Skip to main content

On Completing Latin Squares

  • Conference paper
STACS 2007 (STACS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4393))

Included in the following conference series:

Abstract

We present a \((\frac{2}{3}-\epsilon)\)-approximation algorithm for the partial latin square extension (PLSE) problem. This improves the current best bound of \(1 - \frac{1}{e}\) due to Gomes, Regis, and Shmoys [5]. We also show that PLSE is APX-hard.

We then consider two new and natural variants of PLSE. In the first, there is an added restriction that at most k colors are to be used in the extension; for this problem, we prove a tight approximation threshold of \(1-\frac{1}{e}\). In the second, the goal is to find the largest partial Latin square embedded in the given partial Latin square that can be extended to completion; we obtain a \(\frac{1}{4}\)-approximation algorithm in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry, R.A., Humblet, P.A.: Latin routers, design and implementation. IEEE/OSA Journal of Lightwave Technology, 891–899 (1993)

    Google Scholar 

  2. Colbourn, C.J.: The complexity of completing partial latin squares. Discrete Applied Mathematics 8, 25–30 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Evans, T.: Embedding incomplete latin squares. American Mathematical Monthly 67, 958–961 (1960)

    Article  MathSciNet  Google Scholar 

  4. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gomes, C.P., Regis, R.G., Shmoys, D.B.: An improved approximation algorithm for the partial latin square extension problem. Operations Research Letters 32(5), 479–484 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988)

    MATH  Google Scholar 

  7. Holyer, I.: The NP-completeness of some edge-partition problems. SIAM Journal on Computing 10(4), 713–717 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM Journal on Discrete Mathematics 2(1), 68–72 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Immorlica, N., Mahdian, M., Mirrokni, V.S.: Cycle cover with short cycles. In: Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer Science, pp. 641–653 (2005)

    Google Scholar 

  10. Kumar, R., Russell, A., Sundaram, R.: Approximating latin square extensions. Algorithmica 24(2), 128–138 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Raghavan, P., Thompson, C.D.: Randomized rounding: A technique for provably good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ryser, H.J.: A combinatorial theorem with an application to latin rectangles. Proceedings of the American Mathematical Society 2, 550–552 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  13. Smetaniuk, B.: A new construction on Latin squares I. A proof of the Evans conjecture. Ars Combinatoria XI, 155–172 (1981)

    MathSciNet  Google Scholar 

  14. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Thomas Pascal Weil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Hajirasouliha, I., Jowhari, H., Kumar, R., Sundaram, R. (2007). On Completing Latin Squares. In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70918-3_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70917-6

  • Online ISBN: 978-3-540-70918-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics