On the Usage of Concrete Syntax in Model
Transformation Rules

Thomas Baar! and Jon Whittle?

! Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences
CH-1015 Lausanne, Switzerland
2 Department of Information and Software Engineering
George Mason University
Fairfax VA 22030 USA
thomas.baar@epfl.ch, jwhittle@ise.gmu.edu

Abstract. Graph transformations are one of the best known approaches
for defining transformations in model-based software development. They
are defined over the abstract syntax of source and target languages, de-
scribed by metamodels. Since graph transformations are defined on the
abstract syntax level, they can be hard to read and require an in-depth
knowledge of the source and target metamodels. In this paper we in-
vestigate how graph transformations can be made much more compact
and easier to read by using the concrete syntax of the source and target
languages. We illustrate our approach by defining model refactorings.

Keywords: Metamodeling, Model Transformation, Refactoring, UML

1 DMotivation

One of the key activities of model-based software development [1] is transforma-
tion between models. Model transformations are defined in order to bridge two
different modeling languages (e.g., to transform UML sequence to UML commu-
nication diagrams) or to map between representations in the same language. A
well-known example of the latter case is refactorings, i.e., transformations that
aim at improving the structure of the source model [2, 3].

Model transformations can be expressed in many formalisms (see [4] for an
overview) but graph transformation based approaches [5] are especially popular
due to their expressive power. Also the recently adopted OMG standard “Query,
Views, Transformations (QVT)” is based on this technique [6]. The problem
tackled in this paper is that model transformations written in a pure graph
transformation notation can easily become complex and hard to read.

A transformation written in QVT consists of a set of transformation rules.
Each rule has a left-hand-side (LHS) and right-hand-side (RHS) which define the
patterns for the transformation rule’s source and target models. A rule is applied
on a given, concrete source model by matching a sub-model of the concrete model
with the LHS of the rule and replacing the matched sub-model with the RHS,

where any matchings are applied to the RHS before replacement. Additionally,
all conditions imposed by the optional when-clause of the rule must be satisfied.
The patterns defining the LHS and RHS are given in terms of the metamodels for
the source and target modeling language (note that nowadays all major modeling
languages, such as UML [7], are defined in the form of a metamodel). For the
sake of simplicity in this paper (but our approach is not restricted to that), we
will assume that the modeling languages for the source and target model coincide
and thus each transformation rule refers only to the metamodel of one language.

A disadvantage of the graph transformation approach in defining model
transformations is that the patterns LHS and RHS refer only to the abstract
syntax of the modeling language and the more readable concrete syntax is not
used in the transformation rule. Transformations written purely using abstract
syntax are not very readable and require the reader to be familiar with the meta-
model defining the abstract syntax. To overcome this problem, our approach is
to write the transformation rules directly in the concrete syntax of the model-
ing language where possible. Unfortunately, this cannot be done directly since
a number of subtleties of patterns in transformation rules have to be taken into
account. In this paper, we make a distinction between the modeling language
and the pattern language used to formulate the LHS and RHS. More precisely,
we describe how the metamodel of the pattern language can be extracted from
that of the modeling language. The extracted metamodel for the pattern lan-
guage is then the basis to define a concrete syntax for patterns, that is similar
to the concrete syntax of the original modeling language.

The rest of the paper is organized as follows. Section 2 gives some back-
ground information on defining modeling languages and model transformation
techniques, with an emphasis on graph transformations. We show in Section 3
how to improve the readability of transformation rules by exploiting a concrete
syntax derived from the source and target modeling language. Section 4 illus-
trates the strengths and some limitations of the approach by applying it to UML
refactoring rules and Section 5 concludes the paper.

1.1 Related work

The authors know of no other work in using concrete syntax for graph-based
model transformations. There is a good deal of research in applying graph trans-
formations to software engineering problems — see [8] for an introduction — such
as code generation, viewpoint merging and consistency analysis. However, in all
applications we have seen, the transformation rules are based on the abstract
syntax of the source and target modeling languages.

Approaches addressing issues related to concrete syntax and transformations
have been focused somewhat differently than our work. Papers on tool support
for model transformations, e.g. [9], have discussed the problem of synchronizing
a model and its visual representation after a transformation has been executed.
One approach is to extend the metamodels of the modeling languages with a
metamodel for the visual representation of models (i.e., the concrete syntax)
and to formulate the transformation rules based on this extended metamodel.

2 Defining Model Transformations

2.1 Metamodeling

A modeling language has three parts: (1) the abstract syntax that identifies the
concepts of the language and their relationships, (2) the concrete syntax that
defines how the concepts are represented in a human-readable format, and (3)
the semantics of the concepts. This paper is only concerned with (1) and (2).

The abstract syntax of a modeling language is usually defined in the form
of a metamodel. A metamodel is usually described by a (simplified form of a)
UML class diagram [7] with OCL [10] invariants. The concepts of the language
are defined by classes in the metamodel (i.e., meta-classes). Concept features are
given as meta-attributes on meta-classes and relationships between concepts are
given by meta-associations.

ModelElement

name:String

e R

Feature * owner

Classifier

feature 1

visibility: String

z x

| Operation | | Class |

* 1
type

Fig. 1. Metamodel of simplified class diagrams, called CDSimp

Figure 1 shows the metamodel of a drastically simplified version of UML
class diagrams, called CDSimp. The language CDSimp will serve as a running
example in the remainder of this paper. The metamodel for CDSimp consists
of metaclasses that correspond directly to concrete model elements, namely
Attribute, Operation, Class and Datatype, as well as abstract metaclasses
that do not have a concrete syntax representation but are introduced for structur-
ing purposes: ModelElement, Feature, Classifier. For instance, the metaclass
ModelElement declares a metaattribute name of type String that is inherited
by all other metaclasses.

OCL invariants attached to the metamodel impose restrictions that every
well-formed model must obey (thus, the invariants are also called well-formedness
rules). Two invariants are relevant for the examples presented later in this paper.
The first invariant says that the names of all features in a class or datatype are
pairwise different and the second invariant restricts the values for visibility:

context Classifier inv UniqueFeatureName:
self.feature—>forAll(fl,f2| fl.name=f2.name implies f1=f2)

«datatype» «datatype»
- 'String’ ‘Integer’
feature ,—wner -Class owT‘ feature
:Operation name='Person’ :Attribute
name='getAge’ name='age’
visibility="private’ visibility="public’ 'Person’
Datatype + 'age"'Integer’
= ' type
name='Integer’ yp! TgelAge’
(a) Instantiation of metamodel (b) Graphical notation

using concrete syntax

Fig. 2. T'wo representations of the same class diagram

context Feature inv VisibilityDomain:

self.visibility = ’public’ or
self.visibility = ’private’ or
self.visibility = ’protected’

Considering only the abstract syntax of a modeling language, one can say that
a model written in this modeling language is just an instance of the language’s
metamodel that obeys the two given well-formedness rules (i.e. the two OCL in-
variants UniqueFeatureName and VisibilityDomain are evaluated in every model
to true). A model can be depicted as an object diagram (cf. Figure 2(a)) but this
is not very readable, because all concrete model concepts are reified as meta-
classes in the metamodel. More readable for humans is a graphical representation
of the same model that takes the concrete syntax of the language into account
(cf. Figure 2(b)). The concrete syntax for CDSimp resembles that of UML class
diagrams. The only difference is that string literals, such as the name of a class
or attribute, are given in quoted form (e.g. 'Person’ instead of Person). We will
need this convention later on.

2.2 Concrete syntax definition

The concrete syntax of a language can be defined as a mapping from all possi-
ble instances of the language’s metamodel into a representation format (in most
cases, a visual language [11]). Despite the recent progress that has been achieved
in formalizing diagrams (see, for example, OMG’s proposal for Diagram Inter-
change [12] as an attempt to standardize all graphical elements that can possibly
occur in diagrams), it is still current practice to define the concrete syntax of a
modeling language informally. For the sake of brevity, we also give an informal
definition here, but, as shown in [13], a conversion into a formal definition can be
done straightforwardly. The language CDSimp has the following concrete syntax
definition:

— Classes and datatypes are represented by rectangles with three compart-
ments.

— The first compartment contains the name of the class/datatype. The name
of datatypes is stereotyped with <<datatype>>.

