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Abstract. Research within the area of Evolutionary Multi-objective
Optimization (EMO) focused on two- and three-dimensional objective
functions, so far. Most algorithms have been developed for and tested
on this limited application area. To broaden the insight in the behav-
ior of EMO algorithms (EMOA) in higher dimensional objective spaces,
a comprehensive benchmarking is presented, featuring several state-of-
the-art EMOA, as well as an aggregative approach and a restart strategy
on established scalable test problems with three to six objectives. It is
demonstrated why the performance of well-established EMOA (NSGA-
II, SPEA2) rapidly degradates with increasing dimension. Newer EMOA
like ε-MOEA, MSOPS, IBEA and SMS-EMOA cope very well with high-
dimensional objective spaces. Their specific advantages and drawbacks
are illustrated, thus giving valuable hints for practitioners which EMOA
to choose depending on the optimization scenario. Additionally, a new
method for the generation of weight vectors usable in aggregation meth-
ods is presented.

1 Introduction

In the field of evolutionary multi-objective optimization, a lot of test problems
and applications with two or three objectives have been studied. Problems with
more than three objectives, which have been termed many-objective problems
by Farina and Amato [1], have been tackled only rarely. Many techniques that
work well for only a few objectives are anticipated to have difficulties in high-
dimensional objective spaces. Thus, many-objective optimization is significantly
more challenging than scenarios usually being analyzed.

Within multi-objective optimization, we consider d-dimensional vectors of
objective values for a problem of d objective functions f = (f1, . . . , fd). Among
these vectors, a partial order holds concerning the considered minimization prob-
lems. An individual p with decision vector x dominates another p′ with decision
vector x′, if and only if for the objective vectors y = f (x) and y′ = f (x′) holds:
∀i ∈ {1, . . . , d} : yi ≤ y′i and y 6= y′. Within a set of individuals, individuals
that are not dominated by other members are called non-dominated. The mini-
mal elements of the partial order of the dominance relation, which are globally



2

y

¦1

¦2

¦1

¦2

y

¦3

Fig. 1: A solution’s comparable space in case of two (left) and three objectives (right).
The region which is dominated by a point y is marked dark gray and the region con-
sisting of points dominating y is shaded light gray. Only points in those areas are
comparable to y with respect to Pareto-dominance, whereas all other points are incom-
parable.

non-dominated are called Pareto optimal. The set of Pareto optimal decision
vectors is called Pareto set and the corresponding set of Pareto optimal objec-
tive vectors is called Pareto front. The selection module of an EMO algorithm
(EMOA) requires a mapping of an objective vector to a ranking criterion to
establish a complete order among individuals. Popular EMOA usually consist of
two selection operators. The primary selection operator is based on Pareto dom-
inance and favors non-dominated solutions over dominated ones. The secondary
operator is constituted diversity preserving and rates solutions incomparable
concerning the primary operator. Whenever the set of solutions being equivalent
concerning the primary operator is too large to be completely taken into the
following population, the secondary operator is applied.

This concept of selection already documents the insight that Pareto domi-
nance may not be sufficient as a sole selection operator, due to the large amount
of possibly incomparable solutions. More precisely, a d-dimensional objective
vector is only comparable with a fraction of 1/2d−1 of an (infinite) objective
space, as stated by Farina and Amato [1]. This fact is depicted in Fig. 1. The
importance of the secondary selection operator grows with increasing dimension
of the objective space since the incomparability concerning the Pareto-based
operator becomes the typical case.

Few previous studies on many-objective optimization by Purshouse and Flem-
ing [2] and Hughes [3] focus to demonstrate the bad performance of NSGA-II
by Deb et al. [4]. Hughes observed a simple single-objective restart strategy out-
performing NSGA-II on a six-objective function in a two-dimensional decision
space. Upon this, he implied a generalization to all Pareto-based techniques.

In contradiction, the work at hand includes positive results by demonstrat-
ing that some modern EMOA using Pareto-concepts cope very well with high-
dimensional objective spaces. We ascribe the good performance of ε-MOEA,
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IBEA, SMS-EMOA, and MSOPS to new concepts of aggregation and indicator
functions and explain how and why these EMOA work successfully. A compre-
hensive benchmark is presented on the established test functions of the DTLZ
function family, which feature a high dimensional decision and a scalable ob-
jective space. Moreover, a slight modification to NSGA-II is suggested, which
causes a better performance. Our motivation is not to modify NSGA-II but to
demonstrate which aspects of classic EMOA are responsible for the problems
within many-objective optimization.

The aggregation method MSOPS by Hughes [3] which performs an optimiza-
tion with respect to all objectives in parallel not harking back to the concept of
Pareto dominance is studied more detailedly. The problems using aggregation
are described and solution concepts are presented with a focus on suitable sets
of weight vectors.

The insights are very interesting for practitioners who have to decide which
algorithm is suitable to solve their problem effectively and efficiently. The dis-
cussed aspects of parameterization simplify the successful application of EMOA.
For designers of algorithms, the study gives hints to possible improvements.

The considered test functions, performance measures and basic settings of the
EMOA are described in the following section. Section 3 deals with the behavior
of Pareto-based EMOA, Section 4 with aggregation methods, and Section 5 with
methods utilizing indicator functions for selection. In these sections, algorithms
are presented and their performances are described with help of the quality
measures. Section 6 summarizes the findings and gives an outlook on how to
further deepen insight in many-objective optimization.

2 Benchmark Settings

All algorithms, except otherwise mentioned, have been implemented within the
PISA framework1 [5] since an integrative framework simplifies comparisons. The
same variation operators are used with exactly the same parameterization, which
is chosen according to the studies of Deb et al. [6]. Simulated binary crossover
(SBX) and polynomial mutation (PM) as described by Deb [7] are applied with
mutation probability pm = 1/n per decision variable and recombination prob-
ability pc = 1 per individual. The distribution indices ηc = 15 and ηm = 20
are used. If not otherwise stated, a (µ + µ) strategy and a binary tournament
for mating selection are applied. A number of 30.000 function evaluations is ac-
complished and the population size µ = 100 is chosen. For each EMOA, besides
SMS-EMOA, on each test function, 20 runs are performed. Due to the exponen-
tial runtime and the small standard deviation in the observed runs, SMS-EMOA
is only repeated 5 times.

1 PISA - Platform and Programming Language Independent Interface for Search Al-
gorithms, ETH Zürich (www.tik.ee.ethz.ch/pisa/)
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2.1 Test Functions

To benchmark the performance of the considered EMOA, the functions DTLZ1
and DTLZ2 of the DTLZ test function family [8] are invoked. These functions
are scalable in the number of objectives and thus allow for a many-objective
study. A bottom-up approach is used, which combines a parametric description
of the Pareto front with a distance function. Therefore, the decision vector is
divided into two subvectors. The first one of length d−1 contains the parameters
defining the position on the given surface while the second of length ν specifies
the distance to the Pareto front. This results in dimension d+ν−1 of the decision
space. According to Deb et al. [8], ν = 5 is used in DTLZ1 and ν = 10 is used
in DTLZ2 respectively.

The Pareto front of DTLZ1 is a linear hyperplane (
∑d

i=1 fd(x) = 0.5). DTLZ2
features a Pareto front that corresponds to the positive part of the unit hyper-
sphere (|f (x)| = 1). Here, the interaction between objectives is nonlinear. The
domain of all decision variables is [0, 1]. Due to different scaling constants in the
distance function, the codomain of objective values for DTLZ1 is [0, 1 + 225ν ]
and [0, 1+0.25ν ] for DTLZ2, respectively. The Pareto set of both test functions
corresponds to xd, . . . , xn = 0.5 with arbitrary values for x1, . . . , xd−1.

2.2 Performance Assessment

For performance assessment, the S-metric by Zitzler and Thiele [9] and the
convergence measure [6] are considered. The S-metric determines the size of the
dominated hypervolume in objective space bounded by a reference point r. In
EMO research it is of outstanding importance due to its theoretical properties.
The values depend on proximity to the Pareto front as well as on distribution of
points. The maximal S-metric value is reached by the Pareto front. The reference
points r = 0.7d for DTLZ1 and r = 1.1d for DTLZ2 were used in previous
studies [6, 10] and are close to the Pareto front in order to emphasize on the
distribution of optimal solutions. Points that do not dominate the reference
point are discarded for metric calculation. The metric values are normalized by
calculating the fraction of the analytical optimal value. Note that exactly 100%
are unreachable with a finite number of points.

The convergence measure describes the average distance of the approximation
to the Pareto front in objective space. In contrast to the study of Deb et al. [6],
the euclidean distance to the nearest optimal solution is determined analytically
without using a reference set.

In analytic geometry, the distance of a point to a hyperplane can be cal-
culated using the Hesse normal form. Given a parametric surface S defined by
n1x1 + . . . + ndxd = a, the distance dS of a point (r1, . . . , rd)

T to S is

dS =

∣

∣

∣

∣

∣

n1x1 + . . . + ndxd − a
√

n2
1 + . . . + n2

d
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The DTLZ1 hyperplane possesses the normal vector (n1, . . . , n2)
T = (1, . . . , 1)T

resulting in the distance

dDTLZ1(x) = |f1(x) + . . . + fd(x) − 0.5|

of a solution x to the Pareto front.
On DTLZ2, the shortest way to the Pareto front is the line between the

position vector of the solution and the origin of the objective coordinate system.
Since the distance of the origin to each point of the Pareto front is 1, the distance
of a solution x to the Pareto front constitutes

dDTLZ2(x) = |f (x)| − 1.

3 Pareto-based EMOA

As Pareto-based EMOA, we classify EMOA with selection criteria that are
mainly based on the qualitative information of Pareto-dominance, Pareto-based
ranking, or counting. Thus, NSGA-II, SPEA2, and ε-MOEA are considered here.

