
HAL Id: inria-00350936
https://inria.hal.science/inria-00350936

Submitted on 7 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Test Coverage for Loose Timing Annotations
Claude Helmstetter, Florence Maraninchi, Laurent Maillet-Contoz

To cite this version:
Claude Helmstetter, Florence Maraninchi, Laurent Maillet-Contoz. Test Coverage for Loose Timing
Annotations. Formal Methods for Industrial Critical Systems (FMICS), Aug 2006, Bonn, Germany.
�inria-00350936�

https://inria.hal.science/inria-00350936
https://hal.archives-ouvertes.fr

Test Coverage for Loose Timing Annotations

C. Helmstetter1,2, F. Maraninchi1, and L. Maillet-Contoz2

1 Verimag, Centre équation - 2, avenue de Vignate, 38610 GIÈRES — France
2 STMicroelectronics, HPC, System Platform Group.

850 rue Jean Monnet, 38920 CROLLES — France

Abstract. The design flow of systems-on-a-chip (SoCs) identifies sev-
eral abstraction levels higher than the Register-Transfer-Level that con-
stitutes the input of the synthesis tools. These levels are called transac-
tional, because systems are described as asynchronous parallel activities
communicating by transactions. The most abstract transactional model
is purely functional. The following model in the design flow is annotated
with some timing information on the duration of the main components,
that serves for performance evaluation. The timing annotations are in-
cluded as special wait instructions, but since the timing information is
imprecise, it should not result in additional synchronizations. We would
like the functional properties of the system to be independent of the
precise timing. In previous work [1], we showed how to adapt dynamic
partial order reduction techniques to functional models of SoCs written in
SystemC, in order to guarantee that functional properties are scheduler-
independent. In this paper, we extend this work to timed systems with
bounded delays, in order to guarantee timing-independence. The idea is
to generate a set of executions that covers small variations of the timing
annotations.

1 Introduction

The Register Transfer Level (RTL) used to be the entry point of the design
flow of hardware systems, but the simulation environments for such models do
not scale up well. Developing and debugging embedded software for these low
level models before getting the physical chip from the factory is no longer pos-
sible at a reasonable cost. New abstraction levels, such as the Transaction Level
Model (TLM) [2], have emerged. The TLM approach uses a component-based
approach, in which hardware blocks are modules communicating with so-called
transactions. The TLM models are used for early development of the embedded
software, because the high level of abstraction allows a fast simulation. SystemC
is a C++ library used for the description of SoCs at different levels of abstrac-
tion, from cycle accurate to purely functional models. It comes with a simulation
environment, and is becoming a de facto standard.

As TLM models appear first in the design flow, they become reference models
for SoCs. In particular, the software that is validated with the TLM model
should remain unchanged in the final SoC. The TLM abstraction level comes
with new synchronization mechanisms that often make existing methods for RTL

validation inapplicable. In particular, recent TLM models do not have clocks
at all. In this paper, we concentrate on testing methods for SoCs written in
SystemC.

The current industrial methodology for testing SoCs in SystemC is the fol-
lowing. First, we identify what we want to test (the System Under Test, or
SUT), which is usually an open system. We make it closed by plugging in-
put generators and a result checker, called oracle. SCV [3] is a testing tool
for SystemC. It helps in writing input generators by providing C++ macros
for expressing constraints: SCV_CONSTRAINT((addr()>10 && addr()< 50)||
(addr()>=2 && addr()<= 5)); is an SCV constraint for which the SCV solver
will generate random values of addr satisfying it. In most existing approaches,
the SUT writes in memory, and the oracle consists in comparing the final state
of the SUT memory to a reference memory. As usual, the main difficulty is to get
a good quality test suite, i.e., a test suite that does not omit useful tests (that
may reveal a bug) and at the same time avoids redundant tests (that can expose
the same bugs) as much as possible. Specman [4] is a commercial alternative of
SCV which uses the e language for describing the constraints.

1.1 Partial Order Reduction Techniques for Scheduler-Independence

In [1], we have presented an automatic technique for the exploration of schedul-
ings in the case of SystemC. It is an adaptation and application of the method
for dynamic partial order reduction presented in [5]. We assume that the choice
of relevant data for the testing phase has already been done: we consider a SoC
written in SystemC, including the data generator and the oracle. For each of
the test data, the system has to be run, with a particular implementation of
the scheduler. Since the specification of the scheduler is non-deterministic, this
means that the execution of tests may hide bugs that would have appeared with
another valid implementation of the scheduler. Moreover, the scheduling is due
to the simulation engine only, and is unlikely to represent anything concrete on
the final SoC where we have true parallelism. We would like the SoC description,
and in particular the embedded software, to be scheduler-independent. Exploring
alternative schedulings is a way of validating this property.

