
Computing Intensions of Digital Library
Collections

Carlo Meghini1 and Nicolas Spyratos2

1 Consiglio Nazionale delle Ricerche, Istituto della Scienza e delle Tecnologie della
Informazione, Pisa, Italy meghini@isti.cnr.it

2 Université Paris-Sud, Laboratoire de Recherche en Informatique, Orsay Cedex,
France spyratos@lri.fr

Abstract. We model a Digital Library as a formal context in which
objects are documents and attributes are terms describing documents
contents. A formal concept is very close to the notion of a collection:
the concept extent is the extension of the collection; the concept intent
consists of a set of terms, the collection intension. The collection intension
can be viewed as a simple conjunctive query which evaluates precisely
to the extension. However, for certain collections no concept may exist,
in which case the concept that best approximates the extension must be
used. In so doing, we may end up with a too imprecise concept, in case
too many documents denoted by the intension are outside the extension.
We then look for a more precise intension by exploring 3 different query
languages: conjunctive queries with negation; disjunctions of negation-
free conjunctive queries; and disjunctions of conjunctive queries with
negation. We show that a precise description can always be found in one
of these languages for any set of documents. However, when disjunction
is introduced, uniqueness of the solution is lost. In order to deal with
this problem, we define a preferential criterion on queries, based on the
conciseness of their expression. We then show that minimal queries are
hard to find in the last 2 of the three languages above.

1 Introduction

In a Digital Library (DL for short), collections [14, 16, 1] are sets of documents de-
fined to facilitate the tasks of various DL actors, ranging from content providers
for whom physical collections are provided, to users, for whom logical collections
are provided. The latter kind of collections typically helps the user in carrying
out information access. For discovery, the user requires a “place” where to accu-
mulate the discovered documents, similar to the shopping cart of an e-commerce
Web site. This concept is commonly known as static collection [20, 2]. Static col-
lections are also useful in other tasks, such as cooperative work, where they play
the role of a shared information space within a community. A classical example
of static collection is the book-mark (or favorites) of a Web browser. Users may
also associate a description of their “view” of the DL to a collection, and access
the collection whenever they need to explore this view. This concept is commonly

captured by so-called dynamic collections [4, 5, 3]. Dynamic collections are not
the only way users have in order to know at once the changes in the DL that
may be of interest to them. Publish/subscribe (pub-sub for short) mechanisms
are another way of achieving the same goal, but with a different modality: while
in dynamic collection users are active, in the sense that they act by accessing
collections, in pub-sub users are passive, in the sense that the system intercepts
changes in the DL which may be of interest for users, and notifies them. This
distinction is also known as pull vs. push access mode.

We argue that the notions of static and dynamic collections are two sides
of the same coin, and propose a general notion of collection, which generalizes
both. According to this notion, collections have an extension and an intension,
very much like classes in object models or predicates in predicate logics. We then
solve a basic problem, arising upon collection creation: the determination of the
intension of a collection based on a given extension.

The paper is organized as follows: Sections 2 to 5 introduce our model of a
DL, illustrating the most relevant concepts. Section 6 states in precise terms the
problem we address. Sections 7 to 10 present different solutions to the problem,
by examining different description languages for expressing collection intensions.

2 Terms

The basic ingredient of descriptions are terms. A term denotes a set of docu-
ments. As such, it may be a keyword describing the content of documents (such
as nuclear waste disposal or database), or their type (image); or may be thought
of as an attribute value (for instance, creator=“CM”). For generality, we do not
impose any syntax on terms and treat them just as symbols making up a finite,
non-empty set T, which is a proper subset of a countable domain T , T ⊂ T ,
always containing the special term true, standing for truth.

Terms are arranged in a taxonomy, that is a binary relation ≤T on T, reflexive
and transitive, having true as the greatest element, that is

∀t ∈ T, t ≤ true and true ≤ t implies t = true.

Based on ≤T, we define ≡T as follows: for any two terms t1, t2 ∈ T,

t1 ≡T t2 if and only if t1 ≤ t2 and t2 ≤ t1.

It is easy to see that≡T is an equivalence relation. Let Te be the set of equivalence
classes induced by ≡T, i.e.

Te = { [t] | t ∈ T}.
Clearly, [true] = {true}. Furthermore, let us extend ≤T to Te as follows:

[t1] ≤T [t2] iff t1 ≤T t2.

(Te,≤T) is now a partial order, in which equivalent terms have been collapsed
into the same equivalence class, having as greatest element [true]. To simplify

notation, we will consider these equivalence classes as terms, therefore using the
symbol T in place of Te, and understand ≤T as a partial order.

For any two terms t1, t2 ∈ T, if t1 ≤ t2 we say that t1 is a specialization (or
sub-term) of t2, or that t2 is a generalization (or super-term) of t1.

