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Abstract

We present a new method for visualizing similarities between objects. The method is

called VOS, which is an abbreviation for visualization of similarities. The aim of VOS

is to provide a low-dimensional visualization in which objects are located in such a way

that the distance between any pair of objects reflects their similarity as accurately as possi-

ble. Because the standard approach to visualizing similarities between objects is to apply

multidimensional scaling, we pay special attention to the relationship between VOS and

multidimensional scaling.

Keywords

Visualization of similarities, VOS, multidimensional scaling, Sammon mapping, horse-

shoe effect.

1 Introduction

In this report, a new method for visualizing similarities between objects is presented. The

method is called VOS, which is an abbreviation for visualization of similarities. The aim of

VOS is to provide a low-dimensional visualization in which objects are located in such a way

that the distance between any pair of objects reflects their similarity as accurately as possible.

Objects that have a high similarity should be located close to each other, whereas objects that
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have a low similarity should be located far away from each other. Because the standard approach

to visualizing similarities between objects is to apply multidimensional scaling (MDS) [1], the

relationship between VOS and MDS is given special attention in this report.

The report is organized as follows. In Section 2, a description of VOS is provided. In

Section 3, VOS and MDS are applied to a simple example data set. The results that are obtained

demonstrate an interesting property of VOS. In Section 4, the relationship between VOS and

MDS is analyzed theoretically. Finally, some conclusions are provided in Section 5.

2 Description of VOS

In this section, we provide a description of VOS. Let there be n objects, denoted by 1, . . . , n.

Let there also be an n× n similarity matrix S = (sij) satisfying sij ≥ 0, sii = 0, and sij = sji

for all i, j ∈ {1, . . . , n}. Element sij of S denotes the similarity between the objects i and j. It is

assumed that the similarities in S can be regarded as measurements on a ratio scale. VOS aims to

provide a low-dimensional space in which the objects 1, . . . , n are located in such a way that the

distance between any pair of objects i and j reflects their similarity sij as accurately as possible.

Objects that have a high similarity should be located close to each other, whereas objects that

have a low similarity should be located far away from each other. The n×m matrix X, where

m denotes the number of dimensions of the space that is used, contains the coordinates of the

objects 1, . . . , n. The vector xi = (xi1, . . . , xim) ∈ Rm denotes the ith row of X and contains

the coordinates of object i. The idea of VOS is to minimize a weighted sum of the squared

Euclidean distances between all pairs of objects. The higher the similarity between two objects,

the higher the weight of their squared distance in the summation. To avoid solutions in which

all objects are located at the same coordinates, the constraint is imposed that the sum of all

distances must equal some positive constant. In mathematical notation, the objective function

to be minimized in VOS is given by

E(X;S) =
∑
i<j

sij‖xi − xj‖2, (1)

where ‖·‖ denotes the Euclidean norm. The minimization of the objective function is performed

subject to the following constraint

∑
i<j

‖xi − xj‖ = 1. (2)
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Note that the distances ‖xi − xj‖ in the constraint are not squared.

To provide further motivation for the objective function in (1), we note that when visualizing

similarities it seems natural to expect that each object i is located close to what we call its ideal

coordinates, which are given by

ci(X,S) =

∑
j sijxj∑

j sij

. (3)

In other words, each object i may be expected to be located close to a weighted average of the

coordinates of all other objects, where the coordinates of objects more similar to object i are

given higher weight in the calculation of the weighted average. Locating each object i exactly

at its ideal coordinates ci(X,S) is only possible by locating all objects at the same coordinates,

which clearly does not result in a useful solution. Rather than locating each object exactly at its

ideal coordinates, the objective function in (1) locates objects close to their ideal coordinates.

This can most easily be seen as follows. Suppose that the coordinates of all objects except some

object i are fixed. Minimization of the objective function in (1) then reduces to minimization of

Ei(xi;X,S) =
∑

j

sij‖xi − xj‖2. (4)

Minimization of (4) can be performed analytically and results in the solution xi = ci(X,S). In

other words, if the coordinates of all objects except some object i are fixed, then the objective

function of VOS will locate object i exactly at its ideal coordinates. Of course, objects do not

have fixed coordinates, and therefore the objective function of VOS generally does not locate

objects exactly at their ideal coordinates. However, the situation with fixed coordinates clearly

indicates the tendency of VOS to locate objects close to their ideal coordinates.

Finally, some approaches that are closely related to VOS have to be mentioned. The idea

of visualizing similarities by locating objects close to their ideal coordinates can also be found

in our earlier research [6, 7]. In this research, instead of the constraint in (2) some penalty

function is used to avoid solutions in which all objects are located at the same coordinates. In

[2], an approach is taken that visualizes similarities between objects by solving a constrained

optimization problem. The objective function in this approach is exactly the same as in VOS,

but the constraints are different. The constraints in [2] have the advantage that they allow the

optimization problem to be solved as an eigenvalue problem. In our experience, however, the

constraints in [2] result in less satisfactory visualizations than the constraint that is used in VOS.
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3 Application to a simple example data set

In this section, we consider a simple example data set of similarities between objects. The data

set is also studied in [3, 4], where it is found that a so-called horseshoe effect occurs when the

similarities in the data set are visualized using multidimensional scaling (MDS). In this section,

we first reproduce the result obtained in [3, 4] by applying MDS to the data set. We then apply

VOS to the data set and demonstrate that VOS does not produce a horseshoe effect.

The data set consists of a 51× 51 similarity matrix S = (sij) given by

sij =





8 if 1 ≤ |i− j| ≤ 3

7 if 4 ≤ |i− j| ≤ 6

. . . . . . . . . . . . . . . . . . . . . . .

1 if 22 ≤ |i− j| ≤ 24

0 otherwise.

(5)

Visualization of the similarities in S using MDS results in the solution shown in Figure 1. This

solution was obtained using the PROXSCAL program available in SPSS. The similarities were

treated as ordinal data. As can be seen in Figure 1, MDS provides a solution in which the

objects lie on a curve in the form of a horseshoe. The objects lie in the expected order, that is,

object 1 is followed by object 2, object 2 is followed by object 3, and so on. However, due to

the horseshoe form, there is a problem with the distances between the objects. This problem is

sometimes referred to as the horseshoe effect [4]. Consider, for example, the objects 1 and 51,

which are the objects lying at the ends of the horseshoe. Object 1 lies closer to object 51 than

to many other objects, like object 40. Based on the solution from MDS, one would therefore

expect object 1 to be more similar to object 51 than to object 40. However, this expectation is

incorrect, since both the similarity between the objects 1 and 51 and the similarity between the

objects 1 and 40 equal 0. Moreover, both object 1 and object 40 have a positive similarity with

the objects 16 to 25, whereas there are no objects with which both object 1 and object 51 have

a positive similarity. Therefore, if indirect similarities via third objects are taken into account,

then object 1 is more similar to object 40 than to object 51. This is exactly opposite to the

impression given by the solution from MDS.

We now consider the result of visualizing the similarities sij in (5) using VOS. The solution

provided by VOS is shown in Figure 2. In this solution, the objects lie almost on a straight line.

They also lie in the expected order, with object 1 followed by object 2 and so on. Interestingly,
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1 51

40

Figure 1: Visualization of the similarities sij in (5) obtained using MDS.

in contrast to the solution from MDS, the solution from VOS does not suffer from the horseshoe

effect. In fact, if indirect similarities via third objects are taken into account, then the distances

between the objects in the solution from VOS very accurately reflect the similarities between

the objects. For example, the objects 1 and 51 lie further away from each other than the objects

1 and 40. This is exactly what one would expect based on the objects’ indirect similarities. Both

the objects 1 and 51 and the objects 1 and 40 have a similarity of 0, but the objects 1 and 51

do not have third objects with which they both have a positive similarity, whereas the objects 1

and 40 do have such objects, namely the objects 16 to 25. Object 1 is therefore more similar to

object 40 than to object 51, and this is exactly what is reflected by the distances in the solution

from VOS.

The results presented in this section indicate that VOS and MDS may provide very different

solutions. In applications in which indirect similarities via third objects may contain relevant

information, VOS probably provides better solutions than MDS. An example of an application

where the use of VOS may be more appropriate than the use of MDS is the visualization of

associations between concepts based on co-occurrence data (e.g. [6, 7]). Typically, many pairs

of concepts do not co-occur at all, and these pairs of concepts then have a similarity of 0.

