
Please do not remove this page

Designing Institutional Multi-Agent Systems
Sierra, Marie; Thangarajah, John; Padgham, Lin; Winikoff, Michael
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Designing-Institutional-Multi-Agent-Systems/9921863086301341/filesA
ndLinks?index=0

Sierra, M., Thangarajah, J., Padgham, L., & Winikoff, M. (2007). Designing Institutional Multi-Agent Systems.
Agent-Orientated Software Engineering VII, 84–103. https://doi.org/10.1007/978-3-540-70945-9_6

Published Version: https://doi.org/10.1007/978-3-540-70945-9_6

Downloaded On 2024/04/24 09:14:20 +1000
© 2007 Springer
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Designing-Institutional-Multi-Agent-Systems/9921863086301341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Designing-Institutional-Multi-Agent-Systems/9921863086301341
http://doi.org/doi:https://doi.org/10.1007/978-3-540-70945-9_6
https://researchrepository.rmit.edu.au

Designing Institutional Multi-Agent Systems?

Carles Sierra1, John Thangarajah2, Lin Padgham2, and Michael Winikoff2

1 Artificial Intelligence Research Institute (IIIA)
Spanish Research Council (CSIC)

Catalonia, Spain
sierra@iiia.csic.es

2 School of Computer Science and Information Technology,
RMIT University,

GPO Box 2476V, Melbourne, VIC 3001, Australia
{johthan, linpa, winikoff}@cs.rmit.edu.au

Abstract. The vision of agents working together on the Internet, in virtual orga-
nizations, is one that is increasingly common. However, one of the issues is the
regulation of the participating agents and their behaviour. A substantial body of
work exists that investigates agent societies and agent organizations, including
work on electronic institutions, such as Islander and Ameli. However, although
such work provides concrete tools for specifying and enacting institutions, there
is a lack of clear documented guidance to designers who are using these tools. In
this paper we describe a methodology for developing an institutional structure for
multi agent systems. This methodology captures the knowledge and experience
within the Islander group, and integrates it with the Prometheus methodology.

1 Introduction

The vision of agents working together on the Internet, in virtual organizations, is one
that is increasingly common. One of the issues however is the regulation of the partici-
pating agents and their behaviour. There is a substantial body of work that investigates
agent societies and agent organizations (for a review see [1]) and electronic institutions
(e.g. [2–4]). Methodologies for designing agent organizations such as OperA [5] have
been used for developing industrial systems, and there are various examples of imple-
mented systems. However there is very limited support for developing such systems, in
terms of runtime platforms or design tools. One exception is the Islander design tool [6]
and the Ameli runtime platform [7]. Together these provide an environment for design-
ing and developing electronic institutions. Currently there is no written methodology or
guidance on how to actually use these tools to develop electronic institutions, although
there is considerable experience developed within the Islander group. This paper pro-
vides a methodology for developing an institutional structure for multi agent systems,
capturing the knowledge and experience within the Islander group into a Social Design

? This work was supported by the Australian Research Council under grant LP0453486, in col-
laboration with Agent Oriented Software. We also thank the Australian Tourism Data Ware-
house for use of their tourism content in our agents. Carles Sierra is being supported by the
Spanish Web-I(2) project and the ARC Discovery Grant DP0557168.

E79927
Typewritten Text
Citation: Sierra, M, Thangarajah, J, Padgham, L and Winikoff, M 2007, 'Designing institutional multi-agent systems', in Agent-Orientated Software Engineering VII, Hakodate, Japan, 8 May 2006.

E79927
Typewritten Text

E79927
Typewritten Text

phase, within a slightly modified version of the Prometheus methodology [8], a practi-
cal agent-oriented software engineering methodology that aims to be usable by software
developers and undergraduate students.

Design tools play an extremely important part in supporting the development of
complex systems. Consequently this Social Design phase has been developed specifi-
cally to work with the Islander design tool. As the area of methodological support for
design and development of agent organizations, institutions and societies matures, it
is likely that this would be generalized to provide an approach less dependent on the
particular available toolset. However at this stage, we believe it is useful to provide a
very concrete methodology that gives sufficient guidance to the developer that they can
successfully develop a system.

The approach that we have taken is to use the Prometheus Design Tool (PDT3) [9]
and a variant of the Prometheus methodology for doing the initial analysis and system
specification. The system specified may include the Electronic Institution as a part of
the system, or it may be the entire system. Using this initial design in PDT, the design
of the Electronic Institution component is then carried out within the Islander tool, and
the outcome of this provides information back into the Prometheus design process for
those parts of the system that lie outside the actual Electronic Institution infrastructure.

In the rest of this paper we provide some background on Islander, and the view
of Electronic Institutions that Islander and Ameli are designed to support. We then
describe in detail the design process for developing an Electronic Institution, embedding
this within the Prometheus methodology. In order to illustrate the design process in a
concrete way, we take an example of an (very limited) Electronic Institution for travel
bookings, and use this for illustration throughout the methodological description.

2 Background: ISLANDER

The idea behind Electronic Institutions (EIs) is to mirror the roles traditional institu-
tions play in the establishment of “the rules of the game”– that is, the set of conventions
that articulate agents’ interactions. The essential roles EIs play are both descriptive
and prescriptive: the institution makes the conventions explicit to participants, and it
warrants their compliance. Development environments to realize Electronic Institutions
involve a conceptual framework to describe agent interactions as well as an engineering
framework to specify and deploy actual interaction environments. Work on such a de-
velopment environment has been happening for some time within the Intelligent Agents
Group at the Artificial Intelligence Research Institute of Spain [2–4, 10]. Considerable
experience in the deployment of applications as EIs (e.g. [11, 12]) provide confidence
in the validity of the approach.

EIs are socially-centered, and neutral with respect to the internals of the participat-
ing agents. They provide a regulated virtual environment where the relevant interactions
among participating entities take place. The Electronic Institution provides an infras-
tructure which ensures, as well as specifies, legitimate interactions. In order to realize
this infrastructure all interactions are considered to be speech acts, and any effect on

3 Freely available from www.cs.rmit.edu.au/agents/pdt

the shared environment is considered to happen only as a result of illocutions uttered
by participating agents.

The Islander tool supports specification of an EI which is then executable using the
Ameli runtime environment4. Conceptually there are four main areas to be specified
using Islander, and we will describe each in turn. These are:

– The Dialogical Framework which specifies the roles within the particular domain
and the ontology.

– The Interaction Structure which describes the scenes, the pattern of allowable
interactions within each scene, and also the effect these interactions have within
the shared environment.

– The Performative Structure which provides an overview of the connections be-
tween different scenes and possibly other (sub-)Performative structures, and the
role-flow policies.

– Norms and Constraints which capture rules which will be enforced by the EI.

2.1 Dialogical Framework

A role defines a particular pattern of behaviour and all participants within an EI take
on a particular role. For example, in an auction house there may be buyers and sellers.
Participants may change their roles over time, for example an agent acting as a buyer
at one point may act as a seller at another. It may also be the case that we restrict an
agent from acting as a buyer and seller at the same time, this is done by specifying a
particular relationship between roles called DSD (Dynamic Separation of Duties). A
stronger version of this relationship, called SSD (Static Separation of Duties) prevents
agents from playing two incompatible roles within an institution even if they are played
at different times.

We also need to distinguish between internal and external roles. The internal roles
define a set of roles that will be played by staff agents which correspond to employees
in traditional institutions. Agents that are external to the institution cannot take on these
roles and are restricted to external roles. When defining an EI we need to consider the
roles that participants may take on, whether the roles are internal or external and the
relationship between roles if any.

We need to settle on a common illocutory language that serves to tag all pertinent
interactions, or more properly, the valid speech acts. Formally, we consider each inter-
action to be an illocutory formulae: ι(speaker, listener, ϕ, t). The speech acts that we
use start with an illocutory particle (inform, request, accept, . . .) that a speaker ad-
dresses to a listener, at time t, and the content ϕ of the illocution is expressed in some
object language whose vocabulary is the EI’s ontology. The speaker and listener are
roles within the EI.

To fill in these formulae therefore, we need vocabulary and grammar, and we need to
refer to speakers and listeners, actions and time. We call all this the Dialogical Frame-
work because it includes all that is needed for agents to participate in admissible dia-
logues in a given EI. Two important aspects of the Dialogical Framework are the So-

4 Further details about electronic institutions can be found at http://e-institutor.iiia.csic.es.

cial Structure model which captures the roles and their relationships, and the Ontology
model which defines the entities in the domain.

2.2 Interaction Structure

Interactions between agents are articulated through recurrent dialogues which we call
scenes. Each scene follows some type of conversation protocol, that restricts the pos-
sible interactions between roles. Scenes also represent the context in which the uttered
illocutions must be interpreted, as the same message may have different meanings in
different contexts.

The protocol of a scene is specified by a directed graph whose nodes represent the
different states of a dialogical interaction between roles (e.g. see figure 6). Each state
indicates the agents that are allowed to enter or leave a particular scene. The transitions
from one state to another are labeled with illocution schemata from the scene’s dialogi-
cal framework (whose sender, receiver and content may contain variables) or timeouts.
These transitions may also have constraints and actions attached. Constraints are used
to restrict the paths that the scene execution can follow. For example, in an auction
scene it is possible to specify as a constraint, that a buyer can only submit a bid that is
greater than the previous bid. Actions are used to specify any updates to the shared state
of the institution when a transition occurs.

At execution time agents interact by uttering grounded illocutions matching the
specified illocution schemata, and so binding their variables to values, building up the
scene context.

2.3 Performative Structure

Activities in an electronic institution are organized in a performative structure as the
composition of multiple, distinct, and possibly concurrent, dialogical activities, each
one involving different groups of agents playing different roles.

A performative structure can be seen as a network of scenes, whose connections are
mediated by transitions. It determines the role-flow policy among the different scenes
by showing how agents, depending on their roles, may move into different scenes (other
conversations), and showing when new scenes (conversations) are created.

In all EIs we assume that there is always an initial and a final scene, which are the
entry and exit points of the institution. Each scene can have multiple instances at run-
time. An example is shown in figure 5 on page 13. Rounded rectangles depict scenes,
and arcs between them indicate the paths that agents can take.

A Transition can be thought of as a gateway between scenes or as a change of
conversation. When an agent leaves a particular scene, there are different transitions
that could happen: An Or transition allows an agent to choose which target scene(s)
to enter. An And transition forces agents to synchronize before progressing to different
scenes together. The arc of a transition to a target scene is labeled with new if the scene
is created for the first time, and one, some or all indicating if the agent enters one, some
or all instances of the target scene type.

In each transition it is possible to also specify if an agent takes on a different role
when entering a new scene. Hence the performative structure provides an overview of
the path and roles taken up by an agent from the start to the end scene within an EI.

2.4 Norms and Commitments

The main purpose of an EI is to control the interactions between the participants and
ensure that they all adhere to agreed rules.

Actions within an institution are speech acts. These speech acts create obligations
or socially binding commitments whose fulfillment is ensured by the institution. We
make such intended effects of commitments explicit through normative rules.

We define the predicate uttered(s, w, i) that allow us to express the connection
between illocutions and norms. It denotes that a grounded illocution unifying with the
illocution scheme i has been uttered at state w of scene s (the state w is an optional
element).

A normative rule is specified using the following three elements: (i) Antecedent: the
actions that trigger the activation of the norm, expressed as a predicate defined above;
(ii) Defeasible antecedent: the utterance which releases the agent from the obligations
described in the consequent; also expressed as an uttered predicate; and (iii) Conse-
quent: the set of obligations. An obligation is expressed as Obl(x, i, s), denoting that
the agent bound to role x is obliged to utter i in scene s.