Our tool is based on forking executions: we start executing the system for
a given data-input, and as soon as we suspect that several scheduler choices
could cause distinct behaviors, we fork the execution. We use an approximate
criterion to decide whether to fork executions. The idea is to look at the actions
performed by the processes, in order to guess whether a change in their order (as
what would be produced by distinct scheduler choices) could affect the final state.
This criterion is approximate in the following sense: we may distinguish between
executions that in fact lead to the same final state; but we cannot consider
as equivalent two executions that lead to distinct final states. The result is a
complete, but not always minimal, exploration of the scheduling choices for the
whole data-input.

1.2 The Hierarchy of TLM Models

There are several levels of transactional models. The more abstract transactional
model is purely functional. The following model in the design flow is enriched
with some timing information on the duration of the main components, that may
serve for performance evaluation during simulation. This timing information is
quite imprecise: it may be given by previous measures on existing IPs (IP stands
for “Intellectual Property”; an IP block is a reusable hardware component). For
instance, we may have approximate values for the time it takes to write an
image in memory. Note that this kind of loose timing is still very far from the
precision of cycle-accurate models, and this is why timed transactional models
are interesting: they simulate much faster than cycle-accurate models, but they
can already give some hints on the performance of the SoC.

Practically, a SystemC description annotated by timings uses a special in-
struction wait (duration). The interpretation of this instruction by the sim-
ulation engine simulates the amount of time taken by the components. When
executing such a SoC description enriched with timings, the SystemC execution
engine has to take precise values of the timings. There is a risk of producing spu-
rious synchronizations by interpreting the timings too strictly. In other words,
the embedded software will be more robust if it works correctly for slightly dis-
tinct timings. It is therefore useful to explore alternative timings during testing.
It can be done by choosing a timing randomly within an interval, at execution
time. Existing industrial approaches use a new instruction lwait (duration,
delta), telling the execution engine to draw a value in the interval [duration
- delta, duration + delta]. If the instruction appears within a loop, a new
value is drawn for each execution of the instruction. However, this slows the
simulations without guaranteeing that interesting cases are explored.

1.3 Contributions and Structure of the Paper

Ensuring timing-independence can also be done in a more systematic way, by
generating exactly the set of timings that yield different behaviors of the SoC.
In this paper, we generalize the approach of [1] in order to generate alternative
schedulings and alternative timings for a given data input. The result is of the
same kind: we obtain a complete but not always minimal set of alternative
executions, for a given data input. The idea is that, if the software works well for
all these alternative executions, it is more robust. This is our notion of scheduler
and timing independence.

The paper is structured as follows: section 2 presents an overview of Sys-
temC, and some examples for illustrating the influence of the scheduling and
the presence of loose timings. Section 3 recalls the results of [1] and section 4
describes our new algorithm for models with loose timings. We present our im-
plementation and its evaluation in section 5, related work in section 6, and we
conclude with section 7.

2 SystemC, Scheduling Problems, and Loose Timings

A TLM model written in SystemC is based on an architecture, i.e. a set of
parallel components and connections between them. Each component has typed
connection ports, and its behavior is given by a set of communicating processes
that can be programmed in full C++. For managing processes, SystemC provides
a scheduler, and several synchronization mechanisms: the low-level events, the
synchronous signals that trigger an event when their value changes, and higher
level mechanisms. The static architecture is built by executing the so-called
elaboration phase (ELAB), which creates components and connections. Then
the scheduler starts running the processes of the components, according to the
informal automaton of figure 1-(a). Simulations of a SystemC model look like
sequences of evaluation phases (EV). Signals update phase (UP) and time elapse
(TE) separate them (see figure 1-(b)).

E
V

U
P

E
V

U
P

T
E

E
V

E
L

A
B

−
c
y
c
le

δ
tim

eEND

no eligible process

no eligible process

no eligible process

ELAB

EV

UP

TE

elect a process

and run it

advance

simulation time

signal values

update

platform

build the

eligible process

eligible process

eligible process

t=0

t=t+d

(b)(a)

Fig. 1. (a) Automaton of the SystemC Scheduler; (b) Diagram of an execution.

2.1 The SystemC Scheduler

The SystemC Language Reference Manual [6] describes the scheduler algorithm.
At the end of the elaboration phase ELAB, some processes are eligible, some
others are waiting. During the evaluation phase EV, eligible processes are run in
an unspecified order, non-preemptively, and explicitly suspend themselves when
reaching a wait instruction. A process may wait for some time to elapse, or for an
event to occur. While running, it may access shared variables and signals, enable
other processes by notifying events, or program delayed notifications. An eligible
process cannot become “waiting” without being executed. When there is no more
eligible process, signals values are updated (UP) and δ-delayed notifications are
triggered, which can wake up processes. A δ-cycle is the duration between two
update phases. Since there is no interaction between processes during the update

phase, the order of the updates has no consequence. When there is still no eligible
process at the end of an update phase, the scheduler lets time elapse (TE), and
awakes the processes that have the earliest deadline. A notification of a SystemC
event can be immediate, δ-delayed or time-delayed. Processes can thus be become
eligible at any of the three steps EV, UP or TE. Besides events, processes can
also communicate using shared variables, and higher level structures built with
these two primitives.

2.2 Examples with Fixed Durations

void top::P() {

wait(e);

wait(20);

if (x) cout << "Ok\n";

else cout << "Ko\n";}

void top::Q() {

e.notify();

x = 0;

wait(20);

x = 1;}

Fig. 2. The foo example

void top::P()

as in example foo

void top::Q()

as in example foo

void top::R() {

wait(20);

}

Fig. 3. The foobar example

To illustrate possible consequences of scheduling choices, let us introduce two
small examples of SystemC programs. Figure 2 shows the example foo made of
two processes P and Q. The example foo has three possible executions depending
on the scheduling, leading to very different results. We describe them below, with
the following notation: an execution is denoted by a sequence of process names
(to show which process is elected) and strings of the form “[t +d−→D]” that serve
to show the TE phase of the scheduler; d represents the duration elapsed and D
the new global date (these strings can be deduced from other information, but
we include them for readability reasons). The three executions are:
– P;Q;P;[t +20−→20];Q;P: this scheduling leads to the printing of “Ok”.
– P;Q;P;[t +20−→20];P;Q: the string “Ko” is printed. It is a typical case of data-race:

x is tested before it has been set to 1.
– Q;P;[t +20−→ 20];Q: the execution ends after three steps only. The “wait(e)”

statement has been executed before any notification of event e. Since events
are not persistent in SystemC, process P has not been woken up. It is a
particular form of deadlock.
It is useful to test all executions of the foo example because they lead to

different final states. But consider now the foobar example defined in figure 3.
foobar has 30 possible executions, but only 3 different final states. 12 executions
are equivalent to “R;P;Q;P;[t +20−→ 20];R;Q;P”, 12 to “R;P;Q;P;[t +20−→ 20];R;P;Q” and 6
to “R;Q;P;[t +20−→20];R;Q”. Our method for scheduler-independence would generate
only 3 executions, one for each final state (or equivalence class).

2.3 Examples with Loose Durations

Figure 4 presents a new version foochi of the foo example, with loose durations.
To execute this example, we must choose a value for t1 between 3-d1 and 3+d1,
a value for t2 between 40-d2 and 40+d2, etc.

void P() {

lwait(3,d1); // t1
wait(e);

lwait(40,d2); // t2
if (x) cout << "Ok\n";

else cout << "Ko\n";}

void Q() {

lwait(6,d3); // t3
e.notify();

x = 0;

lwait(24,d4); // t4
x = 1;}

Fig. 4. The foochi example

If d1 = d2 = d3 = d4 = 0, then all delays are fixed and there are only two
valid and equivalent executions (the index on process names is used to identify
the occurrence): P1; Q1 or Q1; P1 followed by [t +3−→ 3]; P2; [t

+3−→ 6]; Q2; P3; [t
+24−→

30]; Q3; [t
+16−→ 46]; P4. P1 and Q1 occur at T = 0ns, P2 at T = 3ns, Q2 and P3

at T = 6ns. Next Q3 runs at T = 24 + 6 = 30ns. At last, the string “Ok” is
displayed by P4 at T = 6 + 40 = 46ns.

Giving non-null values to the di allows to test the robustness of the program.
If we take d1 = d2 = d3 = d4 = 2, then it is possible to permute the wait and
the notification of the SystemC event e: we choose t1 = 5ns and t3 = 4ns. With
theses values, it is still impossible to permute Q3 and P4. If we increase d2 (resp.
d4) to 10 (resp. 6), then Q3 and P4 may occur at the same time T = 6+30 = 36ns
(30 = 24 + 6 = 40− 10). Next, playing with the indeterminism of the scheduler
allows to execute P4 before Q3. We have found the two errors of the foo example
again. The algorithm we describe in this paper generates timings and schedulings
automatically, in order to find the executions that lead to these errors.

3 Relationships for Partial Order Reduction Techniques

In the whole section, the SUT is a SystemC program. We suppose that we have
an independent tool for generating test cases that only contain the data. We call
SUTD the object made of the SUT plus one particular test data. We have to
generate a relevant set of schedulings and timings for this data.

3.1 Representation of the SUTD

When data is fixed, a SUT execution is entirely defined by its scheduling and
its concrete timing. A scheduling is entirely defined by an element of P∗ where
P is the set of process identifiers. Not all the elements of P∗ represent possible
schedulings of the SUTD (because of the synchronization and timing constraints
between processes). With each lwait(D,d) instruction present in the source
code, we associate an identifier ω ∈ Ω; we note B(ω) (B stands for “Bounds”)
the interval [D−d, D+d] and #u(ω) the number of times an execution of ω occurs

in a scheduling u. A timing T is a function from pairs (ω, n) ∈ Ω× [1..#u(ω)] to
durations d. T (ω, n) = d means that we wait for a duration d when we execute
the instruction identified by ω for the n-th time. The timing T is valid if and
only if ∀(ω, n) ∈ Ω × [1..#u(ω)], T (ω, n) ∈ B(ω).

We call transition one execution of one process in a particular scheduling.
Each transition of a scheduling is identified by its process identifier indexed by
the occurrence number of this process identifier in the scheduling. For example,
in the scheduling pqp there are 3 transitions: p1, q1 and p2, in that order. For a
particular execution with a specified timing, the date of a transition is the value
of the variable t of the scheduler (figure 1-(a)) when the transition occurs.

We will use letters p, q, r to denote processes, pi, qj , . . . to denote transitions
and u, v, . . . to denote sub-sequences of schedulings. Indexes will be omitted when
obvious by context.

3.2 Relationships

We recall some standard notions from the literature on partial order reduction
techniques, that we will use for both scheduling and timing generation.

Dependent and equivalent transitions The theory of partial order reduction
relies on the definition of dependent transitions [7]. Let u be a valid scheduling,
two transitions pi and qj are independent if not any of them has been enabled by
the other, and if permuting them gives a new valid scheduling which still leads to
the same final state. In all other cases, we say that pi and qj are dependent. Note
that it is correct because, in SystemC, an enabled process cannot be disabled
without being executed. We note D the set of all pairs of dependent transitions.

Two schedulings u and v are equivalent, noted u ≡ v, if and only if we
can transform one into the other by successive permutations of independent
transitions. As a consequence of the definition of the dependency relationship D,
two equivalent schedulings lead to the same final state. In our testing approach
for SystemC, we include the output checker into the SUT, which means that the
detection of an error corresponds to a particular final state. Hence generating
one scheduling of each equivalence class allows to detect all errors.

Causally ordered and permutable transitions Consider a scheduling u: we
note pi <u qj if the transition pi (the i-th execution of process p) occurs before
the transition qj (the j-th execution of process q) in u. We note pi ≺u qj and
say that pi and qj are causally ordered , if we have pi <v qj for any scheduling
v equivalent to u. In other words, pi and qj are causally ordered if we cannot
permute them without permuting dependent transitions. Unlike the causal re-
lationship, the permutability relationship is not a partial order. Two transitions
are permutable if they can be permuted without permuting other dependent
transitions. We note P the set of permutable transitions. The transitions pi and
qj are permutable in the valid scheduling u = u1piu2qju3, noted (pi, qj) ∈ P ,
if and only if: ∃v1, v2 such that u1v1piqjv2 ≡ u1piu2qju3 and u1v1qj is a valid
scheduling.

Dynamic Dependency Graph (DDG) The DDG represents the synchro-
nizations of a particular scheduling. Fig. 5-(a) represents the scheduling P;Q;P;Q;P,
denoted p1q1p2q2p3, of the foo program of Fig. 2, and Fig. 5-(b) represents an
execution of foochi. Each horizontal line is a process. Time elapses are repre-
sented by plain vertical lines if all delays are fixed, otherwise by dotted vertical
lines. The curved lines represent loose durations. Each box is a process transition.
Arrows between boxes indicate that the two transitions are causally ordered; we
draw dashed arrows if the transitions are permutable, plain arrows otherwise.
We may move some transitions on the horizontal axis, remaining among the valid
and equivalent schedulings, provided we do not permute two boxes linked by an
arrow, nor move a transition through a plain vertical line.

(b) foochi with scheduling p1q1p2q2p3q3p4

and timing: t1 7→ 3, t2 7→ 40, t3 7→ 6, t4 7→ 24

t=0
P

Q
time

t=3 t=6 t=30 t=46

t1

(a) foo with scheduling p1q1p2q2p3

t3 t4

t2

e

e

x

p1 p2 p3

q1 q2

p1 p2 p3

q1 q2

p4

q3

e

e x

t=20t=0

time

P

Q

Fig. 5. Dynamic Dependency Graphs

Computation of the relationships In practice, we can only compute an approx-
imation of the dependency relationship: two independent transitions may be
considered as dependent, but two dependent transitions are always considered
as dependent. Consequently, the only risk is to generate useless schedulings.

We compute the dependency relationship for each new generated scheduling.
Doing multiple dynamic computations is more precise than one static computa-
tion. For example, for a code like Tab[h]=42 we know exactly which element of
Tab is accessed, and whether the new value is different from the old one.

Two transitions are dependent if some reasons prevent their permutation,
or else if they contain non-commutative actions on the same shared object (for
example: wait(e) and notify(e), or x=0 and x=x+1). For the causal order and
the relationship P , we have to compute a transitive closure. The principles of
these algorithms are available in [5], or in [1] for SystemC-specific concerns. Here,
we consider that D and P are computed without taking temporal constraints
into account.

3.3 Generation of Schedulings

In this section, we rewrite the algorithm of [1] defined for the automatic gener-
ation of schedulings, in such a way that the generalization to timing generation
becomes possible. The algorithm of [1] works on any SUTD with only fixed
delays. First, we execute the SUTD with a random scheduling. Next, for each
executed scheduling, we generate a new scheduling for each pair of dependent
and permutable transitions. Figure 6 gives a definition of the main algorithm.