3 The description directory

Description are used to annotate the documents of a digital library, which for the
present purposes we just represent as a finite, non-empty subset D. The relation
between documents and terms is stored in the description directory, which is a
relation r from documents to terms, r ⊆ D × T, such that (d, t) ∈ r means that
d is described (or indexed) by term t. We impose on r two requirements:

– it must be total, that is dom(r) = D. This is not a serious limitation for the
users, because if no term qualifies as a satisfactory descriptor of a document,
the term true can, and indeed should, be used;

– a document cannot be indexed by ≤-related terms:

∀d ∈ D, t1, t2 ∈ r(d) implies t1 ‖ t2. (1)

This second constraint requires to select independent terms when indexing
a document, which we think is not a serious limitation. The constraint also
interacts with the previous one by imposing that if true is used for describing
a document, then no other term can be used to describe that document,
which is consistent with the usage of true postulated above.

From r we define two functions which will turn out very useful in the sequel:

– the index, a function index : D → P(T), giving the terms which a document
is indexed by: ∀d ∈ D, index(d) = {t ∈ T | (d, t) ∈ r}.

– the extension, a function termext : T → P(D), giving the documents which
a term describes: ∀t ∈ T, termext(t) = {d ∈ D | (d, t) ∈ r}

Constraint (1) just says that index(d) consists of incomparable terms, for all
documents d ∈ D.

4 General descriptions

In general, a description is a propositional formula over the alphabet T, built
out of the connectives ¬ (negation), ∧ (conjunction) and ∨ (disjunction). We
will denote the set of such formulas as LT , or simply L when there is no danger
of ambiguity.

Descriptions denote sets of documents. This is captured by the function ans,
named after the fact that a typical usage of descriptions is for querying a DL.

ans is inductively defined as follows, where t, t′ ∈ T and q, q1, q2 ∈ L :

ans(t) =
⋃
{termext(t′) | t′ ≤ t}

ans(true) = D

ans(¬q) = D \ ans(q)
ans(q1 ∧ q2) = ans(q1) ∩ ans(q2)
ans(q1 ∨ q2) = ans(q1) ∪ ans(q2)

In the course of our study, we will need to consider several sub-languages
of L, corresponding to different types of descriptions. The simplest descriptions
are conjunctions of incomparable terms. We will call these descriptions simple
queries, and denote their set as LS . In fact, document descriptions can be re-
garded as simple queries given by the conjunction of the terms which describe
the document. That is, assuming that the description of a document d is given by
index(d) = {t1, t2, . . . , tn} and recalling that (1) sanctions the incomparability
of the terms t1, t2, . . . , tn, we may, and in fact will assume that:

index(d) = (t1 ∧ t2 ∧ . . . ∧ tn) ∈ LS

Other important classes of descriptions will be introduced in due course.

5 Collections

A collection is a set of documents that make up a significant whole from an
application point of view. We model collections as objects belonging to a finite,
non-empty set C. The membership of documents into collections is stored in
the classification directory, which is a relation e from documents to collections,
e ⊆ D × C, such that (d, c) ∈ e means that d is a member of (or belongs to)
collection c. In a DL it is usually required that every document belongs to at
least one collection: dom(e) = D.

In order to best serve its purposes, a collection must have both an extension
and an intension, very much like predicates in predicate logics. The extension
of a collection is the set of objects that are members of the collection at a given
point in time. It can then be defined as the total function collext : C → P(D)
given by: ∀c ∈ C, collext(c) = {d ∈ D | (d, c) ∈ e}. The intension of a collection
is a description of the meaning of the collection, that is the peculiar property
that the members of the collection collectively possess and that distinguishes the
collection from other collections. This should not be confused with the so-called
collection metadata (such as the owner or the creation date of the collection),
which represent properties of collections required for administration purposes.
Formally, the intension of a collection is a description, and is associated to its
collection by the total function collint : C → L. The question arises how these
two notions should be related. An obvious requirement is that the set of docu-
ments belonging to the collection must agree with the collection intension. This

can be expressed by requiring that the collection intension, when used as a query,
should retrieve at least the documents in the collection extension. Formally:

∀c ∈ C, collext(c) ⊆ ans(collint(c)). (2)

As a consequence of this last requirement, we obtain two very useful properties
of collections, namely: for any given query q ∈ L and collection c ∈ C : (1) if
collint(c) ∧ q is unsatisfiable, then no document in (the extension of) c satisfies
the query, that is: ans(q) ∩ collext(c) = ∅. (2) if collint(c) subsumes q, then all
documents in (the extension of) c satisfy the query, that is: collext(c) ⊆ ans(q).

For a given collection c ∈ C, we define the precision of the collection intension,
prec(c), the set of documents denoted by collint(c) which are not members of
the collection:

prec(c) = ans(collint(c)) \ collext(c)

If prec(c) = ∅ we say that the collection is precise, and imprecise otherwise.
Clearly, a collection is precise if and only if collext(c) = ans(collint(c)). More
generally, we say that a description α is precise with respect to a set of documents
X just in case X = ans(α).