NSGA-II The Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)
by Deb et al. [4] applies the rank assigned to each solution by non-dominated
sorting as primary selection criterion. Non-dominated individuals are assigned
rank one and the set of individuals with equal rank is called a front. Those indi-
viduals that are non-dominated if the first front was removed are assigned rank
two. The third front is decided within the population discarding the first and the
second front and so on. Individuals with equal ranks are evaluated using a sec-
ondary selection criterion called crowding distance. This subsumes the distances
to the next higher and lower values in each dimension, respectively. Currently,
the NSGA-II is supposed to be the best known and most frequently applied
EMOA. Jensen [11] improves the non-dominated sorting algorithm, determining
the overall runtime of NSGA-II, to run in O(µ logd−1 µ) per generation.

SPEA-2 The Strength Pareto Evolutionary Algorithm (SPEA2) by Zitzler et
al. [12] uses two ranking criteria as well. It is an elitist algorithm with an archive
of constant size, which is chosen to be the population size µ in the experiments
at hand. As primary selection criterion, a strength value that gives the number
of individuals in the population dominated by the current individual is assigned.
Based on these values a raw fitness is computed as the sum of the strength values
of every individual that dominates it. Thus, every non-dominated individual’s
raw fitness equals zero. In a second step, a density estimation is performed based
on the euclidean distances between all individuals. The primary fitness value is
the raw fitness plus the reciprocal of the sum of the distance to the k-nearest
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neighbor [13]2. To fill the archive for the next generation, the individuals with
the best fitness are copied. In case of individuals with equal fitness, the distance
to the k-nearest neighbor for increasing k is used as further criterion. Given
d ≥ 3, these methods require a runtime in O(dµ2) per generation [11].

ε-MOEA Laumanns et al. [14] proposed the ε-MOEA to combine the con-
vergence properties of an elitist MOEA like suggested by Rudolph and Agapie
[15] with the need to preserve a diverse set of solutions. The objective space is
divided into a grid of boxes, whose size can be adjusted by the choice of ε. Dom-
inance is checked according to the boxes where the solutions are positioned. The
archive E holds one solution for each non-dominated box. If the box of a new
solution dominates other boxes in the archive, the associated archive members
are rejected. In case of two solutions belonging to the same box, Laumanns et
al. decline the new solution except it dominates the old one. Later, Deb et al. [6]
propose to select the solution, which is closer to the best corner of the box. They
also administrate a co-evaluated population P of constant size. If a new solu-
tion is not dominated by any member of the population, it replaces a randomly
chosen member favoring dominated solutions. They also suggest a steady-state
approach, where the offspring is generated by a parent from P and a parent
from E. A binary tournament regarding the dominance relation is performed to
choose the member of P for mating. If two non-dominated solutions are chosen,
a random decision will be applied. The parent from E is chosen equiprobable.
Because no further diversity measures need to be computed, the runtime of a
generation of ε-MOEA is O(d|E|).

3.1 Experimental Results

The results of the experiments are presented in Tab. 1 and Tab. 2. Like the
following tables, these consist of two parts. The left part provides the information
which algorithm and how many objectives were used while the results are placed
in the right part. The results themselves are split in two parts regarding the
concerned problem. Here, the left and the right column of each part yield the
most interesting information for investigation, i.e. the mean and the median of
the resulting values received by all runs performed. Next to the averaged values,
the standard deviation (std.dev.) of the averaged values is stated.

NSGA-II and SPEA2 rapidly decrease in quality with increasing dimension
of objective space. If more than four objectives are considered, these algorithms
do not converge to the Pareto set as indicated by the high distance values (cf.
Tab. 1). With dimension greater than four, no relative hypervolume is mea-
sured because no point dominating the reference point is achieved (cf. Tab. 2).
Further studies with these algorithms have been performed to exhibit if any
convergence occurs with a higher number of function evaluations. As shown in
Fig. 2, both algorithms increase the distance to the Pareto front in the first
generations because the diversity based selection criteria favor higher distances

2 In PISA k is chosen as 1.
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Table 1: The convergence measure for the pareto dominance based algorithms.

DTLZ1 DTLZ2
obj. algorithm mean std.dev median mean std.dev median

3 ε-MOEA 0.00614 0.00413 0.00484 0.00102 0.00022 0.00105
NSGA-II 0.06333 0.15581 0.01002 0.01049 0.00162 0.01027
SPEA2 0.06783 0.16435 0.00792 0.00801 0.00112 0.00806

4 ε-MOEA 0.15990 0.34073 0.01990 0.00129 0.00024 0.00126
NSGA-II 1.70260 1.95260 0.69515 0.08522 0.02580 0.08060
SPEA2 3.47990 4.78910 1.66910 0.08164 0.01676 0.08901

5 ε-MOEA 0.22348 0.41685 0.01941 0.02681 0.00120 0.02670
NSGA-II 300.416 37.2461 317.506 1.06780 0.14504 1.07770
SPEA2 358.818 25.0853 366.236 1.30970 0.15758 1.27760