GS(constraint set C): //initial call: GS(∅)
execute the SUTD according to C;
u= scheduling of the above execution;
for all transitions pi and qj of u with pi <u qj such that:

(pi, qj) ∈ D ∩ P and
date(pi) = date(qj) and //temporal constraints are treated here (*)
∃v, v |= C ∧ qj <v pi do

GS(C ∪ “qj < pi”); //constraint to be satisfied by new schedulings
C = C ∪ “pi < qj”; //constraint satisfied by the current scheduling

Fig. 6. Main algorithm for the generation of schedulings

We generate each scheduling in two steps. First, we build a set of schedul-
ing constraints of the form “pi < qj”. A constraint “pi < qj” is satisfied by a
scheduling u if and only if the j-th occurrence of q does not occur before the
i-th occurrence of p (formally: qj ∈ u ⇒ pi ∈ u ∧ pi <u qj). The scheduling u
satisfies a set of constraints C (noted u |= C) if and only if it satisfies all con-
straints of C. Next, we give this constraint set to a patched scheduler that elects
processes according to the given constraints. Each new generated scheduling is
more constrained than its father scheduling. Consequently, there are fewer and
fewer new schedulings at each iteration. When the checker does not generate any
new scheduling, we have a complete test suite. If we execute this algorithm until
completion, we get at least one scheduling for each equivalence class.

Checker

q2 modify(x)
p3 read(x)

SUTD.exe

p2

p1

q1

wait(e)
notify(e), modify(x)

{p1 < q1; p3 < q2}
{q1 < p1}

Fig. 7. First iteration of the analysis for the foo example

Figure 7 describes the first iteration of our tool on the foo example. The
first execution activates processes p and q in the order p1q1p2q2p3. The checker
generates two new sets of constraints. One to permute p1 and q1 (unordered
accesses to event e, first dashed arrow of figure 5-(a)) and the other to permute
p3 and q2 (unordered accesses to shared variable x, second dashed arrow of
figure 5-(a)). Following iterations do not generate other schedulings and we get
at last 3 schedulings.

4 Conjoint Generation of Schedulings and Timings

4.1 The SystemC Models We Consider

First, we need to make the context of our work more precise. In this work, we
restrict to SystemC programs whose executions have only one δ-cycle between
two “time-elapse” phases. Indeed, the semantics of δ-cycle delays for abstract
models with loose durations is unclear and such delays should not be used in
timed TLM models. Moreover, for simplicity reasons, we do not consider delayed
notifications. Finally, we consider that the global date (variable t of Figure 1-(a))
is private and cannot be accessed by processes. This means that the processes
cannot use the timing annotations to perform functional effects. This is consis-
tent with the context of several TLM models, where the timing annotations are
added to a functional model, for performance evaluation only. We discuss this
topic in the conclusion.

4.2 Main ideas

With examples that use only fixed delays, two transitions cannot be permuted if
they occur at different dates. This is no longer true for SUTDs with loose delays:
an alternative concrete timing may allow or force the permutation of some tran-
sitions. Now, for all pairs of dependent transitions such that their permutation
is not prevented by explicit synchronizations, we have to determine whether it
exists a concrete timing which allows their permutation. If such timings exist,
we have to choose one and to re-execute the SUTD with it. In the algorithm
presented in section 3.3 above, it is the only point which has to be rewritten for
the generation of timings; the rest is identical.

For an execution of the SUTD and a set of scheduling constraints, we compute
the conjunction of all temporal constraints that must be satisfied. Fortunately,
all temporal constraints give linear constraints whose variables are the T (ω, i)
items. Consequently their conjunction gives a system of linear constraints S,
which can be solved with linear programming techniques. If the system of con-
straints is built correctly, its solutions are valid timings which make the given
set of scheduling constraints feasible. With the current semantics of the lwait
instruction, S defines an octahedron [8] (all variable coefficients are in {−1, 0, 1})
but not an octagon [9] (a constraint may use more than two variables).

4.3 The Temporal Constraints

There are two sorts of temporal constraints. First, the solution must correspond
to valid timings. So for all (ω, i) ∈ Ω × [1..#(ω)], we add the two constraints
inf(B(ω)) < T (ω, i) and T (ω, i) < sup(B(ω)). Second, each scheduling constraint
implies a temporal constraint.

In order to build temporal constraints implied by scheduling constraints, we
need the following definition. With each transition pi, we associate a symbolic
date noted sdate(pi). A symbolic date is a sum of variables T (ω, i) and constants.
We compute the symbolic date of a transition pi as follows:

1. if pi follows a wait with loose duration (pi−1 ended by a call to lwait),
then: sdate(pi) = sdate(pi−1) + T (ω, n) where ω is the identifier of this
lwait instruction and n its occurrence number.

2. if pi follows a wait with fixed duration (pi−1 ended by a call to wait(k)),
then: sdate(pi) = sdate(pi−1) + k;

3. if pi as been enabled by an immediate notification from transition qj , then:
sdate(pi) = sdate(qj);

4. if p is initially eligible, then p1 = 0.
We illustrate these rules on the example foochi with u = p1q1p2q2p3q3p4.

Symbolic dates do not depend on the timing. We have sdate(p1) = sdate(q1) = 0
(rule 4); next sdate(q2) = t3 and sdate(p2) = t1 and sdate(q3) = t3 + t4 (rule 1).
According to rule 3 on immediate notifications, we have sdate(p3) = sdate(q2) =
t3 and so sdate(p4) = sdate(p3) + t2 = t3 + t2 (rule 1).

Let “pi < qj” be a scheduling constraint, we build the associated temporal
constraint as follows: we first evaluate sdate(pi) and sdate(qj), which yields two
expressions e1 and e2; we then add to S the constraint “e1 ≤ e2”.

4.4 The Algorithm

Figure 8 presents the new algorithm. C is a set of scheduling constraints and u
a scheduling. S is a linear program and the functions is feasible and solution of
can be implemented with the simplex algorithm. On line (1), the timing T may
be incomplete, i.e., the value for some lwait instructions may be unspecified. In
this case, the simulation engine is free to choose any value in the given interval.
Initially we call GT with an empty set of scheduling constraints and an empty
timing. Let Tu be the concrete timing of the current scheduling u. Tu is always
a solution of the system of linear constraints S. In general, Tu is not a solution
of the system built on line (2).

GT (constraint set C, timing T): //initial call: GT (∅, ∅)
execute the SUTD according to C and T ; (1)
u= scheduling of the above execution;
linear system S = [];
for all (ω, i) ∈ Ω × [1..#(ω)] do

S = S • (T (ω, i) ∈ B(ω));
for all constraint “pi < qj” of C do

S = S • (sdate(pi) ≤ sdate(qj));
for all transitions pi and qj of u with pi <u qj such that:

(pi, qj) ∈ D ∩ P and
∃v, v |= C ∧ qj <v pi do

if is feasible(S • (sdate(qj) ≤ sdate(pi))) then (2)
T ′ = solution of(S • (sdate(qj) ≤ sdate(pi)));
GT (C ∪ “qj < pi”, T ′); (3)

C = C ∪ “pi < qj”;
S = S • (sdate(pi) ≤ sdate(qj));

Fig. 8. Main algorithm for the generation of timings

We describe the first call to GT on the example foochi to illustrate this
algorithm. If we ignore the temporal aspects, the analysis of u = p1q1p2q2p3q3p4

generates two sets of constraints: {q2 < p2} and {p2 < q2; p4 < q3}.
The first set of constraints {q2 < p2} gives a linear system S′ containing only

the constraint sdate(q2) ≤ sdate(p2) which rewrites in t3− t1 ≤ 0. We must also
respect bounds on variables: t1 ∈ [1, 5] and t3 ∈ [4, 8]. We ask a solution to the
linear programming library and get the solution t1 = t3 = 4. Finally, we call
GT ({q2 < p2}, {t1 = 4, t3 = 4}) (line (3) of the algorithm). These scheduling
constraints and this timing lead to the first error of foochi cited at end of
section 2.

The second set of constraints {p2 < q2; p4 < q3} gives the two constraints
t3 − t1 ≥ 0 and t2 − t4 ≤ 0. With the bounds t1 ∈ [1, 5], t2 ∈ [30, 50], t3 ∈ [4, 8]
and t4 ∈ [18, 30], one solution is t1 = t3 = 4 and t2 = t4 = 30. Finally, we call
GT again with this set of constraints and this timing as arguments. This leads
to the second error of foochi.

4.5 Elements for the Correctness of the Algorithm

In the general case, GT generates at least one representant of each equivalence
class, as GS does. On this example, we have generated one element of each
equivalence class. First, we have suppressed the condition “the transitions pi

and qj are not permutable if date(pi) 6= date(qj)” (line (*) of Figure 6). We call
G′

S the algorithm GS in which this condition has been suppressed. Running G′
S

on the SUTD generates a very large set E′ of schedulings which are valid if all
bounds of loose durations are extended to [0,∞[. It is equivalent to removing all
delays of the SUTD. E′ contains at least one element of each equivalence class
of this “untimed” version of the SUTD.

Second, we have encoded the temporal constraints into a linear system S. The
only difference between G′

S and GT is that GT checks the feasibility of S. We
know by construction that there exists an execution (u, T) which satisfies a set
of scheduling constraints C if and only if the system S built from C is feasible.
Hence GT generates all elements of G′

S that satisfy the temporal constraints.
Figure 9 represents the sets of executions generated by GS , G′

S and GT .