3 Designing Institutional MAS with Islander and Prometheus

In exploring how the design of an Islander EI is typically done, we have identified that
it is useful to begin with a slight modification of the Prometheus System Specification
phase.

This phase in Prometheus consists of a number of interleaving, iterative steps, to
define goals, roles, scenarios and environmental interface in the form of actors, actions
and percepts. These elements, as well as the ontology, then provide input to a new
phase which we call the Social Design phase, where the EI can be specified in the
Islander tool. Specifically, the roles are incorporated into Islander’s social structure,
the scenarios are used as a starting point for developing the performative structure and
the interaction model, goals are used to help identify norms, and, of course, ontology
elements identified in the system specification phase feed into developing the ontology
in the Social Design phase (see figure 1).

Once the Electronic Institution has been designed, there is additional information
which can be provided back into Prometheus’ Architectural Design phase, in order to
design the agents that will join the institution. The institution is used as a starting point
for the design. Specifically, the social structure and the norms identified in the Social
Design phase are used, in addition to the system interface and goals, in determining
which agent types should exist; and the interaction model is used as a starting point for
defining interaction protocols.

In order to illustrate the methodology in greater detail we use a simple example of
an EI for making flight and hotel arrangements. In this EI, agents can make and accept

flight and hotel bookings, including payment for these. The idea is that the EI provides
a trusted interaction space in which agents can engage in these interactions with other
agents.

The remainder of this section explains the design methodology in greater detail,
using this example. Section 3.1 covers the System Specification phase, with particular
focus on the changes that have been made to the existing phase in Prometheus. Sec-
tion 3.2 covers in detail the (new) Social Design phase, and section 3.3 briefly indicates
how the Architectural Design phase has been modified to make use of the information
produced in the Social Design phase. The detailed design phase is unchanged and is not
discussed in this paper.

Scenarios Goals

Analysis

Model

(incl. actors)

Roles OntologyS
y
s
te

m

S
p

e
c

Performative

Structure

Interaction

Model

Social

Structure

Norms

Ontology &

Information

Model

S
o
c
ia

l
D

e
s
ig

n
A

rc
h
.
D

e
s
ig

n

Interaction

Protocol
Includes

messages

Agent types
(use data coupling,
acquaintance etc.)

System

Overview

Diagram

Data

… Detailed Design …

Interface
(percepts,

actions)

Fig. 1. Revised Methodology

3.1 System Specification

In order to appropriately use the Prometheus System Specification phase in conjunc-
tion with designing an electronic institution, there are a few changes that need to be
made. In the standard Prometheus approach, we would start with identifying the actors,
persons or entities, including software, that are external to the system, and that would
interact with the system. In this case, the natural starting point is identification of the
roles that will interact within the Electronic Institution. In our example these could be a

Customer5 role, a Travel Agent role, and a Banker role. These are external to the Institu-
tion, so one option could be to model them as Prometheus actors. However we choose
to retain actors as the entities external to both the Institution and the software agents
which we are designing. In our example, the actors may be Airline companies (with
whom our electronic travel agent must eventually make a booking), Hotel proprietors,
and Human customers.

Having identified the roles, (which will eventually be played by agents) we then
identify the main scenarios for the EI. In this case we identify a Travel Booking scenario
and a Payment scenario. The Customer and the Travel Agent roles are involved in the
Travel Booking scenario, while the Bank and the Customer roles are involved in the
payment scenario (called Pay Booking). The details of the interaction of the roles, with
respect to the scenario is left until the Social Design phase.

If desired, we can identify the external actors that our roles will interact with, and
the percepts or actions that we expect to be a part of those interactions. This information
can then be used in the design of the agents that will be able to fill these roles. We iden-
tify that the Travel Agent role can be expected to have a booking action for interaction
with the Airline and the Hotel proprietor. (We may later decide that we also want a con-
firmation percept from actor to Travel Agent). Similarly we identify a Request percept
from the human customer to the agent that will play the Customer role, and an action
to Provide Itinerary (again, further interaction may well be defined later).

We also add to the System Design phase a step to identify soft goals and to link
these to particular entities if appropriate. In our example we identify three soft goals:
reliable service provision; safe transactions; and ability to hold reservations for three
days. The first of these we leave unattached, while safe transactions is attached to the
Pay Booking scenario, and the ability to hold (unpaid) reservations is attached to the
Travel Booking scenario.

The resulting analysis overview diagram is shown in figure 2. Boxes with stick
figures denote either roles or actors (the distinction is indicated in the name), large
squares denote soft goals, and arrows-like icons (with the indication “scenario”) denote
scenarios. Percepts are star-bursts, and actions are arrows (e.g. Provide Itinerary).

Having identified the roles and the main scenarios, we then further develop both the
goals and the scenarios.

Goals: Whereas in “classical” Prometheus, goals are all system goals, which will be
eventually allocated to specific agents, here we distinguish between three types of goals:
individual goals that are allocated to a role (and later to an agent type), joint goals that
are achieved by a group of roles (eventually agents), and social goals, where the EI
plays a part in ensuring that these goals are achieved.

In deciding what type a given goal should be we consider whether it belongs to a
single role (so is probably an individual goal), or to multiple roles (in which case it is
probably joint or social). If any of the roles that the goal is assigned to are institutional
(“staff”) roles, then it must by definition be a social goal. However, at this stage in the

5 We use san serif font to indicate names in the design. Due to limitations with the tool multi-
word names do not have spaces in the figures (e.g. TravelAgent), but, for readability, do have
spaces in the paper’s text (e.g. Travel Agent).

Fig. 2. Analysis diagram

process we may not have enough information to determine whether a goal should be
joint or social, and so we may defer this decision until the Social Design phase.

As in “classical” Prometheus, the identification of system goals goes hand in hand
with identification of scenarios and scenario steps. Goals are refined by techniques such
as asking ‘how can we achieve this goal?’ [13]; and refinement and abstraction, along
with combining similar subgoals that arise in different parts of the system, eventually
leads to a well developed goal hierarchy.

In addition to the individual/joint/social distinction, we have also introduced soft
goals and the Goal Overview Diagram has been extended to show these. Soft goals are
(optionally) linked to goals and provide information on the desired properties of the
system. This information is captured explicitly so that it can be used later to develop
constraints (in scenes) or norms (see section 3.2).

For example, figure 3 shows the goal overview diagram for the travel agent example.
It shows that the high-level goal Travel Booking is a joint goal, as are its three child goals
(Find Flights, Find Hotels and Make Booking). However, the sub-goals of Pay Booking
are clearly individual goals.

Scenarios: Prometheus scenarios, which are identified for each actor that will interact
with the system, contain steps (which can be goals, percepts actions or sub-scenarios).
In modelling scenarios within EIs it is natural to think of these scenario steps conceptu-
ally as joint activities involving some number of agents. Joint activities in our example
would be Make Booking, Pay Booking, etc. The details that need to be recorded for a
joint activity (name, roles, goal, and relevant data) are the same as for a scenario but
without any steps. Consequently, rather than introduce joint activity as a new step type,
we simply allow the steps of a scenario to be optional. A minor change is that we allow

Travel Booking(J)

Find Flights(J) Find Hotels(J) Make Booking(J)

Pay Booking(J)

Make Payment(I) Check Funds(I) Receive Payment(I)

Reliable

Providers

(social)

Bookings

held for 3 days

(social)

Safe

Transactions

(Joint)

Fig. 3. Goal Overview Diagram. Ovals denote goals, and rectangles denote soft goals.

Scenario: Travel Booking
Goal(s): Travel Booking
Steps:
Type Name Role(s) Data used Data produced
1 Scenario Find Flights Flight Provider Flights Info

Customer
2 Scenario Find Hotels Hotels Provider Hotels Info

Customer
3 Scenario Make Booking Flight Provider Flights Info Bookings

Customer
4 Scenario Make Booking Hotels Provider Hotels Info Bookings

Customer
5 Scenario Pay Booking Bank, Customer Bookings Bookings, Flights Info
6 Scenario Pay Booking Bank, Customer Bookings Bookings, Hotels Info

Fig. 4. Example Scenario

the goal in the scenario descriptor to be a set of goals, interpreted as a conjunction,
rather than a single goal. Figure 4 depicts the Travel Booking scenario with joint activi-
ties (scenarios) as the steps6.

Roles and Ontology: In standard Prometheus roles are identified by grouping goals
(along with percepts and actions) into clusters and identifying a role that would man-
age these goals. Here we have already identified some roles in the analysis overview
diagram. The clustering of goals may identify additional roles. In our example we iden-
tify the additional roles of Flight Provider, Hotel Provider, and payer. We then extend

6 Note that this scenario uses the roles of Hotel Provider and Flight Provider instead of the
more general super-role Travel Agent.

the standard Prometheus process to consider and capture sub-role relationships. In our
example we identify Flight Provider and Hotel Provider as sub-types of Travel Agent.
The exclusion relationships between roles (static separation of duties (SSD), and dy-
namic separation of duties (DSD)), required by Islander, is however left until the Social
Design phase.

In addition to the roles played by agents entering the Electronic Institution, Islander
has a concept of internal roles which are played by staff agents, and are part of manag-
ing the infrastructure of the EI. We do not necessarily identify these internal roles during
the System Specification phase, as they are typically introduced during the Social De-
sign phase, where consideration is given to managing the infrastructure functions of the
EI. If some such roles are identified at this stage, they should be marked as internal.

During scenario specification there is identification of data used and produced,
which is the start of ontology definition, and is defined as such. In our example we
identified Flight Info, Hotel Info and Booking as three necessary items in the ontology,
and made some initial decisions about fields required.

Summary of modifications to Prometheus: There are five modifications to the stan-
dard Prometheus process in order to have a process which facilitates and feeds into the
Social Design phase done in Islander. These are:

(a) The analysis overview diagram was changed to capture roles (that would be taken
on by agents entering the EI) as well as the actors external to the system, and also
to include soft goals.

(b) A role hierarchy is developed, if appropriate. Also a distinction is introduced be-
tween internal roles (“staff” roles of the EI) and external roles (to be taken on by
agents operating within the EI).

(c) Steps are made optional in a scenario to allow use of scenarios for modelling joint
activities.

(d) The goal overview diagram is extended to allow soft-goals to be captured, and to
allow different types of goals to be distinguished.

(e) Identification of data in scenario steps is extended to a preliminary ontology devel-
opment activity.

3.2 Social Design

The social design phase, specifying the details of the Electronic Institution (completed
using the Islander tool), takes input from the Prometheus based system specification.
We structure this phase as eight separate steps. Note that, as with all system design and
development, these are iterative rather than strictly sequential. The steps, along with the
part of Islander that is addressed in each step, are as follows:

1. Develop the social structure (roles and relationships)
Social Structure model (in the Dialogical Framework)

2. List scenes with participating roles (input to step 3)
3. Develop the performative structure (network of scenes) and initial flow

Performative structure model

4. For each scene, define the interaction structure: basic conversation stages, and flow
of conversation
Interaction Structure

5. Develop the ontology (influenced by interaction model)
Ontology Model (in the Dialogical Framework)

6. Define the information model, actions and constraints
Interaction Model

7. Identify and specify norms
Norms and Commitments Model

8. Check that all social goals have been achieved

In particular, steps 4-6 are performed for each scenario and are very iterative. We
have presented them as distinct steps for two reasons. Firstly, because the steps are con-
cerned with different parts of Islander (e.g. steps 4 and 5 are concerned with the inter-
action model and the ontology model respectively). Secondly, because the sequencing
of the steps can vary: one possibility is to perform steps 4-6 for one scene, then perform
them for the next scene, and so on; but it is also possible to perform steps 4 and 5 for
each scene in sequence, and only then continue with step 6.

The rest of this section describes these steps in detail, with reference to our travel
example.

Step 1: Develop the social structure (roles and relationships). In this (simple) step
we refine the roles identified in the system specification phase by adding further rela-
tionship information.

We begin by simply transcribing the roles that have been identified in the previous
phase. In our example these are Travel Agent, Customer, Bank, Flight Provider and Hotel
Provider. We then add any additional roles we recognize as being necessary internal
roles (though these may well be added later when considering norms), and further de-
velop the role structure if desired. In our example we decide to introduce an internal
Reliability Monitor role to maintain information about providers in order to support the
soft goal of “Reliable Providers”.

Finally, we consider and specify exclusivity relationships: which roles cannot be
filled by the same agent. As discussed in section 2, Islander defines both a static and a
dynamic separation of duties. In our example, it is fairly clear that the Reliability Monitor
should be separate from the provider or consumer of the service that is being monitored,
and so we add an SSD (Static) relationship between the Reliability Monitor and the Travel
Agent, and between the Reliability Monitor role and the Customer role.

Step 2: List scenes with participating roles. Having refined the roles that exist in the
institution, the next step is to define the scenes that these roles will participate in. A
good starting point for identifying scenes is to take the joint activities (sub-scenarios)
that are the steps of scenarios in the previous phase. (These are primarily scenarios that
have no sub-scenario steps.) It is also useful to consider whether certain scenarios can
be generalized into a common scenario type which permits two or more of the existing
scenarios to be merged. There are certain commonly-used types, such as information
seeking, that can often be used to do this generalization.

For example, looking at the scenario in figure 4, we have six sub-scenarios that could
become scenes. In this case we decide that finding a flight and finding a hotel may have
significant differences in the information that is exchanged, but that once information
has been found, booking a hotel and booking a flight are likely to be similar enough that
they can be merged into a more generic booking scene. Similarly, paying for a flight and
paying for a hotel are merged into a payment scene. This gives us the following scenes:
Hotel Info, Flight Info, Booking, and Payment. Additionally, Islander requires a starting
and ending scene (respectively called Enter and Exit), and so these are added.

If the scenario structure is deeply nested, then it may be useful to use nested perfor-
mative structures as a way of modeling the interaction in such a way that the complexity
at each level is manageable.

When defining scenes, we need to think about a number of properties of scenes such
as cardinalities (will there be one instance of the scene or many?), what triggers scene
creation, and, where there are multiple scene instances, whether agents join all scene
instances, one instance only, or some subset of the scene instances. For example, for
the Hotel Info scene we choose to have one scene per Hotel Provider, with the Customer
choosing to join some subset of the available scenes. Since there is one scene instance
per Hotel Provider, it makes sense for new scene instances to be created when a Hotel
Provider moves into the scene.

Finally, we need to consider whether multiple scenes may map to the same under-
lying scene type. In Islander, nodes in the performative structure are scenes, which are
instances of scene types. Although often there is a one-to-one mapping between scenes
and scene types, in some cases, multiple scenes map to the same scene type. For ex-
ample, it may be possible to define a scene type Travel Info which both Hotel Info and
Travel Info are instances of. However the message contents (as well as the roles) must
be the same, if scenes are of the same type. As the information required about flights is
quite different than that required for hotels we decide not to generalize to a Travel Info
scene type as it would preclude us from having the flight/hotel specific structure in the
messages.

Step 3: Develop the performative structure (network of scenes) and initial flow.
Having defined what scenes exist, based on the scenarios, we now develop the per-
formative structure which shows how the scenes are linked up and how agents “flow”
between the scenes. Additionally, we define which roles play parts in which scenes (ini-
tial information is based on the scenarios), and specify how many instances of the roles
can take part in a scene instance. For example, one of the scenes is Flight Info. This scene
involves the roles of Customer and Flight Provider, with potentially many Customers,
but exactly one Flight Provider. We define the minimum number of Customer roles to
be 0, and the maximum 1, while both minimum and maximum for the Flight Provider
role are defined as 1.

In order to obtain the flows between scenes we can start by mapping the flow im-
plied within our scenarios from the previous phase. We then visit each scene in turn
to determine where else each agent might go, from that scene, other than what was
captured in the scenario. In the particular scenario we had developed a Customer and
Flight Provider start off (after entry) in the Flight Info scene. In the following step, the

Customer is in the Hotel Info scene, implying that the Customer can move from Flight
Info to Hotel Info. In generalizing we recognize that the customer can move back and
forth between these two scenes, and could in fact come to either of them after the entry
scene. Scenario variation descriptions from the system specification phase may provide
information regarding additional flows. When specifying how a role can move between
scenes, we must also consider whether they will go to one, some, or all instances of that
scene. For example we have a Flight Info scene for each provider, so a Customer may
well choose to go (simultaneously) to multiple scene instances. Therefore we choose
some as the specification.

By default if a role can transition to multiple scenes, we use an OR connector. If
there is only a single choice, we could make it either AND or OR. However we choose
OR, in order to highlight any actual cases of AND which are more unusual.

As we define the flows it is sometimes necessary to introduce new roles. For exam-
ple, in defining the flow into the Booking scene, we need the Customer to be able to
be accompanied by either the Flight Provider (coming from the Flight Info scene), or the
Hotel Provider (coming from the Hotel Info scene). As the flight and hotel providers will
play the same role within the Booking scene, we need to introduce a new role, which
each of them can transform into. We introduce the Booking Provider role, which is added
to the role structure. We also introduce the role Payer at this stage for the Banking scene,
which the Customer transforms into, as it is somewhat more generic.

As we develop the performative structure it sometimes becomes quite complex, in
which case it can be advantageous to abstract a part of it and have nested performative
structures. Figure 5 shows the performative structure developed for our example. It
could be an option to abstract the structure between flightinfo, hotelinfo and booking
into a sub-performative structure (which is actually the scenario structure identified at
the top level in the analysis overview).

Fig. 5. Performative Structure (from Islander)

Fig. 6. Hotel Info Scene (from Islander)

Step 4: For each scene, define the interaction structure. The next step involves de-
velopment of the details of the interaction within a particular scene. The representation
used here is a directed graph, which can be seen as an annotated finite state machine.
Transitions between states are messages, with the contents defined according to the on-
tology model. Consequently there is substantial interaction with step 5, development of
the ontology. Each state is also annotated with information as to which role types can
enter (“+”) or leave (“−”) at that state. There is also a “stay-and-go” (“+−”) annota-
tion which allows an agent to simultaneously be in multiple scenes. For example, when
a Flight Provider leaves a scene, with a Customer, in order to make a booking (in the
Booking scene), it also stays within the Flight Info scene to attend to other customers.

Figure 6 shows the annotated states and message transitions for the Hotel Info scene
in our example. There are some issues to determine in setting up when a Customer may
leave the scene. If we wished to require that a Customer waited to receive the response
to a request, before leaving, we would not allow them to leave at S1. However this
would have the effect that no Customer would be able to leave while any Customer was
awaiting a response. If finding information took some time, this could cause unneces-
sary delays. Consequently we allow a Customer to leave without waiting to receive a
response, if desired. Customers tell Hotel Providers when they are ready to go and book
so both can ask the infrastructure to leave and enact a booking scene. The scene ends
when the Hotel Provider sends a closing message, as customers can come and go as
desired.

Part of this step also involves defining the structure of the relevant messages, which
is done in Islander by opening a message specification window, where we specify the
illocutionary particle, sender, receiver, and message content. For example, the left-most
request arc may be specified as being from a Customer to a Hotel Provider, and contain-
ing a location, desired check in and check out dates, and the class of hotel sought.

Step 5: Define the ontology. There is some initial ontological information specified
during the System Specification phase, as one identifies the information needed within
scenarios. This can be brought into the Social Design and provides the basis for more

thorough refinement and development. In our example the types of data that have been
identified are Hotel Info, Flight Info and Booking. We determine that Booking really needs
to be specialized into Flight Booking and Hotel Booking, so these are added to the ontol-
ogy.

As messages are developed in a scene, this typically results in further additions
to the ontology. For example when defining the messages in the Hotel Info scene we
recognize the need for a Hotel Info data type and add this into the ontology.

Step 6: Define the information model. Having defined the details of scenes, we also
need to specify what information needs to be maintained within the system, for use
either by the institution, or by the agents filling the roles. All information that will
be referenced within constraints or norms, needs to be part of the information model.
Actions then need to be defined for the roles which modify and access this information
model. For each property in the information model it must be considered whether the
information should be defined per role, or per institution.

One particular type of information that needs to be maintained in our example is
the bookings that a customer has, and the payments which are due for those bookings.
This is clearly information which is required for each Customer role. Consequently we
create Payment Due, as a list of Payment Details, within the Customer role. We then add
actions that update this. For example an accept in the Booking scene causes the action
to add the payment to the list of payments due for that Customer. In the Payment scene
when a payment is successful (i.e. confirmed by the Bank) this results in an action to
remove that payment from the list.

Constraints are also added at this stage. An example constraint in our model is that
a Customer can only request to make a Payment that is in its Payments Due list.

Step 7: Identify and specify norms. Norms are conditions that should be ensured by
the infrastructure of the institution. They are specified in Islander, in terms of an an-
tecedent utterance which triggers the commitments associated with the norm, a conse-
quent which captures the commitment or obligation, and an utterance (called the defea-
sible antecedent) which specifies when the commitment is regarded as being fulfilled.
The norms are usually defined towards the end of the Social Design process when the
infrastructure is fully defined. An example norm from our travel institution is that if a
Booking is made, the agent cannot leave the institution until the corresponding payment
is made.

Step 8: Check all social goals are achieved. Finally we check through all of the social
goals to ensure that some aspect of the institution does ensure that these are met. In our
example one of the social goals that was identified was ensuring that service providers
were reliable. This is not something that can be specified by a norm or constraint based
on the current specification. One solution may be to introduce a scene where customers
can make complaints which will be maintained by the institution, and any provider
having too many complaints could then be banned from entering the institution, thus
providing some level of realization of this social goal.

Iteration through the Islander models: The steps described should ensure a thorough
design of the electronic institution within Islander. They cover each of the Islander mod-
els: the Dialogical Framework with the roles and ontology, the Performative Structure
that captures the scenes and transitions between them, the Interaction Model which
specifies the allowable communication patterns within each scene, and the Norms and
Commitments.

3.3 Architectural Design

The main tasks of the Architectural Design in Prometheus are to determine the agent
types, to specify various details regarding these, and to develop protocol specifications,
including messages. This results in a system overview diagram which gives an overview
of the agents, the interactions between them, and the interface to the environment (in
terms of percepts and actions); as well as interaction protocols specified in AUML7,
which are developed by refining scenarios to give interaction diagrams, which in turn
are generalized to provide protocol specifications. As part of developing the protocols,
the messages between agents are also specified.

The decision as to which roles to combine into agents is based on standard software
engineering concepts of cohesion, coupling and modularity. The agent goals, along with
the percepts they receive and the actions they execute, are then propagated from the sys-
tem specification. In addition the developer is prompted to consider a range of questions
regarding initialization, cardinality, and other aspects of the agent.

This step, of deciding how to group roles into agents, remains essentially unchanged,
except that the Social Design phase may well influence this. We do add a field in the
agent descriptor to allow specification of norms that apply to an agent. This information
will then be passed to the detailed design where agent behaviour should be developed
to respect these norms.

The introduction of the Social Design phase means that a large part of the mes-
sage and interaction specification has already been done. We note though that there is
some difference in that the interactions of the Social Design phase are between roles,
whereas standard Prometheus design specifies interactions between agent types. If the
choice is made to implement an agent type for each role in the Social Design there is
no difference. However, if some roles are combined into a single agent type, then some
adjustments may be needed.