6 The problem

The problem we want to address in this study is the following: given a DL and
a subset X of the documents in it, to find a description α ∈ L such that X ⊆
ans(α). This problem typically arises when a user has a set of documents and
wants to create a collection having those documents as extension. The documents
in question may have been gathered by the user through one or more discoveries,
or may have been brought to the user attention by an expert, or may have been
notified to him by the system as the result of the user registration to a publish-
subscribe mechanism. These are just a few scenarios, in all of which the user
likes the documents he has and wants to persist their set in the DL by creating
a collection which holds them. To this end, an intension must be defined which
satisfies the constraint (2), whence the problem.

Let us define as conjunctive queries the descriptions of the form:
∧

1≤j≤n

lj (n ≥ 1)

where each lj is a literal, that is is either a term t ∈ T, in which case it is called
a positive literal, or its negation ¬t (negative literal), such that:

– a term and its negation do not occur: for no different indexes i, j ∈ [1, n],
li = t and lj = ¬t, for some t ∈ T.

– literals are pairwise incomparable: two literals are incomparable if they are
either both positive or both negative, and the terms occurring in them are
incomparable. Let LC be the set of conjunctive queries.

A typical conjunctive query is the description of a document d ∈ D, δ(d), given
by the conjunction of the terms describing the document with the negation of
the terms not describing the document:

δ(d) =
∧
{t | t ∈ index(d)} ∧

∧
{¬t′ | t′ 6∈ index(d)}

It is easy to see that δ(d) is more specific (i.e., it is subsumed by) the index
of d, index(d); moreover, {d} ⊆ ans(δ(d)) and a document d′ ∈ ans(δ(d)) just
in case d′ has exactly the same index as d, that is index(d) = index(d′). We
assume this is not the case, i.e. all document indexes are different. This is not
a serious limitation, since documents with the same index can be treated as a
class, of which only one representative is considered.

Now DNFS queries are descriptions of the form:
∨

1≤i≤m

Di (m ≥ 1)

where each Di is called a disjunct and is a conjunctive query. DNFS queries
make up the language LD.

Evidently, any set of documents X has a trivial description in LD, given by:
∨
{δ(d) | d ∈ X}

which is as precise as a description of X can be in the DL. However, this descrip-
tion is not very interesting: apart from being as large as X itself, it just replicates
the index of every document in X, offering no additional information. A more
satisfactory formulation of our problem is therefore: given a set of documents X,
can we find a description of X which is better than the trivial one?

7 An easy solution: formal concepts

A simple query would certainly be a better description for X than the trivial one.
Simple queries have a minimal logical structure (no negation, no disjunction) and
therefore convey their meaning in a simple and intuitive way. So we reduce our
problem to the following ones:

1. does X have a description in LS?
2. how precise can it be?

An answer to both questions comes from Formal Concept Analysis (FCA) [11,
10, 12]. The formal context of a DL is the triple K = (D,T, x), where:

(d, t) ∈ x iff ∃t′ ≤ t : (d, t′) ∈ r

The relation x, called the incidence of the context, extends r by taking into
account the term taxonomy according to its intuitive meaning: it assigns a term
t to a document d just in case d is described by a term t′ that is more specific

A B C D E F true

1 x x x x x
2 x x x
3 x x x x x
4 x x x x x x
5 x x x x x

Fig. 1. A Formal Context

than t. Since t is more specific than itself (i.e., ≤ is reflexive) we have that r ⊆ x.
In particular, r = x if no term is a sub-term of another term.

As an example, let us consider the DL whose formal context is shown in
Figure 1 left in tabular form. In this DL, term D is a sub-term of C and in fact
any document described by D is also described by C, and all documents are
described by true.

A formal concept in K is a pair (D,T), where: (1) D, the extent of the
concept, is a set of documents: D ⊆ D; (2) T, the intent of the concept, is a
set of terms: T ⊆ T; and (3) T are the terms describing all documents in D
and, vice-versa, D are all the documents described by the terms in T. Formally,
(D, T) is a concept if and only if D = ψ(T) and T = ϕ(D), where

ψ(T) =
⋂
{ε(t) | t ∈ T} for all T ⊆ T

ϕ(D) =
⋂
{ι(d) | d ∈ D} for all D ⊆ D

ε(t) = {d ∈ D | (d, t) ∈ x} for all t ∈ T

ι(d) = {t ∈ T | (d, t) ∈ x} for all d ∈ D

In the formal context shown in Figure 1, ({1, 3, 4}, {C, D, true}) is a concept,
while ({1, 3}, {A,D}) is not.

Lemma 1. For all sets of terms Y ⊆ T, ψ(Y) = ans(
∧

Y).

Since in a concept (D, T), we have that D = ψ(T), the previous Lemma tells us
that D = ans(

∧
T), that is the extent of a concept is the answer to the intent

of the concept, seen as a conjunction of terms.

7.1 Solving the problem for LS

It should be evident that a formal concept strongly is a precise collection: the
concept extent mirrors the extension of the collection; the concept intent consists
of a set of terms, which can be viewed as a simple query which evaluates precisely
to the extent. However, for our purposes concept intents tend to be redundant.
For instance, given the concept ({4, 5}, {B, E, F, true}), there are simpler queries
than (B ∧E ∧ F ∧ true) which return {4, 5}, for instance (B ∧E), (B ∧ F) and
(E∧F). Part of the problem is that true is the most general term, thus decidedly
useless in queries other than true itself. However the problem is more general
since none of B, E and F is ≤-comparable with the others, yet one of the 3 is
clearly redundant.

A term t ∈ T is redundant in a set of terms T ⊆ T, iff for all documents
outside ans(T), d ∈ D \ ans(T), whenever t does not describe d, (d, t) 6∈ x, then
there exists another term t′ in T, such that t′ does not describe d, (d, t′) 6∈ x.
Now it is very simple to check that t is redundant in T iff ans(T) = ans(T \{t}).
That is, a term is redundant in a set if it can be removed without altering the
denotation of that set. Given a set of terms T, a simplification function σ is
any function that iterates through the elements of T removing the ones that are
found redundant. Notice that if t ≤ t′ then t′ is redundant whenever it co-occurs
with t, so by eliminating redundant terms we implicitly eliminate comparable
terms. The order in which non-comparable, redundant terms are considered is
very important to determine the result. Indeed, the one of the terms B, E, F
which is considered first is always redundant, while the remaining 2 are not.
So, σ({B, E, F, true}) may be anyone of {E, F}, {B, F}, or {B, E}. This is not
relevant for our study, so we will leave it unspecified.

Proposition 1. A set of documents X ⊆ D has a unique precise description in
LS if and only if X is the extent of a concept in K.
Proof: (←) Suppose (X, Y) is a concept in K. By definition, X = ψ(Y) and by
the previous Lemma X = ans(

∧
Y). Now (

∧
Y) may not be in LS since some

terms in Y may not be incomparable. Now σ(Y) consists of incomparable terms
and X = ans(

∧
σ(Y)) therefore (

∧
σ(Y)) is an LS precise description for X.

Since no two concepts can have the same extent, (
∧

σ(Y)) is also unique.
(→) We must prove that (X, Y) is a concept in K for some set of terms Y ⊆ T.
Since X has a precise description in LS , there exists a set of incomparable terms
T ⊆ T, such that X = ans(

∧
T). Let Y =

⋂{ι(d) | d ∈ X}. By construction,
Y = ϕ(X) therefore it remains to be proved that X = ψ(Y). By the previous
Lemma, this is the same as proving that X = ans(Y). We do this in 2 steps.
(1) ans(Y) ⊆ X. By construction, T ⊆ Y, hence ψ(Y) ⊆ ψ(T). By applying
twice the Lemma, we have ψ(Y) = ans(Y) and ψ(T) = ans(T) = X, and
therefore we have ans(Y) ⊆ X. (2) X ⊆ ans(Y). Now, by construction, for all
x ∈ X and y ∈ Y, (x, y) ∈ x, hence x ∈ ε(y) hence x ∈ ⋂{ε(y) | y ∈ Y } hence
x ∈ ψ(Y) = ans(Y). Then X ⊆ ans(Y). 2

Now, coupled with the well-known result of FCA that, for all set of documents
X ⊆ D, (ψ(ϕ(X)), ϕ(X)) is the concept with the smallest extent containing X,
this Proposition allows us to answer the questions posed at the beginning of this
Section, as follows: all sets X of documents have a description in LS , which we
call the simple description of X and denote as δS(X), given by:

δS(X) = σ(ϕ(X)).

The precision of δS(X) is given by:

ψ(ϕ(X)) \X

The most precise LS description for {1, 2} is therefore σ({C, true}) = {C},
whose precision is {3, 4}.

A B C D E F true ¬A ¬B ¬C ¬D ¬E ¬F f alse

1 x x x x x x x
2 x x x x x x x
3 x x x x x x x
4 x x x x x x x
5 x x x x x x x

Fig. 2. The augmentation of a formal context

In some cases, the precision may be too large a set for the user, who might
therefore be looking for a more precise description. To this end, one of two routes
may be followed: the extension relaxation route, in which the user gives up some
of the documents in X, or the intension relaxation route, in which the user
accepts a more complex description than a simple query. We have investigated
the former route in [17], so we now concentrate on the latter.

The description language can be made more expressive than LS in two dif-
ferent ways: by adding negation of single terms, in which case we end in LC , or
by adding disjunction, in which case we end into a subset of LD, consisting of
disjunctions of simple queries. We will consider each of these two languages in
the sequel.

