Skip to main content

On Defining Integers in the Counting Hierarchy and Proving Arithmetic Circuit Lower Bounds

  • Conference paper
Book cover STACS 2007 (STACS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4393))

Included in the following conference series:

  • 1148 Accesses

Abstract

Let τ(n) denote the minimum number of arithmetic operations sufficient to build the integer n from the constant 1. We prove that if there are arithmetic circuits for computing the permanent of n by n matrices having size polynomial in n, then τ(n!) is polynomially bounded in logn. Under the same assumption on the permanent, we conclude that the Pochhammer-Wilkinson polynomials \(\prod_{k=1}^n (X-k)\) and the Taylor approximations \(\sum_{k=0}^n \frac1{k!} X^k\) and \(\sum_{k=1}^n \frac1{k} X^k\) of exp and log, respectively, can be computed by arithmetic circuits of size polynomial in logn (allowing divisions). This connects several so far unrelated conjectures in algebraic complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E., et al.: On the complexity of numerical analysis. In: Proc. 21st Ann. IEEE Conference on Computational Complexity, pp. 331–339. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  2. Allender, E., Wagner, K.W.: Counting hierarchies: polynomial time and constant depth circuits. In: Rozenberg, G., Salomaa, A. (eds.) Current trends in Theoretical Computer Science, pp. 469–483. World Scientific, Singapore (1993)

    Google Scholar 

  3. Beame, P.W., Cook, S.A., Hoover, H.J.: Log depth circuits for division and related problems. SIAM J. Comput. 15(4), 994–1003 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, L., et al.: Algebraic Settings for the Problem “P ≠ NP?”. In: The mathematics of numerical analysis. Lectures in Applied Mathematics, vol. 32, pp. 125–144. Amer. Math. Soc, Providence (1996)

    Google Scholar 

  5. Blum, L., et al.: Complexity and Real Computation. Springer, Heidelberg (1998)

    Google Scholar 

  6. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers. Bull. Amer. Math. Soc. 21, 1–46 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Algorithms and Computation in Mathematics, vol. 7. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  8. Bürgisser, P.: Cook’s versus Valiant’s hypothesis. Theoret. Comp. Sci. 235, 71–88 (2000)

    Article  MATH  Google Scholar 

  9. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Grundlehren der mathematischen Wissenschaften, vol. 315. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  10. de Melo, W., Svaiter, B.F.: The cost of computing integers. Proc. Amer. Math. Soc. 124(5), 1377–1378 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. von zur Gathen, J., Strassen, V.: Some polynomials that are hard to compute. Theoret. Comp. Sci. 11, 331–336 (1980)

    Article  MATH  Google Scholar 

  12. Hesse, W., Allender, E., Barrrington, D.A.: Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. System Sci. 65(4), 695–716 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Koiran, P.: Valiant’s model and the cost of computing integers. Comput. Complexity 13(3-4), 131–146 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lipton, R.J.: Straight-line complexity and integer factorization. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 71–79. Springer, Heidelberg (1994)

    Google Scholar 

  15. Malod, G.: Polynômes et coefficients. Phd thesis, Université Claude Bernard-Lyon 1 (2003), http://tel.ccsd.cnrs.fr/tel-00087399

  16. Reif, J.H., Tate, S.R.: On threshold circuits and polynomial computation. SIAM J. Comput. 21(5), 896–908 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shub, M., Smale, S.: On the intractability of Hilbert’s Nullstellensatz and an algebraic version of “NP ≠ P?”. Duke Math. J. 81, 47–54 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Smale, S.: Mathematical problems for the next century. In: Mathematics: frontiers and perspectives, pp. 271–294. Amer. Math. Soc., Providence (2000)

    Google Scholar 

  19. Strassen, V.: Polynomials with rational coefficients which are hard to compute. SIAM J. Comp. 3, 128–149 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Strassen, V.: Einige Resultate über Berechnungskomplexität. Jahr. Deutsch. Math. Ver. 78, 1–8 (1976)

    MathSciNet  MATH  Google Scholar 

  21. Strassen, V.: Algebraic complexity theory. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, pp. 634–672. Elsevier, Amsterdam (1990)

    Google Scholar 

  22. Torán, J.: Complexity classes defined by counting quantifiers. J. Assoc. Comput. Mach. 38(3), 753–774 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Valiant, L.G.: Completeness classes in algebra. In: Proc. 11th ACM STOC, pp. 249–261. ACM Press, New York (1979)

    Google Scholar 

  24. Valiant, L.G.: Reducibility by algebraic projections. In: Logic and Algorithmic: an International Symposium held in honor of Ernst Specker, vol. 30, pp. 365–380. Monogr. No. 30 de l’Enseign. Math. (1982)

    Google Scholar 

  25. Vollmer, H.: Introduction to circuit complexity. A uniform approach. Texts in Theoretical Computer Science. EATCS. Springer, Berlin (1999)

    Google Scholar 

  26. Wagner, K.W.: The complexity of combinatorial problems with succinct input representation. Acta Inform. 23(3), 325–356 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Thomas Pascal Weil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bürgisser, P. (2007). On Defining Integers in the Counting Hierarchy and Proving Arithmetic Circuit Lower Bounds. In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70918-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70917-6

  • Online ISBN: 978-3-540-70918-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics