
Scheduling Dynamically Spawned Processes in MPI-2

Márcia C. Cera1, Guilherme P. Pezzi1, Mauŕıcio L. Pilla2,
Nicolas B. Maillard1, and Philippe O. A. Navaux1

1 Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,
{mccera, pezzi, pilla, nicolas, navaux}@inf.ufrgs.br,

WWW home page:http://www.inf.ufrgs.br
2 Universidade Católica de Pelotas, Pelotas, Brazil, WWW home page:

http://esin.ucpel.tche.br/

Abstract. The Message Passing Interface is one of the most well known parallel
programming libraries. Although the standard MPI-1.2 norm only deals with a
fixed number of processes, determined at the beginning of the parallelexecution,
the recently implemented MPI-2 standard provides primitives to spawn processes
during the execution, and to enable them to communicate together.
However, the MPI norm does not include any way to schedule the processes.
This paper presents a scheduler module, that has been implemented with MPI-2,
that determines, on-line (i.e. during the execution), on which processor a newly
spawned process should be run, and with which priority. The schedulingis com-
puted under the hypotheses that the MPI-2 program follows a Divide andCon-
quer model, for which well-known scheduling algorithms can be used. A detailed
presentation of the implementation of the scheduler, as well as an experimental
validation, are provided. A clear improvement in the balance of the load is shown
by the experiments.

1 Introduction

The Message Passing Interface (MPI) [11] has imposed itselfsince 1996 as the library
for parallel programming in High Performance Computing (HPC). MPI’s clean defi-
nition of messages, as well as the natural and efficient extension that it provides to
classical sequential languages (C/Fortran), make it the most encountered parallel pro-
gramming interface for clusters and dedicated parallel machines. Virtually all the dis-
tributed benchmarks in HPC have been ported to MPI (e.g. Linpack [7], NAS [6]); and
nowadays the most challenging HPC applications are programmed in MPI (e.g. weather
forecast, astrophysics, quantum chemistry, earthquakes,nuclear simulations. . . [14]).

The MPI 1.2 norm builds upon PVM (Parallel Virtual Machine) [15] to define a
SPMD (Single Program, Multiple Data) programming approach, based on a fixed num-
ber of processes that can communicate through messages. MPI1.2 defines groups of
processes, as well as a communication space (communicator)to isolate the communi-
cation within a group. In a group, each process is identified by a rank. Messages are
defined by a source and destination process, a basic type and anumber of elements
of this type. The data is packed by the programmer into a buffer of appropriated size.
Communication may be synchronous or not, blocking or not. For non-blocking com-
munications, a set of primitives allows to test the completion and to wait for it.



In spite of the success of MPI 1.2, one of PVM’s features, not implemented in
MPI 1.2, has long been missed: the dynamic creation of processes. The success of Grid
Computing and the necessity to adapt the behavior of the parallel program, during its
execution, to changing hardware, encouraged the MPI committee to include the dyna-
mic management of processes (creation, insertion in a communicator, communication
with the newly created processes. . . ) in the MPI-2 norm. Other features have also been
added, such as Remote Memory Access - RMA (one-sided communication) and pa-
rallel I/O. Although it has been defined in 1998, MPI-2 has taken some time to be
implemented, and was included in a few MPI distributions only recently.

Neither MPI 1.2 nor MPI-2 define a way to schedule the processes of a MPI pro-
gram. The processor on which each process will be executed, and the order in which
the processes could run, is left to the MPI runtime implementation and is not specified
in the norm. In the static case, for a regular application on homogeneous platforms, the
schedule is trivial, or can be guided by some information gathered on the program [13].
Yet, in the dynamic case, a scheduling module should be developed to help decide on
which processor each process should be physically started,during the execution. Since
MPI-2 implements the dynamic creation of processes, the scheduling decision has to be
taken on-line. As will be shown in Sec. 5, the native LAM solution is far from being
efficient and may lead to very poor run-times.

This paper presents an on-line scheduler which targets dedicated platforms and at-
tempts to minimize the execution time, regardless of other criteria. This contribution is
organized as follows: Section 2 presents the dynamic process creation part of the MPI-2
norm as well as the distributions of MPI that implement it, and how MPI-2 programs
can scheduled. Section 3 details the implementation of a scheduler for MPI-2 programs.
In Sec. 4, the programming model, used in our test-cases withMPI-2, is presented, and
Sec. 5 shows how the scheduler manages the balance of the loadamong the proces-
sors, with two distinct benchmarks. Finally, Sec. 6 concludes this article and hints at
the following work to be done.

