9

Deterministic Pushdown Automata and Unary Languages∗ †

Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione

Università degli Studi di Milano

via Comelico 39, 20135 Milano, Italy

pighizzini@dico.unimi.it

Abstract

The simulation of deterministic pushdown automata defined over a one-letter al-
phabet by finite state automata is investigated from a descriptional complexity point
of view. We show that each unary deterministic pushdown automaton of size s can
be simulated by a deterministic finite automaton with a number of states that is ex-
ponential in s. We prove that this simulation is tight. Furthermore, its cost cannot
be reduced even if it is performed by a two-way nondeterministic automaton. We also
prove that there are unary languages for which deterministic pushdown automata can-
not be exponentially more succinct than finite automata. In order to state this result,
we investigate the conversion of deterministic pushdown automata into context-free
grammars. We prove that in the unary case the number of variables in the result-
ing grammar is strictly smaller than the number of variables needed in the case of
nonunary alphabets.

Keywords: Formal languages; deterministic pushdown automata; unary languages; de-
scriptional complexity.

1 Introduction

Deterministic context-free languages and their corresponding devices, deterministic push-
down automata (dpda’s), have been extensively studied in the literature (e.g., [5, 10, 15,
16, 17]). They are interesting not only from a theoretical point of view, but even, and per-
haps mainly, for their relevance in connection with the implementation of efficient parsers.
It is well-known that the class of deterministic context-free languages is a proper subclass
of that of context-free languages, characterized by (nondeterministic) pushdown automata
(pda’s). In the case of languages defined over a one-letter alphabet, called unary or tally
languages, these classes collapse: in fact, as proved in [6], each unary context-free lan-
guage is regular. This implies that unary pda’s and unary dpda’s can be simulated by
finite automata.

∗A preliminary version of this work was presented at the 13th International Conference on Implemen-
tation and Application of Automata, CIAA 2008, San Francisco, USA, July 21-24, 2008.

†Partially supported by MIUR under the project PRIN “Aspetti matematici e applicazioni emergenti
degli automi e dei linguaggi formali: metodi probabilistici e combinatori in ambito di linguaggi formali”.

http://arxiv.org/abs/0905.1248v1

In this paper we study the simulation of unary dpda’s by finite automata from a descrip-
tional complexity point of view. As a main result, we get the cost, in terms of the sizes of
the descriptions, of the optimal simulation between these kinds of devices.

The problem of the simulation of dpda’s by finite automata was previously studied in the
literature in the case of general alphabets: in [16] it was proved that each dpda of size
s accepting a regular language can be simulated by a finite automaton with a number of
states bounded by a function which is triply exponential in s. That bound was reduced
to a double exponential in [17]. It cannot be further reduced because there is a matching
lower bound [13].

We show that in the unary case the situation is different. In fact, we are able to prove
that each unary dpda of size s can be simulated by a one-way deterministic automaton
(1dfa) with a number of states exponential in s. We prove that this simulation is tight, by
showing a family of languages exhibiting an exponential gap between the size of dpda’s
accepting them, and the number of states of equivalent 1dfa’s.

As proved in [12], each n-state unary two-way nondeterministic finite automaton (2nfa)
can be simulated by a 1dfa with 2O(

√
n logn) states. This suggests the possibility of a

smaller gap between the descriptional complexities of unary dpda’s and 2nfa’s. However,
we show that even in this case the gap can be exponential.

We further deepen the investigation in this subject, in order to discover whether or not
for each unary regular language there exists an exponential gap between the sizes of
deterministic pushdown automata and of finite automata. We give a negative answer
to this question, by showing a family of languages for which unary dpda’s cannot be
exponentially more succinct than finite automata.

In order to prove this last result, we study the problem of converting unary dpda’s into
equivalent context-free grammars. In general, given a pda with n states and m input sym-
bols, the standard conversion technique produces an equivalent grammar with n2m + 1
variables. As proved in [7], this number cannot be reduced, even if given pda is deter-
ministic. Here, we show that in the case of a unary alphabet, a reduction to 2mn is
possible.

We briefly mention that the cost of the simulation of unary (nondeterministic) pda’s by
finite automata was studied in [14], where the authors proved that each unary pda with
n states and m stack symbols, such that each push adds exactly one symbol, can be
simulated by a 1dfa with 2O(n4m2) states. Our main result reduces this bound to 2nm,
when the given pda is deterministic.

2 Preliminaries

Given a set S, we let #S denote its cardinality, and 2S denote the family of all its subsets.

A language L is said to be unary if it is defined over a one-letter alphabet. In this case,
we let L ⊆ a∗. In a similar way, an automaton is unary if its input alphabet contains only
one letter. It is easy to prove the following:

2

Theorem 1 Let L be a unary language. Then L is regular if and only if there exist two
integers µ ≥ 0, λ ≥ 1 such that for each integer n ≥ µ, an ∈ L if and only if an+λ ∈ L.

If the constant µ in Theorem 1 is 0, then L is said to be cyclic or even λ-cyclic. Fur-
thermore, in this case, L is said to be properly λ-cyclic, when it is not λ′-cyclic for any
λ′ < λ. It is immediate to see that the minimum 1dfa accepting a properly λ-cyclic
language consists of a cycle of λ states.

A pushdown automaton [9] M = (Q,Σ,Γ, δ, q0, Z0, F) is said to be deterministic [5] if and
only if for each q ∈ Q, Z ∈ Γ the following hold:

1. if δ(q, ǫ, Z) 6= ∅ then δ(q, a, Z) = ∅, for each a ∈ Σ, and

2. for each σ ∈ Σ ∪ {ǫ}, δ(q, σ, Z) contains at most one element.

A configuration of M is a triple (q, w, γ) where q is the current state, w the unread part of
the input, and γ the current content of the pushdown store. The leftmost symbol of γ is
the topmost stack symbol. As usual, we let ⊢ denote the relation between configurations
such that for two configurations α and β, α ⊢ β if and only if β is reached from α in one
move. We also write α ⊢t β if and only if β can be reached from α in t ≥ 0 moves, and
α ⊢∗ β if and only if α ⊢t β for some t ≥ 0.

While in the nondeterministic case acceptance by final states is equivalent to acceptance
by empty stack, for dpda’s the second condition is strictly weaker (dpda’s accepting with
empty stack characterize the class of deterministic context-free languages having the prefix
property). Hence, the acceptance condition we will consider in the paper is that by final
states. In particular, given a pda M , we will denote by L(M) the language accepted by it
under such a condition, i.e., L(M) = {w ∈ Σ∗ | ∃q ∈ F, γ ∈ Γ∗ : (q0, w, Z0) ⊢

∗ (q, ǫ, γ)}.

In order to simplify the exposition and the proofs of our results, in this paper it is useful
to consider pda’s in a certain normal form [14].

1. At the start of the computation the pushdown store contains only the start symbol
Z0; this symbol is never pushed on or popped off the stack;

2. the input is accepted if and only if the automaton reaches a final state, and all the
input has been scanned;

3. if the automaton moves the input head, then no operations are performed on the
stack;

4. every push adds exactly one symbol on the stack.

The transition function δ of a pda M then can be written as

δ : Q× (Σ ∪ {ǫ}) × Γ → 2Q×({read,pop}∪{push(A)|A∈Γ}).

In particular, for q, p ∈ Q,A,B ∈ Γ, σ ∈ Σ ∪ {ǫ}, (p, read) ∈ δ(q, σ,A) means that the pda
M , in the state q, with A at the top of the stack, by consuming the input σ ∈ Σ or not

3

consuming any input symbol if σ = ǫ, can reach the state p without changing the stack
contents. (p,pop) ∈ δ(q, ǫ, A) ((p,push(B)) ∈ δ(q, ǫ, A), resp.), means that M , in the state
q, with A at the top of the stack, without reading any input symbol, can reach the state
p by popping off the stack the symbol A on the top (by pushing the symbol B on the top
of the stack, respectively).

It can be easily observed that each pda can be converted into an equivalent pda satisfying
these conditions. Furthermore, if the given pda is deterministic, then the resulting pda is
deterministic too. Hence, in the following we will consider dpda’s in the above form.

Now, we have to introduce the measure for the size of pda’s we will consider in the paper.
The literature concerning this point is very restricted and probably a deeper investigation
should be useful. The most extended discussion is presented in [8], where the author
points out that the size of a pda M , denoted as size(M), should be defined by considering
the total number of symbols needed to write down its description and, more precisely, the
total number of symbols needed to specify its transition function. Converting a pda into
normal form, the number of rules in the transition function of the resulting pda is linear
in the length of the rules of the original pda, which, on the other hand, is bounded by
some constant. Hence, the total number of symbols specifying the new pda is linear in the
total number of symbols specifying the original pda. Because the size of a pda in normal
form is linear in the number of rules of its transition function, and in the deterministic
case this number is linear in the product of the number of its states and of the number of
its stack symbols, in the paper we will use such a product as a “reasonable” measure for
the size of a dpda in normal form.

The size of a finite automaton is defined to be the number of its states.

A mode of a pda M is a pair belonging to Q × Γ. In the paper, the mode defined by a
state q and a symbol Z will be denoted as [qZ]. The mode of the configuration (q, x, Zα)
is [qZ]. Note that in a unary dpda, the mode of a configuration defines the only possible
move.

A dpda M is loop-free if and only if for each w ∈ Σ∗ there are q ∈ Q, γ ∈ Γ∗, Z ∈ Γ such
that (q0, w, Z0) ⊢

∗ (q, ǫ, Zγ) and δ(q, ǫ, Z) = ∅, i.e., for each input string the computation
cannot enter in an infinite loop of ǫ-moves. It is known that each dpda can be converted
into an equivalent loop-free dpda [5]. In the unary case such a conversion can be done
without increasing the size of the given dpda. In fact, we can write a procedure that given
a mode [qA] simulates the ǫ-moves of M in order to make a list of the modes reachable
from the configuration (q, ǫ, A). If a mode is visited twice, then the computation enters a
loop. In this case, the transition function of M can be modified by setting δ(p, ǫ,B) = ∅
for each mode visited in the simulation. Note that the procedure ends before size(M)
steps. Hence, in the following, without loss of generality, we will suppose that each unary
dpda we consider is loop-free.

4

3 Simulation of unary dpda’s by finite automata

In this section we prove our main result: in fact we show that each unary dpda M can be
simulated by a 1dfa whose number of states is exponential in the size of M . We will also
show that this simulation is tight.

Let us consider a given unary dpda M . We start by introducing some useful notions and
lemmas:

Definition: Given two modes [qA] and [pB], we define [qA] ≤ [pB] if and only if there
are integers k, h ≥ 0 and strings α, β ∈ Γ∗, such that:

• (q0, a
k, Z0) ⊢

∗ (q, ǫ, Aα), (q, ah, A) ⊢∗ (p, ǫ,Bβ), and

• if (q0, a
k′ , Z0) ⊢

∗ (p, ǫ,Bβ′) for some k′ < k, β′ ∈ Γ∗, then there is an integer k′′ with
k′ + k′′ < k and a state p′ ∈ Q, such that (p, ak

′′
, B) ⊢∗ (p′, ǫ, ǫ).

Intuitively, [qA] ≤ [pB] means that M from the initial configuration can reach a config-
uration with mode [qA] by a computation (q0, a

k, Z0) ⊢
∗ (q, ǫ, Aα) and, after that, it can

reach a configuration with mode [pB] by a computation which does not use the portion of
the stack below A, i.e., the portion containing α. Furthermore, if during the computation
(q0, a

k, Z0) ⊢
∗ (q, ǫ, Aα) a configuration with mode [pB] and stack height h is reached, then

in some subsequent step of the same computation the stack height must decrease below
height h. In other words, for all integers k′ and k′′ with k′+ k′′ = k, it is not possible that
(q0, a

k′ , Z0) ⊢
∗ (p, ǫ,Bβ′) and (p, ak

′′
, B) ⊢∗ (q, ǫ, Aα′), for some α′, β′ ∈ Γ∗.

Lemma 1 The relation ≤ defines a partial order on the set of the modes.

Proof: Clearly, the relation ≤ is reflexive. To prove that it is antisymmetric, we consider
two modes [qA] and [pB] and we show that [qA] ≤ [pB] and [pB] ≤ [qA] imply [qA] = [pB].

By definition of ≤, for suitable integers k, h, s, t, and strings α, β, η, γ ∈ Γ∗, we have:

(a) (q0, a
k, Z0) ⊢

∗ (q, ǫ, Aα),

(b) (q, ah, A) ⊢∗ (p, ǫ,Bβ),

(c) (q0, a
s, Z0) ⊢

∗ (p, ǫ,Bγ),

(d) (p, at, B) ⊢∗ (q, ǫ, Aη).

Considering (b) and (d), we can observe that when M reaches a configuration with the
mode [qA] ([pB], respectively), the symbol A (B, resp.) will never be popped off the stack,
i.e.:

(e) for each n ≥ 0, there are q′, p′ ∈ Q, α′, β′ ∈ Γ∗ such that: (q, an, A) ⊢∗ (q′, ǫ, α′A) and
(p, an, B) ⊢∗ (p′, ǫ, β′B).

5

We now suppose that s 6= k. If s < k then from (c) and (a) we get:

(f) (q0, a
k, Z0) ⊢

∗ (p, ak−s, Bγ) ⊢∗ (q, ǫ, Aα).

By the definition of ≤, this implies the existence of an integer l with s+ l < k and a state
p′′ such that (p, al, B) ⊢∗ (p′′, ǫ, ǫ), which is a contradiction to (e). In a symmetrical way,
by supposing k < s, we get a contradiction.

This permits us to conclude that s = k and hence that [qA] = [pB].

We now prove that ≤ is transitive. To this aim we suppose that [qA] ≤ [pB] and [pB] ≤
[rC] and we show that [qA] ≤ [rC]. If [pB] = [rC] then the result is trivial. Hence, from
now on, we suppose [pB] 6= [rC].

We consider integers k, h, s, t ≥ 0 and strings α, β, η, γ ∈ Γ∗ such that:

(a) (q0, a
k, Z0) ⊢

∗ (q, ǫ, Aα),

(b) (q, ah, A) ⊢∗ (p, ǫ,Bβ),

(c) (q0, a
s, Z0) ⊢

∗ (p, ǫ,Bη),

(d) (p, at, B) ⊢∗ (r, ǫ, Cγ).

From (b) and (d) we get:

(e) (q, ah+t, A) ⊢∗ (r, ǫ, Cγβ).

Suppose, by contradiction, that [qA] ≤ [rC] does not hold. Considering the definition of
≤, (a) and (e), it turns out that it must exist two integers k1 and k2 with k1+k2 = k such
that:

(f) (q0, a
k1 , Z0) ⊢

∗ (r, ǫ, Cγ1) and

(g) (r, ak2 , C) ⊢∗ (q, ǫ, Aγ2)

with α = γ2γ1. From (g) and (b) we get:

(h) (r, ak2+h, C) ⊢∗ (p, ǫ,Bβγ2)

Because [rC] 6= [pB] and [pB] ≤ [rC], it turns out that [rC] ≤ [pB] cannot hold. Con-
sidering (f) and (h) this implies the existence of two integers k′ and k′′ with k′ + k′′ = k1
such that

(i) (q0, a
k′ , Z0) ⊢

∗ (p, ǫ,Bγ′)

(j) (p, ak
′′
, B) ⊢∗ (r, ǫ, Cγ′′)

with γ′′γ′ = γ1. Hence:

6

(k) (p, ak
′′+k2 , B) ⊢∗ (q, ǫ, Aγ2γ′′)

But this, together with (i), gives a contradiction to the hypothesis that [qA] ≤ [pB].
Hence, we are finally able to conclude that [qA] ≤ [rC].

✷

A configuration completely describes the status of a pda in a given instant and gives enough
information to simulate the remaining steps of a computation. However, in order to study
the properties of the computations of dpda’s, it is useful to have a richer description, which
also takes into account the states reached in some previous computation steps. To this aim
we now introduce the notion of history. Before doing that, we observe that the next move
from a configuration of a unary dpda depends only on the current mode. If such a move
requires the reading of an input symbol and all the input has been consumed, then the
computation stops. Hence, given a unary dpda M , for each integer t there exists at most
one configuration that can be reached after t computation steps. Such a configuration will
be reached if the input is long enough.

Definition: For each integer t ≥ 0, the history ht of M at the time t is a sequence of
modes [qmZm][qm−1Zm−1] · · · [q1Z1] such that:

• ZmZm−1 · · ·Z1 is the content of the stack after the execution of t transitions from
the initial configuration,

• for each integer i, 1 ≤ i ≤ m, [qiZi] was the mode of the last configuration having
stack height i, in the computation (q0, x, Z0) ⊢

t (qm, ǫ, ZmZm−1 · · ·Z1), for a suitable
x ∈ a∗.

The mode at the time t, denoted as mt, is the leftmost symbol of ht, i.e., the pair repre-
senting the state and the stack top of M after t transitions.1 In what follows we let H

denote the set of all histories of M , i.e., H = {ht | t ≥ 0}.

Lemma 2 Let ht = [qmZm][qm−1Zm−1] · · · [q1Z1] be the history at the time t, for a given
t ≥ 0. Then:

1. For i = 1, . . . ,m − 1, there is an integer ti s.t. hti = [qiZi][qi−1Zi−1] · · · [q1Z1],
(qi, x, Zi) ⊢

∗ (qi+1, ǫ, Zi+1Zi), for some x ∈ a∗, and hti is a suffix of each hj , for each
integer j such that ti < j ≤ m. Furthermore 0 ≤ t1 < t2 < · · · < tm−1 < t.

2. If all the modes in ht are different then [q1Z1] ≤ · · · ≤ [qmZm].

3. If hµ = hµ+λ for some µ ≥ 0, λ ≥ 1, then hµ+i = hµ+λ+i, for each i ≥ 0.

Proof: For each i, 1 ≤ i ≤ m, let ti ≥ 0 be the largest integer such that |hti | = i. (Note
that tm = t.)

1 Because the start symbol Z0 is never popped off the stack, actually we can observe that in each history
the symbol Z1 of the rightmost mode coincides with Z0.

7

Hence, the stack height at each step j, ti < j ≤ m, must be greater than i. This
implies that the first i symbols on the stack cannot be modified after step ti, i.e., hti =
[qiZi] · · · [q1Z1], and, in the case i < m, (qi, x, Zi) ⊢∗ (qi+1, ǫ, Zi+1Zi), for some input x.
Hence, (1) easily follows.

To prove (2), we also observe that (q0, a
k, Z0) ⊢∗ (qi, ǫ, ZiZi−1 · · ·Z1), for some k ≥ 0.

Suppose that [qiZi] ≤ [qi+1Zi+1] is not true. Hence, (q0, a
k′ , Z0) ⊢∗ (qi+1, ǫ, Zi+1γ

′) and
(qi+1, a

k′′ , Zi+1) ⊢
∗ (qi, ǫ, Ziγ

′′Zi+1) for some k′, k′′, with k′+ k′′ = k and γ′, γ′′ ∈ Γ∗. Thus,
Ziγ

′′Zi+1γ
′ = Zi · · ·Z1 and [qi+1Zi+1] = [qjZj] for some j < i, which is a contradiction to

the initial hypothesis that ht does not contain any repetition.

Hence, we get that [qiZi] ≤ [qi+1Zi+1] and (2) follows by Lemma 1.

To prove (3), we observe that hµ = hµ+λ implies that the configurations reached at the
steps µ and µ + λ coincide. Since M is unary and deterministic, it immediately follows
that for each i > 0 at steps µ + i and µ + λ + i the same move is performed. Hence,
hµ+i = hµ+λ+i. ✷

Lemma 3 The set H contains infinitely many histories if and only if there exist two
integers µ ≥ 0, λ ≥ 1, and λ nonempty sequences of modes h̃1, . . . , h̃λ, such that

hµ+1 = h̃1hµ, hµ+2 = h̃2hµ, . . . , hµ+kλ+i = h̃i(h̃λ)
khµ,

for all integers k ≥ 0, 0 ≤ i < λ.

Furthermore, if such µ and λ exist then their sum does not exceed 2#Q·#Γ, while if H is
finite then its cardinality is less than 2#Q·#Γ.

Proof: Suppose that H contains infinitely many elements, and consider the smallest
index t such that the history ht = [qmZm] · · · [q1Z1] contains a repetition. In the light of
Lemma 2(1), the mode [qmZm] must be repeated in ht, namely there is an index i, 0 ≤ i <
m, such that [qmZm] = [qiZi], an integer µ, 1 ≤ µ < t, such that hµ = [qiZi] · · · [q1Z1], and
some sequences h̃1, . . . , h̃λ, where λ = t − µ, such that hµ+1 = h̃1hµ, . . . , hµ+λ = h̃λhµ.
Note that the sequences h̃i cannot be empty (otherwise, by Lemma 2(3), H cannot contain
infinitely many elements). Because the transitions after time µ depend only on the mode
[qiZi] and on the modes in the sequences h̃1, . . . , h̃λ, and the mode at the time µ + λ = t
is [qiZi], then it is not difficult to conclude that hµ+λ+1 = h̃1h̃λhµ, hµ+λ+2 = h̃2h̃λhµ,
. . . hµ+kλ+i = h̃i(h̃λ)

khµ, for k ≥ 0, 0 ≤ i < λ.

The converse is trivial.

Finally, we observe that, by Lemma 2(2), the sets of modes belonging to two different
histories ht and ht′ not containing any repetition must be different. This implies that
the number of histories without repetitions does not exceed the number of all possible
nonempty sets of modes, i.e., it is at most 2#Q·#Γ − 1. Hence, if the history h2#Q·#Γ does
not contain any repetition, then it coincides with some history ht, for a t < 2#Q·#Γ. By
Lemma 2(3) this implies that H is finite. ✷

8

Lemma 4 The sequence (mt)t≥0 is ultimately periodic. More precisely, there are integers
µ ≥ 0, λ ≥ 1 such that µ+ λ ≤ 2#Q#Γ and mt = mt+λ, for each t ≥ µ.

Proof: By Lemma 2(3), if H is finite then (ht)t≥0 is ultimately periodic, and hence even
(mt)t≥0 is ultimately periodic. Note that, as a consequence of Lemma 3, in this case the
set H cannot contain more than 2#Q#Γ − 1 elements. This gives the upper bounds on
µ+ λ.

If H is infinite then the sequence of histories (ht)t≥0 is not periodic. However, the sequence
of modes (mt)t≥0 is defined by the leftmost symbols of (ht)t≥0. Hence, by Lemma 3, it is
periodic, with µ+ λ ≤ 2#Q#Γ. ✷

Now, we are ready to prove our main result:

Theorem 2 Let L ⊆ a∗ be accepted by a dpda M in normal form with n states and m
stack symbols. Then L is accepted by a 1dfa with at most 2mn states.

Proof: The acceptance or rejection of a word depends only on the states that are reached
by consuming it (and possibly performing some ǫ-moves). By Lemma 4 the sequence of
the modes that can be reached in computation steps is ultimately periodic. This implies
that also the sequence of the reached states, which gives the acceptance or the rejection,
is ultimately periodic. Hence, it is possible to build a 1dfa accepting the language. The
upper bound on the number of the states derives from Lemma 4. ✷

As a consequence of Theorem 2, each unary dpda M of size s can be simulated by a 1dfa
with a number of states exponential in s. We now prove that such a simulation is optimal.
In particular, we show that for each integer s there exists a language which is accepted by
a dpda of size O(s) such that any equivalent 1dfa needs 2s states.