For example in our travel institution we may decide to combine the Flight Provider
and the Hotel Provider into a single Travel Agent agent type. This combination is straight-
forward in that none of the specified interactions are between Flight Provider and Hotel
Provider. Consequently we can just replace Flight Provider and Hotel Provider by Travel
Agent as we convert the interaction specified in the scene, to an AUML protocol.8 In
cases where there are potential interactions between roles that have been incorporated
into the same agent type, we must ensure that we do still specify the interactions that
may happen as a result of two agent instances of this type, playing different roles.

7 http://www.auml.org
8 This can likely be automated, but we have not yet done this, nor investigated it fully.

The ontology of the Social Design phase can be incorporated directly into the Ar-
chitectural Design, and once the mapping between roles and agents is clear, it is obvious
which agents deal with which data.

It may be the case that not all agents in the system being developed participate
in the electronic institution. If this is the case standard Prometheus process needs to
be followed to develop the interaction protocols involving these agents. In some cases
there may be a situation where an agent is interacting with another agent outside the EI,
within the same protocol that it is interacting within the EI. From the point of view of
the EI, these additional interactions are part of the agent internals. But from the point
of view of the entire system they are part of a larger interaction protocol. For example
if our system included an agent, outside of the EI, whose job it was to continually
search the Internet for good flight deals within Europe, then our flight provider may
well interact with this agent to get up to date information, between the request and the
inform within the Islander flight info scene.

Consequently, although a substantial amount of information can be incorporated
from the Social Design into the Architectural Design, it is still necessary to consider
all the Prometheus steps, in the case that there are some parts of the system that do not
participate in the electronic Institution.

4 Related Work

Engineering multi agent systems (MAS) is an intricate task that sits on top of disciplines
like distributed and normative systems, and that frequently uses metaphors from the
social sciences (e.g. sociology, economy, or psychology). It would therefore be lengthy
to try and make a complete summary of the state of the art that covers all the sources of
influence. We will therefore concentrate on work that is more directly related to MAS
organizations and software development methodologies.

The organization of a MAS consists of the roles, relationships, and power and au-
thority relationships among the roles that structure the behaviour of the agents. For any
agent, the access permissions, actions allowed, and interactions permitted depend to
a large extent on what roles the agent might incarnate within an organization. For in-
stance, the organization associated to an electronic institution is called its social model
and is specified as a set or roles, a role hierarchy, and user-defined relationships. The
actions permitted are determined by some system-defined relationships (static and dy-
namic separation of duties), by the role flow policy in the performative structure, and
by the protocols within scenes.

All MAS have an organization of some sort underpinning them, and in the literature
of agents there is a large corpus of work devoted to studying the algorithmics and the
problem solving capabilities that different organizations may show. Some of the most-
studied organizational structures are hierarchies, coalitions and teams.

Hierarchies [14] are the most primitive, where the tree of the hierarchy determines
the interactions that might happen (between parents and children only) and thus how
the information flows (up and down), and the authority relationship (top-down). Elec-
tronic institutions could be embedded with hierarchical organizations if care is taken
in the performative structure to only allow the type of interactions that the hierarchy

establishes. The authority relationship is mapped easily by the hierarchy defined in the
social model.

Coalitions [15] are organizations that are much more dynamic in the sense that the
structure is not fixed at specification time but it is an ‘agreement’ that agents commit to
in order to act in a co-ordinated way. Coalitions need therefore to be formed at run time
upon a certain common goal. Algorithms to determine the optimal coalition structure
for a problem have been studied [16].

Teams [17], like coalitions, are dynamically organized groups of agents that have
different individual goals but that co-operate to attain a certain global goal that requires
the concourse of all of the members of the team. In both cases, coalitions and teams, the
institutional perspective is that of laying down the infrastructure that would permit the
dialogues and commitments among the agents (together perhaps with norms that would
punish the violation of agreements).

A large number of MAS software development methodologies have been proposed
recently (e.g. see [18, 19]). Although they are based on strong agent-oriented founda-
tions and offer original contributions at the design level, they are unsatisfactory for
developing EIs: most MAS methodologies, although they necessarily deal with struc-
tures of agents and interations between agents, do not explicitly represent community or
social concepts. More generally, the formal definition of organization-centered patterns
and social structures in general (e.g. [5, 20, 21]), and their computational realization
remain open issues (as noted in [22]).

This work provides a detailed methodology for developing an explicit institutional
structure, and embeds this into an existing MAS methodology. The integration within
the Prometheus methodology means that Prometheus (and PDT) can then be used to
design and develop the agents that will participate in the specified Electronic Institution.

Our approach shares some similarities with the OperA methodology [5]. OperA
builds upon the idea of an organizational model, consisting of roles and their relation-
ships, similar to those we use, and an interaction model inspired by the electronic in-
stitution concept, that determines the activities agents get engaged in. Norms are non-
operational concepts in OperA that describe the behaviour of agents in an abstract way.
In our approach we opt for a more grounded approach that permits certain verifications
of agent behaviour. Finally, OperA defines the initial part of the interaction network
(start scene) as the setting of a social model where agents agree on social contracts that
later on they will freely respect in their interactions.

Although some agent infrastructures such as DARPA COABS9 and FIPA compliant
platforms such as JADE [23] deal with many issues that are essential for open agent in-
teractions — communication, identification, synchronization, matchmaking — they are
arguably too distant from organization-centered patterns or social structures. Also, al-
though some infrastructure work, perhaps most notably the work on TuCSoN [24], has
investigated linking lower-level infrastructure with social laws (e.g. [25]), clear method-
ological guidance for a designer has not been well addressed.

Among the few other proposals we can mention the proposal by Hanachi [26] that
allows for specifications of interaction protocols that need to be subsequently compiled
into a sort of executable protocol brokers called moderators. Also, in Tropos, the specifi-

9 http://coabs.globalinfotek.com/

cations are transformed into agent skeletons that must be extended with code. However,
at execution time there is no mechanism to ensure that agents follow the specification
of the system.