5 Case Study: The MPEG Decoder System

We have complemented our prototype for GS with a prototype for GT . Figure 10
gives an overview of this new prototype. We instrument the C++/SystemC
source code with the SystemC front-end Pinapa [10] in order to detect the ac-
cesses to shared variables dynamically. We have chosen lp solve [11] to solve
the linear systems.

We have evaluated the tool on a small industrial case-study. This system
has 5 components: a master, a MPEG decoder, a display, a memory and a bus
model. There are about 50 000 lines of code and only 4 processes. This is quite
common in the more abstract models found in industry, because there is a lot

Set of all executions

with fixed delays with bounded delays

Set of all executions

with unbounded delays

Set of all executions

A B C

Fig. 9. Sets of all executions of the SUTD. The dashed lines delimit the equivalence
classes. The surrounded crosses represent generated executions, with arrows from father
to children. GS returns the surrounded crosses of the set A, GT those of B and G′

S

those of C.

of sequential code, and very few synchronizations. Complete models of SoCs are
typically 3 to 6 times bigger than this MPEG decoder. The test is stopped after
the third decoded image, which corresponds to 150 transitions. One simulation
takes 0.39 s.

First, we run the GS prototype on a timed version without loose delays. It
generates 128 schedulings in 1 mn 08 s. No bug is found, which guarantees
that this test-case will run correctly on any SystemC implementation. The total
time spent splits into 50 s for running the SUTD 128 times and an overhead
of 18 s for the additional computations. The experiments have been run on a
Pentium 4 cadenced at 2.80 GHz.

tracemodel

kernel
checker

programming
linear

patched
SystemC

analyzer
Pinapa

library

SystemC

+ mapping
model

new

+ timings

intrumented

GT

constraints

checkedraw trace

Fig. 10. The Prototype’s Architecture

BUS

MASTER MEMORY

DISPLAYLCMPEG

Fig. 11. Architecture of the
MPEG decoder system

The GS prototype can be used on an untimed version too. This untimed
version is obtained by replacing all timed instructions by their corresponding
untimed instructions. But the prototype failed to run to completion because the
scheduling space to explore is far too large. Indeed, removing time constraints
allows a lot of new interleavings. For the untimed version, we estimate the num-
ber of relevant schedulings to about 232. It would take many years to execute
them all. Most of this time would be spent exploring unrealistic interleavings.

The prototype of GT allows to test bounded-delay versions which are interme-
diate between the fixed-delay version and the fully untimed version. We replace
all instructions wait(d) by lwait(d,d*r). The number of valid interleavings
increases when the global variable r increases. The goal is to validate the SUTD
with r as big as possible. We succeed in validating this MPEG decoder system
with r = 0.2. The GT prototype generates 3584 schedulings and timings in
35 mn 11 s. One must spend 23 mn 18 s to execute this system 3584 times. The
overhead is about 11 mn 53 s. Our goal is to validate the system with r = 0.5
but the first attemps show that our prototype is not fast enough yet.

6 Related Work

The idea of interpreting timing annotations in a loose way is quite natural. It
was already present in some modeling approaches based on fuzzy time (see, for
instance, [12]). However, these approaches are often dedicated to the handling of
imprecise functional information, while we focus on non-functional information.

The approach described in [13] has some similarities with ours. They run the
formal verifier vinas-p on a program with bounded delays to get test cases which
exhibit “failures”. Next, for each failure trace, they generate a system of linear
constraints and solve it using an integer linear programming solver. Finally, they
get new bounds for the delays specified in the program, which avoid failures.
Static partial order reduction is used during the formal verification step. Like
us, they found that the time spent to solve the generated linear programs is
quite small compared with the total time spent. The technique used in our tool
differs in two points: first we use dynamic POR, second the linear systems are
used inside the POR algorithm and not afterwards.

As far as we know, there is no verification tool for SystemC programs with
bounded delays yet. However, the tool LusSy [14] is able to translate auto-
matically SystemC programs into synchronous automata for which numerous
verification tools exist. Another approach would be to extend LusSy to translate
SystemC programs into timed automata which can be verified with tools such
as Kronos [15] or Uppaal [16] (this should be automatic; a manual translation
of SystemC programs into some formal language is too much error prone). The
approach described in this paper avoids the problem of relating a formal model
with the source code; since it is developed for a testing framework, it scales
better than verification techniques.

7 Conclusion and Further Work

In previous work, we presented a method to explore the set of valid schedulings
of a SystemC program and a given data input. In this paper, we described a
generalization to the exploration of valid timings. Exploring alternative timings
may reveal more synchronization errors such as dead-locks or data-races, and
violations of specified temporal constraints too. We work directly on the pro-
gram so all errors found are true errors and not false warnings. The conjoint
use of dynamic partial order reduction and linear programming allows to avoid
redundant simulations of the system under test. As a result, we are now able to
increase the test coverage of real size SoC models.