More precisely, for each integer s, we consider the set of the multiples of 2s, written in
unary notation, namely the language Ls = {a2

s

}∗.

Given s > 0, we can build a dpda accepting Ls that, from the initial configuration,
reaches a configuration with the state q0 and the pushdown containing only Z0, every
time it consumes an input factor of length 2s, i.e., (q0, a

2s , Z0) ⊢∗ (q0, ǫ, Z0). The state
q0 is the only final state and it cannot be reached in the other steps of the computation.
The computation from (q0, a

2s , Z0) to (q0, ǫ, Z0) uses a procedure that, given an integer
i, consumes 2i input symbols. For i > 0 the procedure makes two recursive calls, each
one of them consuming 2i−1 symbols. In the implementation, two stack symbols Ai−1 and
Bi−1 are used, respectively, to keep track of the first and of the second recursive call of the
procedure. For example, for s = 3, a configuration with the pushdown store containing
B0A1B2Z0 will be reached after consuming 22 + 20 input symbols and performing some
ǫ-moves. The formal definition is below:

• Q = {q0, q1, q2, q3}

• Γ = {Z0, A0, A1, . . . , As−1, B0, B1, . . . , Bs−1}

9

• δ(q0, ǫ, Z0) = {(q1,push(As−1))}
δ(q1, a,A0) = {(q3, read)}
δ(q1, a,B0) = {(q3, read)}
δ(q1, ǫ, Ai) = δ(q1, ǫ, Bi) = {(q1,push(Ai−1))}, for i = 1, . . . , s− 1
δ(q2, ǫ, Ai) = δ(q2, ǫ, Bi) = {(q1,push(Bi−1))}, for i = 1, . . . , s− 1
δ(q3, ǫ, Ai) = {(q2,pop)}, for i = 0, . . . , s− 1
δ(q3, ǫ, Bi) = {(q3,pop)}, for i = 0, . . . , s− 1
δ(q2, ǫ, Z0) = {(q1,push(Bs−1))}
δ(q3, ǫ, Z0) = {(q0, Z0)}

• F = {q0}.

Theorem 3 For each integer s > 0, the language Ls is accepted by a dpda of size 8s+ 4
but the minumum 1dfa accepting it contains exactly 2s states.

Proof: First, we prove by induction on i = 0, . . . , s − 1, that (q1, a
2i , Ai) ⊢

∗ (q2, ǫ, ǫ) and
(q1, a

2i , Bi) ⊢
∗ (q3, ǫ, ǫ). The basis, i = 0, is trivial. For i > 0 the computations, obtained

using the induction hypothesis, are the following, where the symbol C can be replaced by
Ai and by Bi:

(q1, a
2i , C) ⊢ (q1, a

2i , Ai−1C) ⊢∗ (q2, a
2i−1

, C) ⊢ (q1, , a
2i−1

, Bi−1C) ⊢∗ (q3, ǫ, C).

and the last step is (q3, ǫ, Ai) ⊢ (q2, ǫ, ǫ) or (q3, ǫ, Bi) ⊢ (q3, ǫ, ǫ).

As a consequence, the dpda of size 8s + 4 defined above recognizes Ls. Because Ls is
properly 2s-cyclic, the minimum 1dfa accepting it has 2s states. ✷

Using Theorem 9 of [11], it is possible to prove that also any 2nfa accepting the language
Ls must have at least 2s states. Hence we get the following:

Corollary: Unary determistic pushdown automata can be exponentially more succinct
than two-way nondeterministic finite automata.

4 Unary dpda’s and context-free grammars

In this section we study the conversion of unary dpda’s into context-free grammars. Given
a pda with n states and m stack symbols, the standard conversion produces a context-free
grammar with n2m+1 variables. In [7] it has been proved that such a number cannot be
reduced, even if the given pda is deterministic. As we prove in this section, in the unary
case the situation is different. In fact, we show how to get a grammar with 2nm variables.
This transformation will be useful in the last part of the paper to prove the existence of
languages for which dpda’s cannot be exponentially more succinct than 1dfa’s.

Let M = (Q, {a},Γ, δ, q0, Z0, F) be a unary dpda in normal form.

First of all, we observe that for each mode [qA] there exists at most one state p such
that (q, x,A) ⊢∗ (p, ǫ, ǫ) for some x ∈ a∗. We denote such a state by exit[qA] and we call

10

the sequence of moves from (q, x,A) to (p, ǫ, ǫ), the segment of computation from [qA].
Note that given two modes [qA] and [q′A], if (q, x,A) ⊢∗ (q′, ǫ, A), for some x ∈ a∗, then
exit[qA] = exit[q′A].

We now define a grammar G = (V, {a}, P, S) and we will show that it is equivalent to M .
The set of variables is V = Q × Γ × {0, 1}. The elements of V will be denoted as [qA]b,
where [qA] is a mode and b ∈ {0, 1}. The start symbol of the grammar is S = [q0Z0]1.

The productions of G are defined in order to derive from each variable [qA]0 the string x
consumed in the segment of computation from [qA], and from each variable [qA]1 all the
strings x such that M , from a configuration with mode [qA] can reach a final configura-
tion, consuming x, before completing the segment from [qA]. They are listed below, by
considering the possible moves of M :

• Push moves: For δ(q, ǫ, A) = {(p,push(B))}, there is the production

(a) [qA]1 → [pB]1

Furthermore, if exit[pB] is defined, with exit[pB] = q′, then there are the productions

(b) [qA]0 → [pB]0[q
′A]0

(c) [qA]1 → [pB]0[q
′A]1

• Pop moves: For δ(q, ǫ, A) = {(p,pop)}, there is the production

(d) [qA]0 → ǫ

• Read moves: For δ(q, σ,A) = {(p, read)}, with σ ∈ {ǫ, a}, and for each b ∈ {0, 1},
there is the production

(e) [qA]b → σ[pA]b

• Acceptance: For each final state q ∈ F , there is the production

(f) [qA]1 → ǫ

The productions from a variable [qA]0 are similar to those used in the standard conversion
from pda’s (accepting by empty stack) to context-free grammars.2 The productions from
modes [qA]1 are used to guess that at some point the computation will stop in a final state.
For example, for the push move (p,push(B)) ∈ δ(q, ǫ, A), we can guess that the acceptance
will be reached in the segment of computation which starts from the mode [pB] (hence,
ending the computation before reaching the same stack level as in the starting mode [qA],
see production (a)), or after that segment is completed (production (c)).