A promising line of work is the one adopted by Omicini and Castelfranchi (e.g. [27]).
It postulates some significant similarities with the EI approach: focus on the social as-
pects of the interactions, a unified metaphor that prevails along the development cycle,
and the construction of tools to implement methodological ideas. However, the actual
development of the methodology and the associated tools appears to be still rather ten-
tative.

5 Conclusion

We have presented a methodology for designing e-institutions that extends the Prometheus
methodology with a social design phase, where Islander is used to design an institution.

It appears to be relatively straightforward to actually integrate the two tools (PDT
and Islander) by means of XML specifications of entities that are passed between them.
This work is currently in progress. We are also investigating developing skeleton code
from the Prometheus Detailed Design, which can be integrated into Ameli at runtime.

References

1. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. The Knowledge
Engineering Review 19 (2005) 281–316

2. Esteva, M.: Electronic Institutions: from specification to development. IIIA PhD Monogra-
phy. Vol. 19 (2003)

3. Rodrı́guez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Electronic
Institutions. IIIA Phd Monography. Vol. 14 (2001)

4. Noriega, P.: Agent-Mediated Auctions: The Fishmarket Metaphor. IIIA Phd Monography.
Vol. 8 (1997)

5. Dignum, V.: A Model for Organizational Interaction. PhD thesis, Dutch Research School
for Information and Knowledge Systems (2004) ISBN 90-393-3568-0.

6. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor. In: Pro-
ceedings of the First International Joint Conference on Autonomous Agents and Multi-agent
Systems (AAMAS 2002), Bologna, Italy (2002) 1045–1052

7. Arcos, J.L., Esteva, M., Noriega, P., Rodrı́guez, J.A., Sierra, C.: Engineering open environ-
ments with electronic institutions. Journal on Engineering Applications of Artificial Intelli-
gence 18 (2005) 191204

8. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John
Wiley and Sons (2004) ISBN 0-470-86120-7.

9. Padgham, L., Thangarajah, J., Winikoff, M.: Tool Support for Agent Development using
the Prometheus Methodology. In: First international workshop on Integration of Software
Engineering and Agent Technology (ISEAT 2005), Melbourne, Australia (2005)

10. Esteva, M., Rodrı́guez-Aguilar, J.A., Sierra, C., Arcos, J.L., Garcia, P.: On the formal speci-
fication of electronic institutions. In Sierra, C., Dignum, F., eds.: Agent-mediated Electronic
Commerce: The European AgentLink Perspective. Number 1991 in Lecture Notes in Artifi-
cial Intelligence. Springer-Verlag (2001) 126–147

11. Rodrı́guez-Aguilar, J.A., Noriega, P., Sierra, C., Padget, J.: Fm96.5 a Java-based Electronic
Auction House. In: Second International Conference on The Practical Application of Intel-
ligent Agents and Multi-Agent Technology(PAAM’97). (1997) 207–224

12. Cunı́, G., Esteva, M., Garcia, P., Puertas, E., Sierra, C., Solchaga, T.: MASFIT: Multi-agent
Systems for Fish Trading. In: 16th European Conference on Artificial Intelligence (ECAI
2004), Valencia, Spain (2004) 710–714

13. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Pro-
ceedings of the 5th IEEE International Symposium on Requirements Engineering (RE’01),
Toronto (2001) 249–263

14. Fox, M.S.: Organization structuring: Designing large complex software. Technical Report
CMU-CS-79-155, Carnegie-Mellon University (1979)

15. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artificial
Intelligence 101 (1998) 165–200

16. Chvatal, V.: A greedy heuristic for the set covering problem. Mathematics of Operations
Research 4 (1979)

17. Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research 7 (1997)
83–124

18. Henderson-Sellers, B., Giorgini, P., eds.: Agent-Oriented Methodologies. Idea Group Pub-
lishing (2005)

19. Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and Software Engineering
for Agent Systems. The Agent-Oriented Software Engineering Handbook. Kluwer Publish-
ing (2004) ISBN 1-4020-8057-3.

20. Parunak, H., Odell, J.: Representing social structures in uml. In: Agent-Oriented Software
Engineering II. LNCS 2222. Springer-Verlag (2002) 1–16

21. Vazquez, J., Dignum, F.: Modelling electronic organizations. In: Multi-Agent Systems and
Applications III. Volume 2691 of LNAI. Springer-Verlag (2003) 584–593

22. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The gaia
methodology. ACM Transactions on Software Engineering and Methodology 12 (2003)
317–370

23. Bellifemine, F., Poggi, A., Rimassa, G.: Developing Multi-Agent Systems with JADE. In
Castelfranchi, C., Lesperance, Y., eds.: Intelligent Agents VII. Number 1571 in Lecture
Notes in Artificial Intelligence. Springer-Verlag (2001) 89–103

24. Cremonini, M., Omicini, A., Zambonelli, F.: Multi-agent systems on the Internet: Extending
the scope of coordination towards security and topology. In Garijo, F.J., Boman, M., eds.:
Multi-Agent Systems Engineering. Volume 1647 of LNAI., Springer-Verlag (1999) 77–88
9th European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAA-
MAW’99), Valencia, Spain, 30 June – 2 July 1999. Proceedings.

25. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: The coordination
viewpoint. In Jennings, N.R., Lespérance, Y., eds.: Intelligent Agents VI. Agent Theories,
Architectures, and Languages. Volume 1757 of LNAI., Springer-Verlag (2000) 250–259 6th
International Workshop (ATAL’99), Orlando, FL, USA, 15–17 July 1999. Proceedings.

26. Hanachi, C., Sibertin-Blanc, C.: Protocol Moderators as Active Middle-Agents in Multi-
Agent Systems. Journal of Autonomous Agents and Multiagent Systems 8 (2004)

27. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts:
Environment-based coordination for intelligent agents. In: Third International Joint Con-
ference on Autonomous Agents and Multi-agent Systems (AAMAS’04), New York, USA
(2004) 286–293