MDS aims to provide a visualization in which for each pair of concepts with a similarity of 0

the distance between the concepts is the same. VOS seems to pay more attention to indirect
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40

51

1

Figure 2: Visualization of the similarities sij in (5) obtained using VOS.

similarities via third concepts and may therefore locate concepts with a high indirect similarity

closer to each other than concepts with a low indirect similarity. Because of this property, we

expect VOS to provide more insightful visualizations of concept associations than MDS.

4 Relationship with multidimensional scaling

VOS and MDS may provide very different solutions, as we have shown in Section 3. In this

section, we provide a theoretical analysis of the relationship between VOS and MDS. More

specifically, we show that under certain conditions VOS is equivalent to Sammon mapping [5],

which is a special variant of MDS. The mathematical notation in this section is the same as in

Section 2. In addition, D = (dij) is used to denote an n × n dissimilarity matrix satisfying

dij > 0 and dij = dji for all i, j ∈ {1, . . . , n}. Element dij of D denotes the dissimilarity

between the objects i and j. Like standard MDS, Sammon mapping aims to provide a low-

dimensional space in which the objects 1, . . . , n are located in such a way that the distance

between any pair of objects i and j reflects their dissimilarity dij as accurately as possible.

Objects that have a high dissimilarity should be located far away from each other, whereas

objects that have a low dissimilarity should be located close to each other. If similarities rather

than dissimilarities are available, the similarities have to be transformed into dissimilarities
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before Sammon mapping can be applied. We note that Sammon mapping and VOS have a very

similar purpose, the difference being that Sammon mapping uses dissimilarities whereas VOS

uses similarities. In Sammon mapping, the following objective function is minimized

σ(X;D) =
∑
i<j

(dij − ‖xi − xj‖)2

dij

. (6)

Sammon mapping differs from standard MDS (which is the type of MDS that is implemented

in the PROXSCAL program used in Section 3) because of the division by dij in the summation

in (6).

The following theorem states the equivalence, under certain conditions, of VOS and Sam-

mon mapping.

Theorem 1 Let sij > 0 for all i and j (i 6= j), and let similarities be transformed into dissim-

ilarities using dij = s−1
ij (i 6= j). VOS and Sammon mapping are then equivalent in the sense

that VOS solutions and Sammon mapping solutions differ only by a multiplicative constant.

Proof: We start by rewriting the objective function of Sammon mapping given by (6). Substi-

tuting dij = s−1
ij in (6) gives

σ(X;S) =
∑
i<j

sij

(
1

sij

− ‖xi − xj‖
)2

. (7)

This can be rewritten as

σ(X;S) =
∑
i<j

(
1

sij

− 2‖xi − xj‖+ sij‖xi − xj‖2

)
. (8)

The first term within the parentheses is a constant and can therefore be omitted. This results in

σ̂(X;S) =
∑
i<j

sij‖xi − xj‖2 − 2
∑
i<j

‖xi − xj‖. (9)

A VOS solution minimizes (1) subject to (2), while a Sammon mapping solution minimizes

(9). To show that VOS solutions and Sammon mapping solutions differ only by a multiplicative

constant, we will prove the following two statements:

(i) For each VOS solution XVOS, there exists a constant c such that cXVOS is a Sammon

mapping solution.

(ii) For each Sammon mapping solution XSM, there exists a constant c such that cXSM is a

VOS solution.
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Both statements will be proven by contradiction.

We first consider statement (i). Let XVOS and XSM denote, respectively, a VOS solution and

a Sammon mapping solution, and let the constant c be given by

c =
∑
i<j

∥∥xSM
i − xSM

j

∥∥ . (10)

Furthermore, define X̂SM = cXVOS and X̂VOS = c−1XSM. It follows from (10) that X̂VOS

satisfies (2). Assume that X̂SM is not a Sammon mapping solution. Using (9), this assumption

implies that

∑
i<j

sij

∥∥x̂SM
i − x̂SM

j

∥∥2 − 2
∑
i<j

∥∥x̂SM
i − x̂SM

j

∥∥ >
∑
i<j

sij

∥∥xSM
i − xSM

j

∥∥2 − 2
∑
i<j

∥∥xSM
i − xSM

j

∥∥ .