— The remaining compartments contain the representation of all owned fea-
tures (attributes are shown in the second, operations in the third compart-
ment). A feature is represented by a line of the form:
visiRepr ’ ’ name [:’ type]
where visiRepr is a representation of the feature’s visibility (’+’ for "public’,
- for “private’, '#’ for 'protected’), name is the actual name of the feature,
and, in case of an attribute, type is the name of the attribute’s type. Note
that both visibility and name are mandatory parts of a feature representa-
tion.

Concrete syntax definitions are needed only for those concepts that are reified
in a concrete model. For example, the abstract metaclass Feature does not have
a concrete syntax definition.

2.3 Model transformations

The exact format and semantics of model transformation rules is fully described
in [6]. In this paper, we consider only the format of the patterns LHS and RHS in
each transformation rule, and the relationship of LHS and RHS to the optional
when-clause of the rule.

A pattern can be defined as a more general form of object diagram in which
all objects are labeled by a unique variable with the same type as the object. Vari-
ables are also used in order to represent concrete values in objects for attributes.
Unlike usual object diagrams, objects of abstract classes (e.g. Classifier) can
occur in patterns.

renameAttribute(oldName:String, newName:String) |

owner
- — — owner
c:Classifier c:Classifier

feature feature

a:Attribute
name=oldName

a:Attribute

name=newName

{when}
c.feature->forAll(f|
f.name <> newName)

Fig. 3. QVT rule to rename an attribute within classifiers

Figure 3 shows an example transformation for renaming an attribute of a clas-
sifier. The pattern LHS specifies the subgraphs to be matched in the source model
when the rule is applied. The LHS consists of two objects of type Classifier
and Attribute, respectively, labeled with variables ¢ and a, which are connected
by a link instance of the owner-feature association. The value for metaattribute
name in object a is the same as the value of the rule parameter oldName of
type String. In addition, the when-clause requires object ¢ to have no feature
with name newName. The pattern RHS is identical to LHS with the exception

that variable oldName is substituted by newName. Informally, the application
of renameAttribute on a concrete source model involves the following steps: (1)
find a classifier (i.e., since metaclass Classifier is abstract, a class or datatype)
in the source model that has an attribute with name oldName (matching the
LHS) but no feature with name newName (checking the when-clause) and then
(2) rename the matching attribute from oldName to newName and do not make
any other change in the model. These steps would be applied iteratively as often
as possible. Note that the when-clause implicitly imposes the constraint that
newName is different than oldName. This ensures termination of the rule appli-
cation. The when-clause also ensures syntactical correctness of the target model.
For example, it ensures that the well-formedness rule UniqueFeatureName is sat-
isfied in the target.

3 Patterns In Concrete Syntax (PICS)

Graph transformation rules, such as those given by QVT and described in Sec-
tion 2, are a very powerful mechanism to describe model transformations. Read-
ability, however, can become a serious problem if the patterns LHS and RHS are
given in object diagram syntax. The main idea of our approach is to alleviate
this problem by exploiting the concrete syntax of the language whose models
we want to transform. Unfortunately, we cannot apply the concrete syntax of
the modeling language directly for the rendering of patterns because some im-
portant information of the pattern would be lost. We will, thus, first analyze
the differences between a modeling language and the corresponding pattern lan-
guage used in transformation rules. Then, the pattern language is defined by its
own metamodel, which is, as shown in Section 3.2, a straightforward modifica-
tion of the original metamodel for the modeling language. Based on the modified
metamodel, we finally define a concrete syntax for the pattern language, which
is called PICS (patterns in concrete syntax). The term PICS metamodel refers
to the metamodel of the pattern language that has been derived from the meta-
model of the modeling language.

3.1 Differences between models and patterns

For defining a concrete syntax for pattern diagrams the following list of differ-
ences between models (seen as instances of the modeling language’s metamodel)
and patterns used in transformation rules has to be taken into account:

1. Objects in patterns must be labeled® with a unique variable (e.g. the
label for c:Class is ¢).

3 In many graph transformation systems including QVT the label is optional. We
assume here the strict version since it will make it easier to rewrite a pattern using
the concrete syntax.

2. A pattern usually represents an incomplete model whereas object
diagrams are assumed to be complete, i.e., all well-formedness rules and
multiplicities of the metamodel are obeyed. For example, the patterns LHS,
RHS in renameAttribute (Figure 3) show neither the attribute visibility
of object a:Attribute nor a link to its type (an object diagram could not
drop this link due to multiplicity 1 of the corresponding association end at
Datatype).