In order to show that the grammar G is equivalent to M , it is useful to prove the following
lemma:

Lemma 5 For each mode [qA], x ∈ a∗, the following hold:

2In that case, variables of the form [qAp] are used, where p represents one possible “exit” from the
segment from [qA]. In the case under consideration, there is at most one possible exit, namely exit[qA].

11

1. [qA]0
⋆
⇒ x if and only if (q, x,A) ⊢∗ (exit[qA], ǫ, ǫ).

2. [qA]1
⋆
⇒ x if and only if (q, x,A) ⊢∗ (q′, ǫ, γ), for some q′ ∈ F , γ ∈ Γ+.

Proof: To prove (1), we show by induction that for each integer k ≥ 1, [qA]0
k
⇒ x if and

only if (q, x,A) ⊢k (exit[qA], ǫ, ǫ).

First of all, we observe that the case k = 1, which corresponds to productions (d) and to
pop moves, is trivial. For the inductive step, we consider three subcases, depending on
the move allowed from the mode [qA].

• δ(q, ǫ, A) = {(p,push(B))}:

Let q′ = exit[pB] and suppose that [qA]0
k
⇒ x. Then, [qA]0 ⇒ [pB]0[q

′A]0, [pB]0
k′
⇒

x′, [q′A]0
k′′
⇒ x′′, for some k′, k′′ > 0, x′, x′′ such that k′+k′′ = k−1 and x′x′′ = x. By

the induction hypothesis (p, x′, B) ⊢k
′

(q′, ǫ, ǫ) and (q′, x′′, A) ⊢k
′′

(exit[q′A], ǫ, ǫ). As

observed above, exit[q′A] coincides with exit[qA]. Hence: (q, x,A) ⊢ (p, x′x′′, BA) ⊢k
′

(q′, x′′, A) ⊢k
′′

(exit[qA], ǫ, ǫ), that implies (q, x,A) ⊢k (exit[qA], ǫ, ǫ). In a similar way,
the converse can be proved.

• δ(q, ǫ, A) = {(p,pop)}: impossible for k > 1.

• δ(q, σ,A) = {(p, read)}, with σ ∈ {a, ǫ}:
By production (e), [qA]0 ⇒ σ[pA]0. Furthermore, (q, σ,A) ⊢ (p, ǫ,A). By the induc-

tion hypothesis, for each terminal string y, [pA]0
k−1
⇒ y if and only if (p, y,A) ⊢k−1

(exit[pA], ǫ, A). The proof can be easily completed, by choosing y such that x = σy,
and by observing that exit[pA] must coincide with exit[qA].

(2) Let us start by proving the “only if” part, by induction on the length k of the derivation

[qA]1
k
⇒ x.

For the basis, k = 1, the derivation must consists only of a production of the form (f).
This implies that q ∈ F . Hence the corresponding computation is trivial and consists only
of the configuration (q, ǫ, A). For k > 1 we consider different subcases, depending on the
first used production:

• Production (a), namely [qA]1 → [pB]1, with δ(q, ǫ, A) = {(p,push(B))}:

[pB]1
k−1
⇒ x and, by inductive hypothesis (p, x,B) ⊢∗ (q′, ǫ, γ), for some q′ ∈ F ,

γ ∈ Γ+. Hence: (q, x,A) ⊢ (p, x,BA) ⊢∗ (q′, ǫ, γA).

• Production (c), namely [qA]1 → [pB]0[q
′A]1, with q′ = exit[pB] and δ(q, ǫ, A) =

{(p,push(B))}:

[pB]0
k′
⇒ x′, [q′A]1

k′′
⇒ x′′, with x′x′′ = x, k′ + k′′ = k − 1. From (1) we get that

(p, x′, B) ⊢∗ (q′, ǫ, ǫ) and, from the inductive hypothesis, (q′, x′′, A) ⊢∗ (q′′, ǫ, γ), with
q′′ ∈ F , γ ∈ Γ+. Hence: (q, x,A) ⊢ (p, x′x′′, BA) ⊢∗ (q′, x′′, A) ⊢∗ (q′′, ǫ, γ).

12

• Production (e), namely [qA]1 → σ[pA]1, with σ ∈ {a, ǫ}, x = σy, and δ(q, σ,A) =
{(p, read)}:

[pA]1
k−1
⇒ y and, by inductive hypothesis, (p, y,A) ⊢∗ (q′, ǫ, γ), for some q′ ∈ F ,

γ ∈ Γ+. Hence: (q, x,A) ⊢ (p, y,A) ⊢∗ (q′, ǫ, γ).

We now prove the “if” part, by induction of the number k of moves in a computation
(q, x,A) ⊢k (q′, ǫ, γ), with q′ ∈ F , γ ∈ Γ+.

If k = 0 then q = q′ and x = ǫ. The trivial computation is simulated by the derivation
consisting only of the production (f).

For k > 0, we consider different subcases, depending on the first move of the automaton:

• δ(q, ǫ, A) = {(p,push(B))}:
(q, x,A) ⊢ (p, x,BA) ⊢k−1 (q′, ǫ, γ). Because γ is not empty, during the given compu-
tation the symbol A cannot be removed from the stack. Hence γ = γ′A, for some
γ′ ∈ Γ∗, and (p, x,B) ⊢k−1 (q′, ǫ, γ′).

If γ′ = ǫ then q′ = exit[pB] and, by (1), [pB]0
⋆
⇒ x. Hence [qA]1 ⇒ [pB]0[q

′A]1
⋆
⇒

x[q′A]1 ⇒ x (since q′ ∈ F , in the last step the production (f) is used).