8 Conjunctive queries

FCA can be very useful also if we admit negation in descriptions. In order to see
how, we extend the notion of context to include negated terms. These have been
already informally introduced in Section 6. We now give them a more precise
mathematical status.

Let ¬ be a bijection from T to T¬, a subset of T disjoint from T. For sim-
plicity, we will write ¬t in place of ¬(t) to indicate the negation of any attribute
t ∈ T. For clarity, we will denote as f alse the term ¬true. If T ⊆ T is a set of
terms, ¬(T) is the set of the negation of each term in T, i.e. ¬(T) = {¬t | t ∈ T}.

The augmented formal context of a DL is the triple K¬ = (D, T ∪ T¬, x¬),
where:

x¬ = x ∪ {(d,¬t) | (d, t) 6∈ x}.
In practice, the augmentation of a formal context introduces negated terms,
whose extensions are the complement of the extensions of the corresponding
non-negated terms. We will use ¬ as a subscript to indicate that we refer to the
augmented context, e.g.ϕ¬ is the correspondent of ϕ in the augmented context.

The augmentation of the formal context shown in Figure 1 is given in Fig-
ure 2. It can be easily seen that augmentation induces a total, one-to-one homo-
morphism from the concepts of a context to those of the augmentation. In general
this is not an isomorphism, as the augmentation may have more concepts. In
addition, concept intents may be larger in the augmented context, as they may
include negated terms. So in moving from a context to its augmentation we are
able to describe more sets of documents. Now, by equating intents of augmented
concepts with conjunctive queries, we can state the following Proposition.

Proposition 2. A set of documents X ⊆ D has a precise description in LC if
and only if X is the extent of a concept in K¬.

The proof of this proposition is identical to that of Proposition 1. The most
precise LC description for a given set of documents X, δC(X) is therefore

δC(X) = σ(ϕ¬(X))

and its precision is given by:

ψ¬(ϕ¬(X)) \X. (3)

Let us find the most precise LC description for the set {1, 2} in our running
example. We recall that the most precise LS description for {1, 2} is {C}, whose
precision is {3, 4}. Now it turns out that this set has a precise LC description,
since ψ¬(ϕ¬({1, 2})) = ψ¬({C, true,¬F}) = {1, 2}. The sought description is
given by σ(ϕ¬({1, 2})) = σ({C, true,¬F}) = {¬F}.

We conclude by observing that the set (3) can be computed without com-
puting the augmented context, of course. In fact, it can be verified that, for all
sets of terms T and sets of documents D :

ψ(T) = {d ∈ D | (d, t) ∈ x for all t ∈ T and (d, t) 6∈ x for all ¬t ∈ T}
ϕ(D) = {t ∈ T | (d, t) ∈ x for all d ∈ D} ∪ {¬t | (d, t) 6∈ x for all d ∈ D}

9 Introducing disjunction

Let LU be the sub-language of L consisting of disjunctions of simple queries,
which we call disjunctive queries for brevity.

Disjunctive queries can describe many more sets of documents, since dis-
junction allows to “accumulate” simple queries at will. So, the first question
that naturally arises is whether all sets of documents have a precise description
in LU . The answer, perhaps surprisingly, is “no,” as the following Proposition
shows. Let Ce and Ci denote the extent and the intent of concept C, respectively.

Proposition 3. A set of documents X ⊆ D has a precise description in LU if
and only if γ(d)e ⊆ X for all d ∈ X.
Proof: (→) Let β be the query

β =
∨
{
∧

σ(γ(d)i) | d ∈ X}

By definition of ans, we have that:

ans(β) =
⋃
{ans(

∧
σ(γ(d)i)) | d ∈ X}.

By definition of σ, ans(
∧

Y) = ans(
∧

σ(Y)), for all sets of documents Y, there-
fore:

ans(β) =
⋃
{ans(

∧
γ(d)i) | d ∈ X}.

From Lemma 1 we have that γ(d)e = ans(
∧

γ(d)i), therefore

ans(β) =
⋃
{γ(d)e | d ∈ X}

By the hypothesis it follows that ans(β) ⊆ X. By construction, d ∈ γ(d)e, hence
X ⊆ ans(β). Therefore ans(β) = X, and β is a precise description for X.
(←) We prove that if for some document d ∈ D γ(d)e 6⊆ X, then X has no
precise LU description. Let d′ 6∈ X and d′ ∈ γ(d)e. Then, d′ ∈ Ce for each
super-concept of γ(d). But there is no concept extent containing d other than
those of the super-concepts of γ(d). It follows that any description containing d
also contain d′, thus X has no precise LU description. 2