6 ε-MOEA 0.97014 1.39920 0.27217 0.00272 0.00067 0.00266
NSGA-II 393.674 17.6076 388.689 2.15610 0.09584 2.16910
SPEA2 482.742 13.6757 479.577 2.32000 0.09617 2.36070

between solutions. Special emphasis is given to extremal solutions with values
near zero in one or more objectives. These solutions remain non-dominated and
the distance cannot be decreased thereafter.
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To confirm this assumptions and improve NSGA-II in the many-objective
case, a slight modification of crowding distance is studied. Originally, an in-
dividual without a neighbor regarding one dimension of the objective space is
assigned an infinite crowding distance. Instead of that, a value of zero is used,
causing that non-dominated solutions with extremal values are rejected. Al-
though this variant is not able to converge to the Pareto front, an improvement
of the average distance within the first 100, 000 function evaluations is obvious
(Fig. 2). Then, most of the decision variables have reached their optimal value.
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Only one or two of them remain in a local optimum. This experiment shows that
a diversity measure with emphasis on a spread of the population can misguide
the MOEA to deterioration and the loss of promising non-dominated solutions.

Table 2: The relative hypervolume for the pareto dominance based algorithms.

DTLZ1, r = 0.7d DTLZ2, r = 1.1d

obj. algorithm mean std.dev median mean std.dev median

3 ε-MOEA 0.94560 0.01005 0.94662 0.92858 0.00118 0.92836
NSGA-II 0.94333 0.11423 0.96923 0.86913 0.00803 0.86918
SPEA2 0.98010 0.00152 0.98068 0.90760 0.00350 0.90782

4 ε-MOEA 0.85493 0.18655 0.92697 0.87722 0.00186 0.87766
NSGA-II 0.45730 0.40600 0.46204 0.71644 0.01971 0.71733
SPEA2 0.62316 0.34319 0.72224 0.78461 0.01258 0.78202

5 ε-MOEA 0.82261 0.16668 0.86933 0.83847 0.00308 0.83809
NSGA-II 0 0 0 0.11570 0.06842 0.11734
SPEA2 0 0 0 0.12528 0.06942 0.12864

6 ε-MOEA 0.64563 0.38344 0.81552 0.85332 0.01434 0.85497
NSGA-II 0 0 0 0 0 0
SPEA2 0 0 0 0 0 0

The performance of ε-MOEA highly depends on the choice of ε. We choose
it such that E finally contains about 100 solutions3. The ε-MOEA is able to
produce optimal solutions within the allowed number of function evaluations
for all considered numbers of objectives. This is shown in the lower left part
of figure 2. The active dominance-preserving function of the archive, combined
with an utopia point distance criterion for non-dominated individuals in the
same hyperbox avoids the effects of deterioration and thus ensures convergence
even for the co-evolving set P. Though, the hypergrid guarantees an uniform
distribution of individuals, the obtained hypervolume values are only for DTLZ2
competitive with the best considered algorithms. This is due to the trend of the
hyperbox method to avoid extremal solutions, as described by Deb et al. [6].

4 Aggregation-based EMOA

Basic aggregation methods are single-objective optimizers, which multiply the
objective values with weights and accumulate them to a scalar value. The EMOA
considered here, enhance aggregation concepts in order to produce a set of solu-
tions. In contrast to the other EMOA considered, aggregation-based approaches
require the a priori definition of relations between objective functions. This re-
sults in a certain focus during the optimization.

3 d=3, DTLZ1: ε = (0.03, 0.03, 0.03), DTLZ2: ε = (0.058, 0.058, 0.058).
d=4, DTLZ1: ε = (0.047, 0.047, 0.047, 0.047), DTLZ2: ε=(0.125, 0.125, 0.125, 0.125).
d=5, DTLZ1: ε = (0.057, . . . , 0.057), DTLZ2, ε = (0.18, . . . , 0.18).
d=6, DTLZ1: ε = (0.066, . . . , 0.066), DTLZ2, ε = (0.232, . . . , 0.232).
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MSOPS Multiple Single Objective Pareto Sampling (MSOPS) does not feature
Pareto methods, but handles all objectives in parallel. The decision maker has to
choose T vectors of weights for every objective function to enable an aggregation.
Hughes [16] recommends weighted min-max (MSOPS 1) and a combination of
this approach with Vector-Angle-Distance-Scaling (VADS) called dual optimisa-
tion (MSOPS 2). Depending on the aggregation strategy, one receives a set of
T or 2T aggregated scores per solution. The scores are held in a score matrix S,
where each row belongs to a solution and each column represents an aggregated
score. Each column of the matrix S is ranked, giving the best performing pop-
ulation member rank one. The rank values are stored in a matrix R. Each row
of R is sorted ascending, allowing in a lexicographical order of the individuals.
The runtime is in O(µTd) for the computation of the aggregated scores, and in
O(µT log T ) and O(Tµ log µ) respectively to perform the sort of the rows and
columns. Thus, the runtime of MSOPS is O(µT (d+logT +logµ) per generation.

Obviously, the choice of weight vectors determines the distribution proper-
ties of MSOPS. Each weight vector w = (w1, . . . , wd) corresponds to a direction,
analytically given by a target vector starting in the origin. The aim of the aggre-
gation methods is to reach the point on the corresponding direction vector which
is as close as possible to the origin. To this end, weighted min-max focuses on
the distance to the origin, while V ADS favors solutions whose position vector
has a small intersecting angle with the target vector.

Since our comparative study aims at an approximation of the whole Pareto
front in order to maximize the covered hypervolume, an aprobriate set of weights
has to be chosen. In Hughes [3] benchmarking ’50 target vectors spread uniformly
across the search space’ are used. The target vectors t = (t1, . . . , td) are created
by calculating an initial number of steps s = b d

√
T c and constructing each possi-

ble vector containing multiples of 1/s between 0 and 1. Afterward, these target
vectors are normalized and doubles are removed. If the number of targets is lower
as desired, s is incremented and the procedure is repeated. At the end, a next
neighbor technique is used to prune the set of target vectors to the desired size.
Because the PISA implementation of MSOPS uses weight vectors, a transforma-
tion of the target vectors into weights is necessary. The authors recommend –
deviant from Hughes [3] – the following procedure for transformation, that can
also be used to transform a set of utopia or reference points into weights and
avoids numerically unstable calculations in many cases.

From the aggregation methods can be referred that a weight vector for a
specified target fulfills the following d− 1 conditions:

w1 · t1 = w2 · t2, w2 · t2 = w3 · t3, . . . wd−1 · td−1 = wd · · · td

The normalizing condition w1 + . . . + wd = 1 is added in order to obtain a com-
pletely defined system of equations. Thus, the components of the corresponding
weight vector can be computed as follows:

wi =

∏

j 6=i tj
∑d

k=1

∏

j 6=k tj
(i = 1, . . . , d) (1)
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To extremal solutions with value 0 in d − 1 objectives, a small ε needs to be
added to allow the above calculation. Hughes [16] generally recommends to use
a number of target vectors that is lower than the population size. Besides, he
states that the number of target vectors has to be increased for more objectives.
To cover both needs, three different sets of target vectors are used. The first
contains 50 vectors, the second 100 vectors, and the third 200 vectors.

RSO A restart strategy of a conventional single-objective evolutionary opti-
mizer is applied as well and abbreviated RSO (Repeated Single Objective) ac-
cording to Hughes [3]. Here, a single-objective run is performed for each of the
100 weight vectors. Thus, the number of function evaluations has to be divided
among them, resulting in only 300 evaluations per run. The derandomized muta-
tion operator by Ostermeier et al. [17] is applied in a (1, 10)-evolution strategy.
This operator was a first step towards the popular Covariance Matrix Adapta-
tion (CMA) operator by Hansen and Ostermeier [18], which is known to produce
good results within limited function evaluations [19]. To handle multiple objec-
tives in a single-objective EA, the weighted min-max approach was chosen like
in MSOPS.

4.1 Experimental Results

The methods using aggregation show an obvious convergence in all scenarios
considered because they benefit from the property of the min-max method to
minimize all objectives at once. While MSOPS obtains very promising results,
RSO does not succeed in reaching the Pareto front. This is due to a too small
number of function evaluations per run and the loss of information with every
restart. Confirming the observations of Hughes [3], RSO outperforms NSGA-II
and SPEA2 in case of five and six objectives.

Almost all variants of MSOPS attain very low average distances indicating
that only optimal solutions have been found. Only for five or six objectives,
variants using a lower number of target vectors fail to converge to the Pareto
front in some of the runs. In the table, this behavior can be inferred from a high
standard deviation and high differences between the mean and the median value.

From the obtained hypervolume can be concluded that the distribution prop-
erties can be slightly improved by the supporting use of VADS. Hughes assump-
tion that the number of target vectors should be increased if more objectives are
concerned is confirmed. For three objectives, the variants of MSOPS using 50
target vectors obtain the maximal hypervolume among the aggregation methods.
With increasing objectives, the best values can be obtained with a higher num-
ber of target vectors. In general, the results show that the method used to design
the target vectors is able to generate well distributed Pareto front approxima-
tions. Even for three objectives, NSGA-II and ε-MOEA (DTLZ1), respectively
NSGA-II and SPEA2 (DTLZ2) can be outperformed regarding the S-metric.
Note that the given method to generate the target vectors only performs well
on continuous Pareto fronts. As observed by Hughes [16], a refinement of the
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Table 3: The convergence measure for the aggregation algorithms.

DTLZ1 DTLZ2
obj. algorithm mean std.dev median mean std.dev median

3 MSOPS 1 50 0.00276 0.00235 0.00185 0.00013 0.00014 9.0·10−5

MSOPS 1 100 0.00278 0.00241 0.00244 0.00015 0.00010 0.00015
MSOPS 1 200 0.00234 0.00156 0.00210 0.00080 0.00020 0.00076
MSOPS 2 50 0.00214 0.00221 0.00161 9.0·10−5 5.9·10−5 8.4·10−5

MSOPS 2 100 0.00222 0.00172 0.00191 0.00037 0.00013 0.00035
MSOPS 2 200 0.00128 0.00074 0.00116 0.00168 0.00034 0.00168
RSO 62.9990 15.2960 59.7140 0.26753 0.04901 0.26776

4 MSOPS 1 50 0.00392 0.00451 0.00269 0.00023 0.00023 0.00012
MSOPS 1 100 0.00292 0.00252 0.00231 0.00024 0.00039 0.00013
MSOPS 1 200 0.00365 0.00319 0.00264 0.00072 0.00028 0.00067
MSOPS 2 50 0.00246 0.00216 0.00182 0.00016 0.00010 0.00012
MSOPS 2 100 0.00849 0.02369 0.00282 0.00074 0.00024 0.00072
MSOPS 2 200 0.00439 0.00378 0.00260 0,00203 0.00047 0.00195
RSO 118.260 33.4420 121.190 0.56473 0.07953 0.57386

5 MSOPS 1 50 0.08016 0.31475 0.00814 0.00059 0.00027 0.00060
MSOPS 1 100 0.05667 0.23459 0.00337 0.00017 0.00023 7.1·10−5

MSOPS 1 200 0.00779 0.00556 0.00651 0.00096 0.00033 0.00092
MSOPS 2 50 0.13676 0.26271 0.01882 0.00113 0.00038 0.00097
MSOPS 2 100 0.03308 0.11179 0.00614 0.00138 0.00065 0.00119
MSOPS 2 200 0.00870 0.01079 0.00535 0,00231 0.00059 0.00233
RSO 111.960 35.1240 112.140 0.73556 0.15491 0.72211

6 MSOPS 1 50 0.02207 0.06509 0.00604 0.00044 0.00030 0.00044
MSOPS 1 100 0.00936 0.01579 0.00406 0.00012 8.7·10−5 9.7·10−5

MSOPS 1 200 0.00734 0.00420 0.00712 0.00048 0.00028 0.00039
MSOPS 2 50 0.27890 0.63926 0.02603 0.00091 0.00058 0.00069
MSOPS 2 100 0.18106 0.32499 0.02496 0.00190 0.00097 0.00180
MSOPS 2 200 0.01344 0.01134 0.01026 0.00118 0.00056 0.00116
RSO 110.910 42.7920 113.600 0.67628 0.13970 0.69903

targets is necessary for more complicated problems. Discontinuous Pareto fronts
lead to an approximation of the ’objective front ’[16], i.e. the intersection of the
target vectors with the domain of objectives. Thus, the approximation reached
with wide spread target vectors can obtain solutions that are not optimal in
sense of Pareto optimality. An evaluation of the aggregated values reached by
the individuals in the final population is necessary to identify target vectors that
support these solutions and accordingly refine the set of target vectors4 .

4 In real-world applications with unknown Pareto fronts, the above approach can be
helpful to find discontinuities and other informations about the shape of the Pareto
front. But, it has to be kept in mind that a refinement is necessary to find optimal
trade-offs.
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Table 4: The relative hypervolume of the aggregation algorithms.

DTLZ1, r = 0.7d DTLZ2, r = 1.1d

obj. algorithm mean std.dev median mean std.dev median

3 MSOPS 1 50 0.97142 0.00127 0.97184 0.89663 0.00717 0.89817
MSOPS 1 100 0.96484 0.00171 0.96537 0.88344 0.00208 0.88341
MSOPS 1 200 0.96180 0.00955 0.96625 0.88752 0.02681 0.88490
MSOPS 2 50 0.97278 0.00111 0.97317 0.89822 0.00054 0.89799
MSOPS 2 100 0.96719 0.00623 0.96776 0.91774 0.01203 0.92105
MSOPS 2 200 0.95744 0.00965 0.96020 0.91117 0.00775 0.91253
RSO 0 0 0 0.67735 0.03730 0.68188

4 MSOPS 1 50 0.96590 0.00107 0.96623 0.84765 0.01438 0.85238
MSOPS 1 100 0.94724 0.00573 0.94887 0.72575 0.03761 0.73177
MSOPS 1 200 0.94764 0.01187 0.94968 0.81489 0.03289 0.82292
MSOPS 2 50 0.96726 0.00062 0.96730 0.85284 0.00049 0.85273
MSOPS 2 100 0.96908 0.00258 0.96955 0.86206 0.00609 0.86445
MSOPS 2 200 0.95605 0.00561 0.95742 0.85938 0.01289 0.86395
RSO 0 0 0 0.39649 0.02363 0.39435

5 MSOPS 1 50 0.97740 0.00614 0.97956 0.78971 0.05479 0.80668
MSOPS 1 100 0.96312 0.01848 0.97160 0.48432 0.32422 0.72034
MSOPS 1 200 0.97749 0.00584 0.97694 0.82177 0.01404 0.82490
MSOPS 2 50 0.93235 0.16743 0.98387 0.81037 0.00915 0.80863
MSOPS 2 100 0.98743 0.00119 0.98762 0.86497 0.00606 0.86565
MSOPS 2 200 0.97966 0.00296 0.97987 0.84002 0.01467 0.84609
RSO 0 0 0 0.04960 0.03184 0.05873

6 MSOPS 1 50 0.98688 0.00469 0.98770 0.70669 0.18905 0.76654
MSOPS 1 100 0.95343 0.02840 0.96312 0.63285 0.13323 0.68515
MSOPS 1 200 0.99046 0.00169 0.99056 0.81435 0.03071 0.81964
MSOPS 2 50 0.92549 0.18116 0.99355 0.84659 0.00215 0.84627
MSOPS 2 100 0.96533 0.06398 0.98592 0.79881 0.01918 0.79436
MSOPS 2 200 0.99122 0.00160 0.99154 0.81208 0.11049 0.83925
RSO 0 0 0 0.16333 0.03440 0.15121

5 Indicator-based EMOA

The term indicator-based EA (IBEA) was introduced by Zitzler and Künzli [20]
for EMOA guided by a general preference information. The EMOA’s selection
operator uses a preference function (indicator) as a single-objective substitute
for the d-dimensional objective function. In contrast to the aggregation methods,
this preference information describes a general aim. No specification of weights
or targets is needed. As already stated in Sec. 1, classic EMOA use two ranking
criteria: one regarding the dominance relation and the other for distribution
aspects. Here, a single indicator is used to optimize a desired property of the
approximation set.

IBEA In Zitzler’s and Künzli’s [20] IBEA framework, binary performance met-
rics that map an ordered pair of individuals to a scalar value are suggested as
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indicator functions. Each individual is compared with all others, thus O(µ2)
indicator values must be calculated. A suitable indicator has to be dominance
preserving [20], which sloppily means that the indicator must not evaluate a vec-
tor better than another that dominates it. Two efficiently computable indicators
have been suggested in [20]. The additive ε-indicator subsumes the translations
in each dimension of objective space that are necessary to create a weakly dom-
inated solution. The hypervolume indicator measures the dominated hypervol-
ume that is only dominated by one vector and not by the other. Both indicators
can be computed in linear time regarding the dimension of the objective space.
This results in a runtime O(µ2d) per generation. For both indicators, negative
values mean that the first individual of the argument pair dominates the other.
For each individual, its indicator values are charged in a sum of an exponential
function to get a fitness value

F (x(1)) =
∑

x
(2)∈P\{x(1)}

−e−I(x(2),x(1))/κ. (2)

A positive scaling constant is invoked, which is chosen as κ = 0.05 as rec-
ommended in [20] for the applied adaptive variant of IBEA, which works on
normalized indicator values. For dominance preserving indicators holds that the
fitness value of a vector is worse than the fitness value of a vector that dominates
it.

SMS-EMOA The S-metric Selection-EMOA (SMS-EMOA) by Emmerich et
al. [21, 10] aims at maximizing the S-metric value of the population. This op-
timization aim rewards progression toward the Pareto front as well as a good
distribution of individuals. The maximal S-metric value is reached by the Pareto
front. Thus, optimizing the S-metric value is a very general purpose. Contrary to
most other EMOA, a steady-state selection scheme and an equiprobable mating
selection are applied. SMS-EMOA invokes the non-dominated sorting procedure
as primary selection criterion and the selection occurs among the members of
the worst ranked front. The secondary criterion applied to the last front is the
hypervolume contribution, which is defined as the exclusively dominated hy-
pervolume of an objective vector. The individual with the lowest hypervolume
contribution is discarded. Experiments show that the non-dominated sorting can
alternatively be omitted, which hardly influences the algorithms performance.
The runtime of a generation of SMS-EMOA is O(µd/2+1) as described by Beume
and Rudolph [22].

5.1 Experimental Results

As can be inferred from the convergence measure, both IBEA variants reach the
Pareto front of DTLZ2. On DTLZ1, only IBEAε+ converges towards the Pareto
front for all dimensions. IBEAHD reaches a very good distance value on DTLZ1
with three dimensions but fails in case of more objectives. This is due to the
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Table 5: The convergence measure of the indicator-based EMOA.

DTLZ1 DTLZ2
obj. algorithm mean std.dev. median mean std.dev. median

3 IBEAε+ 0.04399 0.17481 0.00057 0.00015 5.0·10−5 0.00014
IBEAHD 0.00137 0.00337 0.00029 1.3·10−5 5.3·10−6 1.2·10−5

SMS-EMOA 0.00110 0.00148 0.00039 3.4·10−6 1.2·10−6 2.8·10−6

4 IBEAε+ 0.01790 0.02940 0.00096 0.00071 0.00012 0.00069
IBEAHD 76.1230 119.550 0.00136 4.5·10−5 1.3·10−5 4.2·10−5

SMS-EMOA 0.00193 0.00176 0.00100 1.4·10−5 5.0·10−6 1.2·10−5

5 IBEAε+ 0.02056 0.06678 0.00129 0.00115 0.00019 0.00112
IBEAHD 151.310 131.820 215.000 0.00013 0.00014 0.00010
SMS-EMOA 0.00333 0.00215 0.00351 3.7·10−5 9.2·10−6 3.8·10−5

6 IBEAε+ 0.00467 0.00450 0.00256 0.00187 0.00031 0.00184
IBEAHD 82.1580 116.410 0.00182 0.00015 5.6·10−5 0.00014
SMS-EMOA 0.10278 0.22310 0.00444 5.4·10−5 1.1·10−5 5.2·10−5

normalization of objective values to [0, 1], tending the hypervolume indicator to
favor extremal solutions, which hinder the progression.