On the other hand, if γ′ 6= ǫ, then by the inductive hypothesis, it turns out that
[pB]1

⋆
⇒ x. Hence, using production (a), [qA]1 ⇒ [pB]1

⋆
⇒ x.

• δ(q, ǫ, A) = {(p,pop)}:
This case is not possible because it should imply k = 1, x = ǫ, p ∈ F , and γ empty.

• δ(q, σ,A) = {(p, read)}, with σ ∈ {a, ǫ}, x = σy, y ∈ a∗:
(q, σy,A) ⊢ (p, y,A) ⊢k−1 (q′, ǫ, γ). By inductive hypothesis [pA]

⋆
⇒ y. Hence:

[qA]1 ⇒ σ[pA]1
⋆
⇒ σy = x.

✷

As a consequence of Lemma 5, it turns out that, for each x ∈ a∗, [q0Z0]1
⋆
⇒ x if and only

if x is accepted by M . Hence, we get the following result:

Theorem 4 For any unary deterministic pushdown automaton M in normal form, with
n states and m pushdown symbols, there exists an equivalent context-free grammar with
at most 2mn variables, such that the right hand side of each production contains at most
two symbols.

Finally, we can observe that from the grammar G above defined, it is easy to get a grammar
in Chomsky normal formal, accepting L(M)− {ǫ}. This can require one more variable.

5 Immediate acceptance/rejection

Because dpda’s can perform ǫ-moves, in order to decide whether or not an input string w
is accepted, it is not enough to consider only the configuration reached immediately after

13

reading the last symbol of w: even the configurations reachable in the further steps, via
ǫ-moves, must be taken into account. In this section we show how to modify a unary pda,
accepting by final states, in order to be able to decide the acceptance or the rejection of
an input string w, just considering the configuration reached immediately after reading
the last symbol of w. This result will be useful for a construction presented in Section 6.3

More precisely, let us consider a unary (deterministic or nondeterministic) pda M =
(Q, {a},Γ, δ, q0 , Z0, F) in normal form, accepting by final states. We define another pda
M ′, where each transition (p, read) ∈ δ(q, a,A) of M is replaced with an ǫ-transition,
postponing the reading of the symbol a until a final state is reached or the following input
symbol should be read.

More formally, M ′ = (Q′, {a},Γ, δ′, q′0, Z
′
0, F

′), with Q′ = Q ∪ Q̃ ∪ {q′0}, where Q̃ is an
isomorphic copy of Q and the transition function δ′ is defined as follows, for q ∈ Q, q̃ ∈ Q̃,
σ ∈ {ǫ, a}, A ∈ Γ:

• δ′(q, ǫ, A) = δ(q, ǫ, A) ∪ {(p̃, read) | (p, read) ∈ δ(q, a,A)}

• δ′(q, a,A) = ∅

• δ′(q̃, σ,A) =

{(p̃, α) | (p, α) ∈ δ(q, σ,A)} if q /∈ F
{(q, read)} if q ∈ F and σ = a
∅ otherwise

• δ′(q′0, ǫ, Z0) = {(q0, read)}

Intuitively, the states in Q̃ are used to remember the debt of one read operation. The
debt is paid when a final state is reached. However, if in the original pda M the read of
a further symbol must be performed, before reaching a final state, then in M ′ a read is
executed, without canceling the debt.

The new initial state q′0 is useful when q0 is not accepting, but the empty word must be
accepted, i.e., in the original automaton there is a sequence of transitions leading from q0
to a final state, without consuming any input symbol. Hence:

F ′ =

{

F ∪ {q′0} if ǫ is accepted by M
F otherwise.

Because final states (with the possible exception of q′0) can be reached only with moves
that consume an input symbol, we can conclude that M ′ satisfies the required property
of accepting input strings immediately after reading the last symbol. In order to prove
that M ′ is equivalent to M , the following lemma is useful (the transition relations between
configurations are marked with the names of the considered pda’s):

Lemma 6 For each k ≥ 0, q ∈ Q, α ∈ Γ∗: (a) (q0, a
k, Z0) ⊢∗M (q, ǫ, α) if and only if

(b) (q′0, a
k, Z0) ⊢

∗
M′ (q, ǫ, α) or (c) (q′0, a

k−1, Z0) ⊢
∗
M′ (q̃, ǫ, α). Furthermore, if (q0, a

k, Z0) ⊢
∗
M

(p, ǫ, β) ⊢∗M (q, ǫ, α), for some p ∈ F , β ∈ Γ∗, then (b) holds.

3We remind that as observed in Section 2, in the unary case we can consider, without increasing the
size, loop-free dpda’s.

14

Proof: The lemma can be proved by induction on the length of the derivations, and
by observing that for q ∈ F , (c) implies (b). Because the proof is very technical and it
involves only standard arguments, it is omitted.

✷

As consequence of the previous construction and of Lemma 6, we get that M and M ′ are
equivalent, and hence:

Theorem 5 For each unary pda M in normal form with n states, accepting by final states,
there exists an equivalent pda M ′ in normal form with 2n+1 states and the same pushdown
alphabet as M such that each input string w is accepted if and only if the state reached
immediately after reading the last symbol of w is final. Furthermore, if M is deterministic
then M ′ is deterministic, too.

6 Languages with complex dpda’s

In Section 3, we proved that dpda’s can be exponentially more succinct than finite au-
tomata. In this section we show the existence of languages for which this dramatic reduc-
tion of the descriptional complexity cannot be achieved. More precisely, we prove that for
each integer m there exists a unary 2m-cyclic language Bm such that the size of each dpda
accepting it is exponential in m.

Let us start by introducing the definition of the language Bm. To this aim, we first recall
that a de Bruijn word [3] of order m on {0, 1} is a word wm of length 2m+m−1 such that
each string of length m is a factor of wm occurring in wm exactly one time. Furthermore,
the suffix and the prefix of length m− 1 of wm coincide.