In order to exemplify this last proposition, let us consider again the formal
context shown in Figure 1. In this context, γ(2)e = {2, 4}. This is a consequence
of the fact that ε(2) ⊆ ε(4) and implies that all concepts having 2 in their extents
(i.e.γ(2) and its super-concepts) also have 4 in their extents, therefore any set
of documents containing 2 but not 4 does not have a precise LU description.
However, the power of disjunction is not to be underestimated, because while
LS and LC precise descriptions are unique, a set of documents X may have more
than one precise LU description. This is due to the fact that X may be covered
by concept extents in more than one way. Let us consider for instance the set
{2, 3, 4, 5} in our running example. This set has a precise LU description, since
it satisfies the condition established by the last Proposition, namely γ(2)e ⊆
{2, 3, 4, 5} and the same holds for γ(3)e, γ(4)e and γ(5)e. According to the proof
of the last Proposition,

β = (B ∧ C) ∨ (A ∧D ∧ F) ∨ (D ∧ E ∧ F) ∨ (A ∧ E ∧ F)

is a precise description of {2, 3, 4, 5}. However, since µ(B) = ({2, 4, 5}, {B})
and γ(3) = ({3}, {A,C,D, F}), also B ∨ (A ∧ D ∧ F) is a precise description
of {2, 3, 4, 5}. This latter description is intuitively preferable over the former,
since it denotes the same set but it is much shorter. Indeed, every disjunct of
the latter description is a subset of a disjunct of the former description; this
means that the former description may have more as well as larger disjuncts
(set-theoretically speaking), however both of these can be pruned to obtain an
equivalent but shorter description.

In order to capture formally this preference criterion, we define a relation
between disjunctive queries. To this end and for the sake of simplicity, we will
regard simple queries as sets of terms. Given two disjunctive queries α = D1 ∨
. . . ∨ Dm and β = E1 ∨ . . . ∨ En, α is preferred over β, αvβ, if and only if
ans(α) = ans(β) and for every disjunct Di in α there exists a disjunct Ej in β
such that Di ⊆ Ej . v is reflexive and transitive, thus (LU ,v) is a pre-order. A
description is said to be minimal if it is a minimal element of (LU ,v), that is no
description is preferred over it. We then set out to find minimal descriptions. FCA
proves very helpful to this end. In order to show how, we must first introduce
the notions of candidate concept and minimum set cover.

– Given a set of documents X ⊆ D, a candidate concept for X is a concept C
such that Ce ⊂ X and no super-concept D of C exists such that De ⊂ X.

– Given a collection C of subsets of a finite set S, a set cover for S is a subset
C′ ⊆ C such that every element in S belongs to at least one member of C′.
A set cover is minimum if no set cover exists with a smaller cardinality.

As it can be proved: For all sets of documents X ⊆ D,

1. if X = ψ(ϕ(X)), then σ(ϕ(X)) is the only minimal LU description of X;
2. if X ⊂ ψ(ϕ(X)), then a LU description D1 ∨ . . . ∨ Dn of X is a precise

minimal LU description for X iff, for all 1 ≤ j ≤ n, Dj = σ(Ci
j) where Cj is

a candidate concept and Ce
1 , . . . , Ce

n is a minimum set cover for X amongst
the extents of all candidate concepts for X.

From a computational point of view, the above characterization of minimal
precise descriptions does not look particularly good, since these are equated to
minimum set covers, whose computation is strongly suspected to be intractable
[13]. The question arises whether there exists an equivalent characterization that
is more amenable to computation. Unfortunately, the answer is negative. The
next Proposition shows that MINIMUM SET COVER can be reduced to the
computation of a minimal description, thus giving a lower bound for the latter
problem.

Proposition 4. Computing a minimal LU description is NP-hard.
Proof: We reduce MINIMUM SET COVER to our problem. Given an instance
of MINIMUM SET COVER, that is a collection C of subsets of a set S, we define
the formal context (D, T, i) as follows:

– D = S ∪ {o} where o is any object not in S;
– T has one term ti for each element Ci of C, plus an extra term u which is

any object not in S.
– i is defined as follows:

• for all s ∈ S, if s ∈ Ci then (s, ti) ∈ i;
• (o, u) ∈ i;
• nothing else is in i.

It can be proved that each minimum set cover corresponds to a precise, minimal
LU description for S and vice-versa. 2

Candidate concepts play a key role in computing minimal, precise LU de-
scriptions, since each of such descriptions is obtained by combining the extents
of those concepts so as to form a minimum set cover for X. An efficient way
to compute candidate concepts is therefore fundamental. Iterating through all
concept extents and retaining the maximal subsets of X is certainly a way of
doing it, but not necessarily an efficient one, since a context may have an expo-
nential number of concepts (in the size of the context). Fortunately, there is a
more efficient method. It can be easily checked that, for all sets of documents
X, the extents of the candidate concepts for X are given by:

max
t∈T

{Y = (ε(t) ∩X) | Y = ψ(ϕ(Y))} (4)

procedure c3 (X : set of document id)
1. begin
2. AX ← ∅
3. for each term t in T do
4. begin
5. Y ← ε(t) ∩X
6. if 6 ∃ Z ∈ AX such that Y ⊆ Ze and Y = ψ(ϕ(Y)) then
7. begin
8. for each concept V ∈ AX such that V e ⊂ Y do AX ← AX \ V
9. AX ← AX ∪ (Y, ϕ(Y))

10. end
11. end
12. return AX

13. end

Fig. 3. The c3 procedure

where maximality is with respect to set-containment. Clearly, every member of
this set is the extent of a concept, a subset of X, and a maximal one. Notice
that if X = ψ(ϕ(X)), X is the only member of this set.

It follows that the set of candidate concepts of X, AX , can be computed
efficiently by iterating through the terms, as the procedure c3 (Figure 3) does.
For each term, c3 computes in Y the overlapping between the extension of the
term and X. If there already is in AX a concept with an equal or larger extent
that Y, then Y needs no longer to be considered because, even though it turns
out to be a concept extent, it will not be maximal. Otherwise, if Y is the extent
of a concept, that is Y = ψ(ϕ(Y)), then it may be the extent of a candidate
concept, so it is added to AX after removing from it the concepts with a smaller
extent. Thus, when all terms have been examined, AX contains the concepts
whose extents are all the members of the set (4).

Let us consider again the set {2, 3, 4, 5} for which we wish to find a minimal,
precise LU description in our running example. By running c3 on the context, we
have the results shown in Table 1. For each term, the Table shows the overlap of
the term extension with X, if this is a concept extent, the intent is shown next,
and in the last column whether or not the concept is candidate. There turns out
to be only 2 candidate concepts, so there is only one minimum set cover for X
that can be constructed with the extents of these 2 concepts, therefore the only
minimal, precise LU for X is:

(
∧

σ({B, true})) ∨ (
∧

σ({F, true})) = B ∨ F

In this example, the minimum set cover problem has no impact, due to the toy
size of the example. In real cases, however, candidate concepts can be as many
as the terms, and an approximation technique may have to be used in order to
avoid long computations. In alternative, an incomplete method may be chosen,
returning a non-minimal description.

t ε(t) ∩X intent candidate

A {3, 5} {A, F, true} no
B {2, 4, 5} {B, true} yes
C {2, 3, 4} no
D {3, 4} {C, D, F, true} no
E {4, 5} {E, F, true} no
F {3, 4, 5} {F, true} yes

Table 1. Run of c3 with X = {2, 3, 4, 5}

9.1 Imprecise LU descriptions

An imprecise LU description might be desirable in case a precise one does not
exist or is not satisfactory, for instance because too long. Here the problem is: to
find the minimal description amongst the descriptions having minimal impreci-
sion. This problem has a unique solution which we have already seen: σ(ϕ(X)).
This is due to the fact that (ψ(ϕ(X)), ϕ(X)) is the smallest concept whose extent
includes X. Thus, (ψ(ϕ(X)) is the only concept extent with minimal imprecision.
In our example, if we do not like the description (B ∨ F), our best alternative
in LU is σ(ϕ(X)) = true.

10 DNFS descriptions

We conclude this study by considering DNFS descriptions, that is formulas in
LD. As we have already observed in Section 6, a set of documents X has always a
precise DNFS description, but from the results of the last Section, we know that
there may be more such descriptions. However, since the definition of minimality
devised for LU descriptions carries over LD descriptions, the same technique
can be applied. In order to illustrate, let us consider the document set {1, 2, 3}.
Table 2 shows the results of running c3 on this set, similarly to Table 1. The
extents of the 3 candidate concepts identified by c3 allow us to construct two
minimal, precise LD descriptions for the given set of documents, namely:

(
∧

σ({A,¬B, C,D, true})) ∨ (
∧

(σ({C,¬E, true})) = ¬B ∨ ¬E

(
∧

σ({A,¬B, C, D, true})) ∨ (
∧

(σ({C,¬F, true})) = ¬B ∨ ¬F

11 Related work

The use of FCA in information system is not new (for a survey, see e.g. [19]). The
structuring of information that FCA supports has inspired work on browsing [15,
6], clustering [7], and ranking [9, 18]. A basic drawback of these approaches is that
they require the computation of the whole concept lattice, whose size may be
exponential in that of the context, as it is well-known. An integrated approach
to browsing and querying that uses only part of the lattice, and thus can be

t ε(t) ∩X intent candidate

A {1, 3} {A,¬B, C, D, true} yes
B {2} {¬A, B, C,¬D,¬E,¬F, true} no
C {1, 2, 3} no
D {1, 3} already considered no
E {1} non-maximal no
F {3} non-maximal no
¬A {2} already considered no
¬B {1, 3} already considered no
¬C {} non-maximal no
¬D {2} already considered no
¬E {2, 3} {C,¬E, true} yes
¬F {1, 2} {C,¬F, true} yes

Table 2. Run of c3 on the augmented context with X = {1, 2, 3}

computed efficiently, is presented in [8], and extended to include user preferences
in [17]. The usage of FCA for computing predicates describing sets of objects
is novel, and complements the results of above mentioned approaches on the
relationship between queries and concepts.