We have implemented this new algorithm. The current prototype is already
efficient enough to cover exhaustively small timing variations (about 20%) of
medium size SoC models, or parts of full big SoCs. We still have many possible
improvements to study. First, using the pre-solve functionality of the lp solve
library should reduce the overhead due to the computation of timings. Indeed,
it seems we perform lots of redundant computations when solving the temporal
constraints. Second, we still produce some redundant executions. The dynamic
partial order reduction technique is not optimal; we can indeed get two schedul-
ings which are equivalent according to the computed dependency relationship.
In [5], P. Godefroid suggests the use of the sleep sets technique to eliminate
some of them. In addition, computing a more precise dependency relationship
will reduce the number of equivalence classes to cover. The dependency of two
transitions depends mainly of the way they communicate. Up to now, we have
only considered low level communication items (non-persistent events and shared
variables). Higher level communication mechanisms (persistent events, for exam-
ple) can be globally robust to the scheduler indeterminism although they perform
dependent accesses locally. Taking them into account should reduce dramatically
the total time spent. With these improvements, we hope to be able to cover wider
timing variations, up to 40% or 50%.

Another further work concerns the restrictions imposed on the programs we
validate. Currently, we forbid reading of the global date from the processes. For
example, the following instruction is not allowed: if (date()<45) {A} else
{B}, where date() returns the current global date. As a consequence of this re-
striction, the functional behavior of an execution depends only on its scheduling;
the timing is only used to know whether the scheduling is valid, and to get an
estimation of temporal performances of the final SoC. Instructions as above are
not common in the models we have studied, however they might be more fre-
quent or necessary in other domains; therefore extending our tool will be useful.
Our idea is the following: first, we add to the scheduling representations virtual
transitions of the form χ(t) meaning that the global date has just reached t.
Next, we consider that a virtual transition χ(t) is: 1) dependent and permutable
with all transitions which compare date() and t, and 2) causally ordered with
the other virtual transitions. Thus it is possible to treat all expressions of the
form date()<k without modifying the main algorithm; it could be extended to

multiple clocks with reset instructions but allowing all expressions using date()
is a harder task.

References

1. Helmstetter, C., Maraninchi, F., Maillet-Contoz, L., Moy, M.: Automatic gen-
eration of schedulings for improving the test coverage of systems-on-a-chip. In:
FMCAD, Springer (2006)

2. Ghenassia, F., ed.: Transaction-Level Modeling with SystemC. TLM Concepts and
Applications for Embedded Systems. Springer (2005) ISBN 0-387-26232-6.

3. Rose, J., Swan, S.: SCV Randomization (2003)
www.testbuilder.net/reports/scv randomization.pdf.

4. Kuhn, T., Oppold, T., Winterholer, M., Rosenstiel, W., Edwards, M., Kashai, Y.:
A framework for object oriented hardware specification, verification, and synthesis.
In: DAC ’01: Proceedings of the 38th conference on Design automation, New York,
NY, USA, ACM Press (2001) 413–418

5. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Symposium on Principles of programming languages (POPL), New
York, NY, USA, ACM Press (2005) 110–121

6. Open SystemC Initiative: SystemC v2.0.1 Language Reference Manual. (2003)
http://www.systemc.org/.

7. Mazurkiewicz, A.: Trace theory. In: Advances in Petri nets 1986, part II on Petri
nets: applications and relationships to other models of concurrency, New York, NY,
USA, Springer-Verlag New York, Inc. (1987) 279–324

8. Clarisó, R., Cortadella, J.: The octahedron abstract domain. In Giacobazzi, R., ed.:
Static Analysis, 11th International Symposium, SAS 2004, Verona, Italy, August
26-28, 2004, Proceedings. Volume 3148 of Lecture Notes in Computer Science.,
Springer (2004) 312–327

9. Miné, A.: The octagon abstract domain. In: WCRE. (2001) 310
10. Moy, M., Maraninchi, F., Maillet-Contoz, L.: Pinapa (2005)

http://greensocs.sourceforge.net/pinapa/.
11. Berkelaar, M., et al.: Lp solve (1996)

http://www.cs.sunysb.edu/∼algorith/implement/lpsolve/implement.shtml.
12. L. A. Kunzle, R. Valette, B.P.C.: Temporal reasoning in fuzzy time petri nets.

Technical Report 98073, LAAS Toulouse (1998)
13. Yoneda, T., Kitai, T., Myers, C.J.: Automatic derivation of timing constraints by

failure analysis. In: CAV ’02: Proceedings of the 14th International Conference on
Computer Aided Verification, London, UK, Springer-Verlag (2002) 195–208

14. Moy, M., Maraninchi, F., Maillet-Contoz, L.: LusSy: A toolbox for the analysis
of systems-on-a-chip at the transactional level. In: International Conference on
Application of Concurrency to System Design. (2005)

15. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A
model-checking tool for real-time systems. In: Proc. 1998 Computer-Aided Verifi-
cation, CAV’98. Volume 1427 of Lecture Notes in Computer Science., Vancouver,
Canada, Springer-Verlag (1998)

16. Uppsala and Aalborg Universities: Uppaal (1994-2006)
http://www.uppaal.com/.