We consider the following language:4

Bm = {ak | the (kmod ′2m)th letter of wm is 1},

where xmod ′y =

{

xmod y if xmod y > 0
y otherwise.

For example, w3 = 0001011100 and B3 = {a0, a4, a6, a7}{a8}∗.

By definition and by the above mentioned properties of de Bruijn words, Bm is a properly
2m-cyclic unary language. Hence, the minimal 1dfa accepting it has exactly 2m states
(actually, by Theorem 9 in [11], this number of states is required even by each 2nfa
accepting Bm). We show that even the size of each dpda accepting Bm must be exponential
in m. More precisely:

Theorem 6 There is a constant d, such that for each m > 0 the size of any dpda accepting
Bm is at least d 2m

m2 .

Proof: Let us consider a dpda M of size s accepting Bm. We will show that from M it is
possible to build a grammar with O(sm) variables generating the language which consists

4The same language was considered in [2] for a different problem.

15

only of the word wm. Hence, the result will follow from a lower bound presented in [4],
related to the generation of wm.

First of all, by Theorem 5, from M it is possible to get an equivalent dpda M ′ of size
O(s), such that M ′ is able to accept or reject each string ak immediately after reading the
kth letter of the input.

We also consider a 1dfa A accepting the language L which consists of all strings x on the
alphabet {0, 1}, such that x = yw, where w is the suffix of length m of wm, and w is not
a proper factor of x, i.e., x = x′w, and x = x′′ww′ implies w′ = ǫ. Note that A can be
implemented with m+1 states. The automaton A will be used in the following to modify
the control of M ′, in order to force it to accept only the string a2

m+m−1.

To this aim, we describe a new dpda M ′′. Each state of M ′′ simulates one state of M ′

and one state of A. The initial state of M ′′ is the pair of the initial states of M ′ and A.
M ′′ simulates M ′ moves step by step. When a transition which reads an input symbol
is simulated, then M ′′ simulates also one move of A on input σ ∈ {0, 1}, where σ = 1 if
the transition of M ′ leads to an accepting state, 0 otherwise. In this way, the automaton
A will finally receive as input the word wm. When the simulation reaches the accepting
state of A, namely the end of wm has been reached, M ′′ stops and accepts. Thus, the only
string accepted by M ′′ is a2

m+m−1.

Using the construction presented in Section 4, we can build a context-free grammar G
equivalent to M ′′. We modify the productions of G that correspond to operations which
consume input symbols: each production [qA]b → a[pA]b is replaced by [qA]b → 1[pA]b if p
corresponds to a final state of M ′, and by [qA]b → 0[pA]b otherwise. It is easy to observe
that the grammar G′ so obtained generates the language {wm}. Furthermore, the size of
G′ is bounded by ksm, for some constant k. By a result presented in [4] (based on a lower
bound from [1]), the number of variables of G′ must be at least c2

m

m
for some constant c.

Hence, from ksm ≥ c2
m

m
, we finally get that the size of the original dpda M must be at

least d 2m

m2 for some constant d. ✷

Acknowledgment

I would like to thank the anonymous referees for their valuable comments and suggestions.

References

[1] I. Althöfer: “Tight lower bounds for the length of word chains,” Information Process-
ing Letters, 34: 275–276, 1990.

[2] J. Berstel, O. Carton: “On the complexity of Hopcroft’s State Minimization Algo-
rithm,” Proc. CIAA 2004, Lecture Notes in Computer Science, 3317: 35–44, 2005.

[3] N. de Bruijn: “A combinatorial problem,” Koninklijke Nederlandse Akademie v.
Wetenschappen, 49: 758–764, 1946.

16

[4] M. Domaratzki, G. Pighizzini, J. Shallit: “Simulating finite automata with context-
free grammars,” Information Processing Letters, 84: 339–344, 2002.

[5] S. Ginsburg, S. Greibach: “Deterministic context-free languages,” Information and
Control, 9: 563–582, 1966.

[6] S. Ginsburg, H. Rice: “Two families of languages related to ALGOL,” Journal of the
ACM, 9: 350–371, 1962.

[7] J. Goldstine, J. Price, D. Wotschke: “A pushdown automaton or a context-free gram-
mar – Which is more economical?,” Theoretical Computer Science, 18: 33–40, 1982.

[8] M.A. Harrison: Introduction to Formal Language Theory. Addison-Wesley, Reading
MA, 1978.

[9] J. Hopcroft, J. Ullman: Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, Reading, MA, 1979.

[10] D. Knuth: “On the translation of languages from left to right,” Information and
Control, 8: 607–639, 1965.

[11] C. Mereghetti, G. Pighizzini: “Two-way automata simulations and unary languages.”
Journal of Automata, Languages and Combinatorics, 5 (2000) 287–300.

[12] C. Mereghetti, G. Pighizzini: “Optimal simulations between unary automata.” SIAM
Journal on Computing, 30 (2001) 1976–1992.

[13] A. Meyer, M. Fischer: “Economy of description by automata, grammars, and formal
systems.” Proc. 12th Annual IEEE Symposium on Switching and Automata Theory,
1971, pp. 188–91.

[14] G. Pighizzini, J. Shallit, M.-W. Wang: “Unary context-free grammars and pushdown
automata, descriptional complexity and auxiliary space lower bounds,” Journal of
Computer and System Sciences, 65: 393–414, 2002.

[15] G. Sénizergues: “The equivalence problem for deterministic pushdown automata is
decidable,” Proc. ICALP 97, Lecture Notes in Computer Science, 1256: 671–682,
1997.

[16] R. Stearns: “A regularity test for pushdown machines,” Information and Control, 11:
323–340, 1967.

[17] L. Valiant: “Regularity and related problems for deterministic pushdown automata,”
Journal of the ACM, 22: 1–10, 1975.

17

	Introduction
	Preliminaries
	Simulation of unary dpda's by finite automata
	Unary dpda's and context-free grammars
	Immediate acceptance/rejection
	Languages with complex dpda's