3. Patterns can have objects whose type is an abstract class whereas
the type of objects in object diagrams is always a non-abstract class.

4. Patterns can contain variables to represent attribute values in ob-
jects whereas in object diagrams such values are always literals or ground-
terms.

A pattern language is, due to these differences, more expressive than the
language of object diagrams since each object diagram is also a pattern but not
vice versa. Note, however, that the last difference is only a minor one. Variables
for attribute values could easily be integrated into object diagrams as well if the
value of attribute slots are always displayed according to some simple rules: (i)
literals of type String must be enclosed by quotes and (ii) literals of all other
types have to be pre-defined. If, under these conditions, a term occurs in an
attribute slot that is neither a composed term nor a literal of type String or
any other type, then this term would denote a variable.

3.2 Transforming the original metamodel to PICS metamodel

The important differences between models and patterns (points (1) — (3) above)
can be formalized by defining a metamodel for pattern diagrams. Fortunately,
this metamodel can be automatically derived from the original metamodel by
applying the following changes:

— Add attribute label:String with standard multiplicity 1..1 to each meta-
class. This change captures the mandatory labels of objects in pattern dia-
grams (see difference (1) in above list of differences).

— Make all attributes in the metamodel optional (by giving them the attribute
multiplicity 0..1) and change all association multiplicities from y..x to 0..x.
Both changes reflect incompleteness of patterns (see difference (2)).

— Make all abstract classes non-abstract (see difference (3)).

Figure 4 shows the changes on the metamodel for CDSimp. The root class
ModelElement has a new attribute label that is inherited by all other classes.
The two other attributes name and visibility became optional by the attribute
multiplicity 0..1. The abstract classes ModelElement, Feature, Classifier be-
came non-abstract and finally all multiplicities on association ends were changed
to the range 0..OrigMultiplicity (note that multiplicity * is not affected).

ModelElement ModelElement

name:String

label:String
name:String[0..1]

X =

Feature * owner
; Classifier Feature . owner Classifier
e eature 1
VISIblllty-SIrm94 r = visibility:String [0..1]| feature 0.1
| Operation | | Class

| Operation | | Class |

type

* 1
type

Fig. 4. Original language metamodel and derived PICS metamodel

renameAttribute(oldName:String, newName:String) |
renameAttribute(oldName:String, newName:String)l
c:Classifier | OWner c:Classifier
—lfeature =
label:'c’ - Attribute label:'c' <<C|as_ilfler>> <<c|as_zifier>>
i owner . .
label="2 <> :oldname::a ‘newname::a
name=oldName feature - . -
{when} a:Attribute
{when}
c.feature->forAll(f| label=a feature->forAll(f
f.name <> newName) abel=a c.feature->forAll(f
name=newName| f.name <> newName)

(a) Rule as instance of PICS metamodel (b) After applying PICS concrete syn-
tax

Fig. 5. Rule renameAttribute as instance of PICS metamodel and in concrete syntax

3.3 Defining concrete syntax for PICS metamodel

After the pattern language has been formalized as the PICS metamodel, we can
represent each pattern as an instance of the PICS metamodel. Figure 5(a) shows
the transformation rule renameAttribute as an example. Please note that Fig-
ure 5(a) is just another representation of the original definition given in Figure 3
and conveys exactly the same information. Hence, each representation equivalent
to Figure 5(a) is also equivalent to the original definition of the transformation
rule.

Defining an equivalent representation for the instances of a metamodel is
traditionally done by defining a concrete syntax for the metamodel. For our
running example, a concrete syntax for the PICS metamodel shown in Figure 4
could be defined by modifying the concrete syntax for CDSimp as follows:

— Instead of the name, the first compartment of classes/datatypes shows a line
of the form name ’." label where name denotes the value of the optional
attribute name and label the value of the mandatory attribute label. Since
name appears only optionally, a delimiter ’:” between name and label is
needed in order to ensure correct parsing. The delimiter must not occur in
name and label.

— An attribute/operation having an owning classifier is shown by a text line in
the second/third compartment of the owning classifier. The only difference

to the concrete syntax of CDSimp is the usage of delimiter ’:’ to separate
the line items (in order to handle optional occurrences) and that the label
of the attribute/operation is added at the end of the line.

In other words, the line has the form [visiRepr] *:’ [name] [’ type] :* label
If an attribute/operation does not have an owning classifier (note the mul-
tiplicity 0..1 for the association between Feature and Classifier in the
PICS metamodel) then the text line is shown outside any other classifier in
a box.

— Instances of Classifier are rendered the same as classes/datatypes except
that they have a stereotype <<classifier>> in the first compartment.

— Features (instances of Feature) are rendered the same way as attributes/
operations but, in order to distinguish them, they have to be marked as
features. This could be done, for example, by preceding the text line with
.

— Instances of ModelElement are rendered by a one-compartment rectangle
labeled with name " label.

The first two items explain how to adapt the renderings of metaclasses that
are non-abstract both in the original metamodel of the modeling language CD-
Simp and in the PICS metamodel. The rendering in PICS is very similar to that
in CDSimp. Merely the label of the object had to be added and a delimiter was
introduced to identify the position of an element in a text line. The remain-
ing items explain the rendering of metaclasses that were abstract in the original
metamodel but became non-abstract in PICS. Since no rendering of these classes
was defined for CDSimp, the new renderings for the PICS metamodel had to be
invented. An application of the PICS concrete syntax is shown in Figure 5(b)
for renameAttribute.

To summarize so far, we have defined the abstract syntax (using a meta-
model) of the pattern language for defining patterns in the LHS and RHS of
a graph transformation rule. Furthermore, we have shown on an example how
to define concrete syntax for this pattern language based on the syntax of the
associated modeling language.

3.4 Finding a good concrete syntax for the pattern language

Although it is always possible to define a concrete syntax for the PICS meta-
model (note that showing the instance of the metamodel just as an object dia-
gram — see Figure 5(a) for an example — would be a trivial version of a concrete
syntax) it is usually a challenge to find a non-ambiguous concrete syntax that
is still similar to the concrete syntax of the modeling language whose models
are being transformed. The definition of a good concrete syntax is of primary
importance for the readability and understandability of the transformation rules
written in PICS syntax.

There are basically two problems to tackle: (1) Handling of optional occur-
rences of attribute and links and (2) rendering of classes that were abstract in
the metamodel of the modeling language.

The first problem was tackled in the above CDSimp example by using delim-
iters that allow to infer for a rendered object which of its attributes are rendered
and which not. This technique, however, needs the assumption that the symbol
used as delimiter (here ") is not used otherwise in order to avoid ambiguity
of the representation. Some initial tool support for detecting ambiguities in a
concrete syntax definition is described in [14].

In order to solve the second problem, new icons/symbols have to be invented
which raises the issue of similarity between the original modeling language and
the pattern language. For some classes, e.g. Feature and Classifier, a suitable
rendering can be defined as a straightforward generalization of the renderings
of the subclasses. For other classes, e.g. ModelElement, this heuristic does not
work just because the renderings of the subclasses are too diverse.

As future work, we plan to investigate pattern languages that allow mixing of
abstract and concrete syntax. This could be done by leaving the concrete syntax
definition for the pattern language incomplete. This would mean that some parts
of patterns do not have a rendering in the concrete syntax, and would be done
when there exists no rendering that is similar to the modeling language. For ex-
ample, if a rule needs to refer to an abstract metaclass that has no rendering, we
would allow this abstract metaclass to be referenced in the pattern definition. In
essence, this allows patterns to mix concrete and abstract syntax. A mechanism
would be required to control whether an element is concrete or abstract but this
could be done, for example, in a similar way to the quote/anti-quote mechanism
in LISP.

4 Case Study: UML Refactoring Rules in PICS Notation

In [15], a number of refactoring rules for UML class diagrams using the ab-
stract syntax of class diagrams has been defined. We present, in the following, a
rewriting of these refactoring rules* using our PICS approach.

The refactoring rules are written with respect to the metamodel for UML
1.5 (see [15] for the relevant part of the metamodel). The refactoring rules are
designed to preserve an important well-formedness rule of the UML 1.5 meta-
model, namely that names for attributes, opposite association ends and owned
elements are unique within each classifier and all its parents along the general-
ization hierarchy. In order to ensure this well-formedness rule, most refactoring
rules have a when-clause that uses the following additional operation:

context Classifier def: allConflictingNames ():Bag(String)=
self.allParents()—>including (self)
—>union(self.allChildren ())
—>iterate (c; acc:Bag(String)=Bag{}|
acc—>union (c.oppositeAssociationEnds ().name)
—>union(c.attributes ().name)
—>union (c.ownedElement .name))

4 More precisely, some improved variants of the rules given in [15] are taken here as a
starting point.

4.1 PullUpAttribute

The rule PullUpAttribute moves an attribute from a child class to a parent class.
It can be rewritten straightforwardly using the same PICS syntax that has been
used for CDSimp. Please note that we do not rewrite the when-clause. We show
below the PullUpAttribute both in its original form and the rewritten version
(all the examples will be presented in a similar fashion).

PullUpAttributeUML (a:Attribute, father:Class)

father:Class

a:Attribute

<

eneralization
child

a:Attribute
when}

{
father.allConflictingNames()->count(a.name)=1

son:Class

4

PullUpAttribute(a:Attribute, father:CIass)l

{when}
father.allConflictingNames()
->count(a.name)=1

4.2 MoveAttribute

The refactoring MoveAttribute moves an attribute from a class on one end of
an association to a class on the other end of the association. In the rewritten
version, the when-clause is modified. The part of the when-clause stipulating the
connecting association to be of multiplicity 1-1 is in the rewritten version ren-
dered by an annotation 1 on the association ends, which is a standard technique
in UML. More complicated forms of OCL constraints could be represented in a
visual form. We do not discuss this topic here in-depth but refer the interested
reader to [16] where graphical notations are defined as abbreviations for complex
OCL expressions.

MoveAttribute(a:Attribute, ae2:AssociationEnd) |

association —— association
connection connection

|ae1:AssociationEnd |an:AssociationEnd|

association

association

association, —— association
as:Association
connection connection

|ael:AssociationEnd |ae2:AssociationEnd |

! association association
participant participant > participant participant
dest:Class dest:Class
owner owner
feature| feature,

{when}

dest.allConflictingNames()->excludes(a.name) and
ael.multiplicity.is(1,1) and
ae2.multiplicity.is(1,1)

4

MoveAttribute(a:Attribute, ae2:AssociationEnd) |

1
isrc 1 src
na .
a2 |1 ae2| 1
“dest <O :dest
RE
{when}
dest.allConflictingNames()
->excludes(a.name)

4.3 ExtractClass

The refactoring ExtractClass creates for a given class src a new class and con-
nects it with src by an association with multiplicity 1-1. Furthermore, the created
class and association should be placed in the same namespace as class src. Please
note that the metaclass Namespace is abstract in the UML 1.5 metamodel. For
this reason, a new rendering for Namespace has to be invented for the PICS
syntax. Here, a package icon stereotyped with <<namespace>> has been chosen.

ExtractClass(src:Class, newCN:String, rolel:String, role2:String) |

m2:Multiplicity

m1:Multiplicit mrl:MultiplicityRange
— ange
multiplicity lower=1
upper=1
namespace ael:AssociationEnd participant extracted:Class
name=rolel association name=newCN
ownedElement
connection ownedElement
association namespace
- — ”{when} <" [as:Association WHEdEEr':::;ace nsp:Namespace
if (nsp.isKindOf(Classifier)) association namespace
then nsp.allConflictingNames()->excludes(newCN)
else -- nsp must be Package — ownedElement
nsp.ownedElement.name->excludes(newCN) ae2:AssociationEnd| 4ssociation
endifand name=role2 participant|_SIciClass
src.allConflictingNames()->excludes(rolel)
mr2:MultiplicityRange

range | jower=1

upper=1

4

ExtractClass(src:Class, newCN:String, rolel:String, role2:String) |

<<namespace>>
‘nsp <<namespace>>
nsp

src

‘src role2
- 1

<>

{when} role1] 1

if (nsp.isKindOf(Classifier)) newCN:extracted

then nsp.allConflictingNames()->excludes(newCN)|
else -- nsp must be Package
nsp.ownedElement.name->excludes(newCN)
endif and
src.allConflictingNames()->excludes(rolel)

5 Conclusion and Future Work

This paper addressed how to define model transformation rules in a more read-
able way by using the concrete syntax of source and target modeling languages
when defining the LHS and RHS of the rules. The concrete syntax, however,
had to be adapted to the peculiarities of patterns, mainly mandatory labeling of
objects and optional occurrence of attributes and links. Another major problem
is that the PICS concrete syntax has to invent a new rendering for metaclasses
that were abstract in the original metamodel. An alternative, that has been
only sketched in this paper, is to show these metaclasses in the abstract syn-
tax notation, that is to allow mixing concrete and abstract syntax presentations
within transformation rules. If an intuitive concrete syntax for patterns is found,
then transformation rules can be presented in the same way as models of the
source/target languages.

‘We have not addressed in this paper how the when-clause of transformations
rules can be rendered in graphical form as well. There is a standard technique
in graph-transformation literature how negative constraints can be made visi-
ble (known as non-application conditions (NACs)). Our approach could also be
extended by the work of Stein, Hanenberg and Unland presented in [16] where
visualizations of OCL constraints for the domain of metamodel navigation is
discussed.

Acknowledgements The authors would like to thank the anonymous reviewers
for their very helpful comments on the initial version of this paper.

References

1. Stuart Kent. Model driven engineering. In Proceedings of Third International
Conference on Integrated Formal Methods (IFM 2002), volume 2335 of LNCS,
pages 286—298. Springer, 2002.

2. Tom Mens and Tom Tourwé. A survey of software refactoring. IEFE Trans.
Software Eng., 30(2):126-139, 2004.

10.

11.

12.

13.

14.

15.

16.

Martin Fowler. Refactoring: Improving the Design of Ezisting Programs. Addison-
Wesley, 1999.

Krzysztof Czarnecki and Simon Helsen. Classification of model transformation ap-
proaches. In Proc. OOPSLA03 Workshop on Generative Techniques in the Context
of Model-Driven Architecture, 2003.

Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

OMG. MOF QVT Final Adopted Specification. OMG Adopted Specification
ptc/05-11-01, Nov 2005.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide. Object Technology Series. Addison-Wesley, second edition,
2005.

Luciano Baresi and Reiko Heckel. Tutorial introduction to graph transformation:
A software engineering perspective. In A. Corradini, H. Ehrig, and H.-J. Kreowski
und G. Rozenberg, editors, First International Conference on Graph Transforma-
tion (ICGT 2002), volume 2505 of LNCS, pages 402-429. Springer, 2002.

Esther Guerra and Juan de Lara. Event-driven grammars: Towards the integration
of meta-modelling and graph transformation. In Graph Transformations, Second
International Conference, ICGT 2004, Rome, Italy, September 28 - October 2,
2004, Proceedings, pages 54-69, 2004.

OMG. UML 2.0 OCL Specification — OMG Final Adopted Specification. OMG
Document ptc/03-10-14, Oct 2003.

Gennaro Costagliola, Andrea De Lucia, Sergio Orefice, and Giuseppe Polese. A
classification framework to support the design of visual languages. Journal of
Visual Languages and Computing, 13(6):573-600, 2002.

OMG. Unified Modeling Language: Diagram interchange version 2.0. Convenience
Document ptc/05-06-04, June 2005.

Frédéric Fondement and Thomas Baar. Making metamodels aware of concrete
syntax. In Proc. European Conference on Model Driven Architecture (ECMDA-
FA), volume 3748 of LNCS, pages 190-204. Springer, 2005.

Thomas Baar. Correctly defined concrete syntax for visual models. In Oscar Nier-
strasz, Jon Whittle, David Harel, and Gianna Reggio, editors, Proceedings, MoD-
ELS/UML 2006, Genova, Italy, volume 4199 of LNCS, pages 111-125. Springer,
October 2006.

Slavisa Markovi¢ and Thomas Baar. Refactoring OCL annotated UML class dia-
grams. In Proc. ACM/IEEE 8th International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS), volume 3713 of LNCS, pages 280-294.
Springer, 2005.

Dominik Stein, Stefan Hanenberg, and Rainer Unland. Query models. In Proc.
IEEE 7th International Conference on the Unified Modeling Language (UML 2004),
volume 3273 of LNCS, pages 98-112. Springer, 2004.