(11)

In this inequality, the second term in the left-hand side equals the second term in the right-hand

side. The inequality can therefore be simplified to

∑
i<j

sij

∥∥x̂SM
i − x̂SM

j

∥∥2
>

∑
i<j

sij

∥∥xSM
i − xSM

j

∥∥2
. (12)

It then follows that

∑
i<j

sij

∥∥xVOS
i − xVOS

j

∥∥2
>

∑
i<j

sij

∥∥x̂VOS
i − x̂VOS

j

∥∥2
. (13)

Using (1), it can be seen that this inequality implies that XVOS is not a VOS solution. However,

XVOS is a VOS solution by definition. We therefore have a contradiction. Consequently, the as-

sumption that X̂SM is not a Sammon mapping solution must be false. This proves statement (i).

We now consider statement (ii). This statement will be proven in a similar way as state-

ment (i). Let XSM and XVOS denote, respectively, a Sammon mapping solution and a VOS

solution, and let the constant c be given by

c =
1∑

i<j

∥∥xSM
i − xSM

j

∥∥ . (14)

Furthermore, define X̂VOS = cXSM and X̂SM = c−1XVOS. It follows from (14) that X̂VOS

satisfies (2). Assume that X̂VOS is not a VOS solution. Using (1), this assumption implies that

∑
i<j

sij

∥∥x̂VOS
i − x̂VOS

j

∥∥2
>

∑
i<j

sij

∥∥xVOS
i − xVOS

j

∥∥2
. (15)
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It then follows that

∑
i<j

sij

∥∥xSM
i − xSM

j

∥∥2
>

∑
i<j

sij

∥∥x̂SM
i − x̂SM

j

∥∥2
. (16)

Extending both the left-hand side and the right-hand side of this inequality with an additional

term, where the additional term in the left-hand side equals the additional term in the right-hand

side, results in

∑
i<j

sij

∥∥xSM
i − xSM

j

∥∥2 − 2
∑
i<j

∥∥xSM
i − xSM

j

∥∥ >
∑
i<j

sij

∥∥x̂SM
i − x̂SM

j

∥∥2 − 2
∑
i<j

∥∥x̂SM
i − x̂SM

j

∥∥ .

(17)

Using (9), it can be seen that this inequality implies that XSM is not a Sammon mapping so-

lution. However, XSM is a Sammon mapping solution by definition. We therefore have a

contradiction. Consequently, the assumption that X̂VOS is not a VOS solution must be false.

This proves statement (ii). The proof of Theorem 1 is now complete.

We note that Sammon mapping in the way it is discussed in this section is equivalent to

standard MDS where to each pair of objects i and j a weight is given that equals d−1
ij . It therefore

follows from Theorem 1 that there also exists an equivalence, under certain conditions, between

VOS and the weighted variant of standard MDS.

5 Conclusions

In this report, we have presented VOS, which is a new method for visualizing similarities be-

tween objects. VOS aims to provide a low-dimensional visualization in which objects are lo-

cated in such a way that the distance between any pair of objects reflects their similarity as

accurately as possible. As we have discussed in this report, VOS has the following three prop-

erties. First, VOS has the tendency to locate objects close to what we have called their ideal

coordinates. The ideal coordinates of an object i are defined as a weighted average of the coor-

dinates of all other objects, where the coordinates of objects more similar to object i are given

higher weight in the calculation of the weighted average. Second, VOS seems to pay more

attention to indirect similarities via third objects than MDS. For example, if two objects i and

j have a similarity of 0, the distance between the objects in a visualization obtained using VOS

seems to depend on the number of third objects with which the objects i and j both have a

positive similarity. The higher the indirect similarity via third objects, the closer the objects
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i and j are located to each other. Third, although VOS and MDS may provide very different

visualizations, VOS is, under certain conditions, equivalent to a special variant of MDS called

Sammon mapping. Furthermore, if weights are used in MDS and these weights are chosen in

the appropriate way, then there also exists an equivalence, under certain conditions, between

VOS and standard MDS.
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