Surprisingly, the IBEAε+ using the additive ε-indicator reaches better S-
metric values than the IBEAHD invoking the hypervolume indicator. The con-
sideration of translation lengths in the additive ε-indicator causes a good distri-
bution of solutions. Contrary, the approximation of the hypervolume contribu-
tion through the binary hypervolume indicator tends to spiral downward with
increasing dimension of objective space. Both adaptive IBEA fail to produce a
good distribution on DTLZ1, which we ascribe to the high-scaled co-domain and
the resulting difficulties in the scaling of the fitness values.

Table 6: The relative hypervolume of the indicator-based algorithms.

DTLZ1, r = 0.7d DTLZ2, r = 1.1d

obj. algorithm mean std.dev. median mean std.dev median

3 IBEAε+ 0.77693 0.03182 0.78033 0.92991 0.00075 0.93002
IBEAHD 0.73929 0.03144 0.74208 0.92023 0.00071 0.92008
SMS-EMOA 0.98352 0.00071 0.98387 0.93870 6.3·10−5 0.93873

4 IBEAε+ 0.82920 0.02445 0.83425 0.89477 0.00059 0.89484
IBEAHD 0.51417 0.35620 0.70647 0.88633 0.00090 0.88619
SMS-EMOA 0.97612 0.00034 0.97627 0.90370 6.4·10−5 0.90368

5 IBEAε+ 0.87018 0.02777 0.86961 0.88571 0.00097 0.88584
IBEAHD 0.26292 0.33673 0 0.88250 0.00122 0.88259
SMS-EMOA 0.99182 0.00019 0.99182 0.89619 9.5·10−5 0.89624

6 IBEAε+ 0.89146 0.03569 0.90029 0.89283 0.00130 0.89322
IBEAHD 0.40153 0.30853 0.53634 0.88431 0.02231 0.89124
SMS-EMOA 0.96688 0.06741 0.99698 0.90483 0.00014 0.90481



15

1 2 3 4 5 6
0,0

0,2

0,4

0,6

0,8

1,0

Fig. 3: Results of one run of SMS-EMOA on six-objective DTLZ2. In the parallel plot,
each column corresponds to one objective.

SMS-EMOA reaches the best S-metric values of all considered algorithms.
The distance values are very good as well and all runs except one reached the
Pareto front. This run on six-objective DTLZ1 stagnated since one decision
variable –which defines the distance– remains static at a non-optimal value due to
an unusual loss of diversity in decision space in the beginning of the optimization
process. Since the selector modules in PISA only decide regarding the objective
values, this effect cannot be blamed to the selection properties of SMS-EMOA.
Figure 3 exemplarily pictures the distribution of an usual six-objective result set
of SMS-EMOA in a parallel plot. Every objective is covered and the structure
of the set is almost symmetric, indicating a uniformly spread distribution of
solutions over the whole Pareto front.

6 Summary and Outlook

The bad performance of early Pareto-based methods like NSGA-II and SPEA2
observed by Hughes [3] and Purshouse and Fleming [2] is confirmed. They show a
rapid degradation with increasing number of objectives. Some additional studies
show that they do not converge to the Pareto front at all and stagnate far away
from it. The performance of ε-MOEA refutes the hypothesis of Hughes that
a Pareto-based approach cannot succeed on many-objective problem instances.
Instead, favoring extremal solutions has been shown to hinder the progression
in many-objective spaces, which is also obviously for IBEA.

It is shown that more recent EMOA using indicators, which feature more than
just distribution aspects, perform very well in many-objective optimization. Es-
pecially, SMS-EMOA, which optimizes the population’s dominated hypervolume,
outperforms the other algorithms on all considered test functions. Moreover, an
aggregation-based EMOA, namely MSOPS, performs well with respect to con-
vergence aspects. A sophisticated scheme for the generation of weight vectors
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is introduced and also produces well distributed solution sets. In comparison to
the simple restart strategy RSO, MSOPS benefits from structural equalities of
good solutions by optimizing all weight vectors in parallel.

Future research will deepen the insights in the behavior of indicator-based al-
gorithms in particular. Theoretical statements are aspired for the convergence of
the MOEA showing promising results in this study. Statistically guided param-
eter studies should be performed to obtain suitable parametrizations for many-
objective problems. Especially, the size of the population and the offspring are
to be studied. Furthermore, relations between the Pareto front and the Pareto
set are studied all together resulting in new optimization techniques. These fea-
ture good convergence and distribution properties in objective space as well as
in decision space.
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