12 Conclusions

Thanks to the elementary notions of FCA, we have been able to solve a basic
problem arising in DL collection management: the determination of a description
for a given set of documents. We plan to expand the results obtained in this paper
in 2 directions:

– by considering collection updates, in terms of insertion and removal of single
documents from a collection extension; and

– by considering extensive usage of collection intensions for query processing,
alluded to in Section 5. In fact, by introducing collection intensions we can
reduce query processing in a DL to answering queries based on views, a
problem that has been intensely studied in the database area in the last
decade.

We also plan to set up experiments which would validate from a practical point
of view the results obtained in this paper.

References

1. Donna Bergmark. Collection Synthesis. In Proceeding of the second ACM/IEEE-
CS Joint Conference on Digital Libraries, pages 253–262. ACM Press, 2002.

2. David C. Blair. The challenge of commercial document retrieval, Part II: a strategy
for document searching based on identifiable document partitions. Information
Processing and Management, 38:293–304, 2002.

3. Leonardo Candela. Virtual Digital Libraries. PhD thesis, Information Engineering
Department, University of Pisa, 2006.

4. Leonardo Candela, Donatella Castelli, and Pasquale Pagano. A Service for Sup-
porting Virtual Views of Large Heterogeneous Digital Libraries. In Traugott Koch
and Ingeborg Sølvberg, editors, 7th European Conference on Research and Ad-
vanced Technology for Digital Libraries, ECDL 2003, LNCS vol. 2769, pages 362–
373, Trondheim, Norway, August 2003.

5. Leonardo Candela and Umberto Straccia. The Personalized, Collaborative Digital
Library Environment Cyclades and its Collections Management. In Jamie Callan,
Fabio Crestani, and Mark Sanderson, editors, Multimedia Distributed Information
Retrieval, LNCS vol. 2924, pages 156–172, 2004.

6. C. Carpineto and G. Romano. Information retrieval through hybrid navigation
of lattice representations. International Journal of Human-Computer Studies,
45(5):553–578, 1996.

7. C. Carpineto and G. Romano. A lattice conceptual clustering system and its
application to browsing retrieval. Machine Learning, 24(2):95–122, 1996.

8. C. Carpineto and G. Romano. Effective reformulation of boolean queries with
concept lattices. In Proceedings of International Conference on Flexible Query
Answering Systems, LNAI vol. 1495, pages 83–94, Roskilde, Denmark, May 1998.

9. C. Carpineto and G. Romano. Order-theoretical ranking. Journal of American
Society for Information Science, 51(7):587–601, 2000.

10. B.A. Davey and H.A. Priestley. Introduction to lattices and order, chapter 3.
Cambridge, second edition, 2002.

11. B. Ganter and R. Wille. Applied lattice theory: Formal concept analysis.
http://www.math.tu.dresden.de/∼ganter/psfiles/concept.ps.

12. Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foun-
dations. Springer Verlag, 1st edition, 1999.

13. Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

14. Gary Geisler, Sarah Giersch, David McArthur, and Marty McClelland. Creating
Virtual Collections in Digital Libraries: Benefits and Implementation Issues. In
Proceedings of the second ACM/IEEE-CS Joint Conference on Digital Libraries,
pages 210–218. ACM Press, 2002.

15. R. Godin, J. Gecsei, and C. Pichet. Design of a browsing interface for informa-
tion retrieval. In Proceedings of SIGIR89, the Twelfth Annual International ACM
Conference on Research and Development in Information Retrieval, pages 32–39,
Cambridge, MA, 1989.

16. Carl Lagoze and David Fielding. Defining Collections in Distributed Digital Li-
braries. D-Lib Magazine, November 1998.

17. Carlo Meghini and Nicolas Spyratos. Preference-based query tuning through re-
finement/enlargement in a formal context. In J. Dix and S. Hegner, editors, Pro-
ceedings of FoIKS 2006, the fourth Int. Symp. on Foundations of Information and
Knowledge Systems, LNCS vol. 3861, pages 278–293, Budapest, February 2006.

18. Uta Priss. Lattice-based information retrieval. Knowledge Organization, 27(3):132–
142, 2000.

19. Uta Priss. Formal concept analysis in information science. Annual Review of
Information Science and Technology, 40:521–543, 2006.

20. Ian H. Witten, David Bainbridge, and Stefan J. Boddie. Power to the People: End-
user Building of Digital Library Collections. In Proceedings of the first ACM/IEEE-
CS joint conference on Digital libraries, pages 94–103. ACM Press, 2001.