2 Dynamic Creation of Processes in MPI

Since 1997, MPI-2 has provided an interface that allows the creation of processes during
the execution of a MPI program, and the communication by message passing. Although
MPI-2 provides more functionalities, this article is restricted to the dynamic creation of
processes. Sec. 2.1 details theMPI Comm spawn primitive which creates new MPI
processes, and show how they may exchange messages. Section2.2 presents how to
schedule such spawned processes.

There is an increasing number of distributions that implement MPI-2 functionali-
ties. LAM-MPI is the first distribution of MPI to have implemented MPI-2. LAM also
ships some tools to support the run-time in a dynamic platform: thelamgrow and
lamshrink primitives allow to pass to the runtime information about newly entering
or leaving processors in the MPI virtual parallel machine. MPI-CH is the most classi-
cal MPI distribution, yet its implementation of MPI-2 datesback only to January 2005
only. This distribution aims at high-performance and scaling up to tens or hundreds of
thousands of processors. Open-MPI is a brand new MPI-2 implementation based on



the experience gained from the developments of the LAM/MPI,LA-MPI, and FT-MPI
projects [8]. HP-MPI is a high-performance MPI implementation delivered by Hewlett-
Packard. It was announced in December, 2005, that it now implements MPI-2.

2.1 MPI-2

MPI Comm spawn is the newly introduced primitive that creates new processes after
a MPI application has been started. It receives as argumentsthe name of an executa-
ble, that must have been compiled as a correct MPI program (thus, with the proper
MPI Init andMPI Finalize instructions); the possible parameters that should be
passed to the executable; the number of processes that should be created to run the pro-
gram; a communicator, which is returned byMPI Comm spawn and contains an inter-
communicator so that the newly created processes and the parent may communicate
through classical MPI messages. Other parameters are included, but are not relevant to
this work.MPI Comm spawn is a collective operation over all processes of the original
communicator since it needs to be updated with the data aboutthe children.

In the rest of this article, a process (or a group of processes) will be calledspawned
when it is created by a call toMPI Comm spawn, where the process that calls the
primitive is theparent and the new processes are thechildren.

MPI Comm connect / MPI Comm accept With MPI-2, it is possible to establish
a connection among dynamically created processes to exchange information in a cli-
ent/server model. To do this, a process (the server) createsa port withMPI Open port,
to which another process can connect afterwards. After the creation, the port name
is published byMPI Publish name. Once the port is open and its name is pu-
blished, the process allows connections byMPI Comm acceptwhich returns an inter-
communicator. This primitive is blocking and each process in the input communicator
(MPI Comm accept’s fourth argument) will be connected to a specific process using
the same port name.

On the other hand, the client process looks the name up of the port previously
published withMPI Lookup name. Afterwards, the client establishes connection to
the server throughMPI Comm connect. The output of this primitive is an inter-
communicator to communicate with the server. When all communications are done,
the process can disconnect callingMPI Comm disconnect, and the server can close
the port withMPI Close port. More details about these primitives can be found in
[12].

2.2 On-line Scheduling of Parallel Processes

The extensive work on scheduling of parallel programs has yielded relatively few results
in the case where the scheduling decisions are taken on-line, i.e. during the execution.
Yet, in the case of dynamically evolving programs such as those considered with MPI-2,
the schedule must be computed on-line. The problem is crucial, since a good, on-line,
schedule may grant both efficient run-time and portability.

The most used technique is to keep a list of ready tasks, and toallocate them to idle
processors. Such an algorithm is calledlist scheduling. The description of the tasks must



be such that it allows to compute, at runtime, which tasks areready. Thus, the program-
ming environment must enable the description of the tasks and of their dependencies,
typically the input and output data for each task [9]. The theoretical grounds of list sche-
duling relies on Graham’s analysis [10]. LetT1 denote the total time of the computation
related to a sequential schedule, andT∞ the critical time on an unbounded number of
identical processors. If the overheadOS induced by the list scheduling (management
of the list, process creation, communications) is not considered, thenTp ≤ T1/p + t∞,
which is nearly optimal ifT∞ ≪ T1. This bound is extended to non identical processors
by Bender and Rabin [1].

Workstealing is a distributed version of list scheduling that has been proven to be
optimal for a class of programs called fully strict. In this case, with a high probability,
each processor makesO(T∞) steal attempts [4]. The total number of steal attempts
made byp processors is bound byO(p.T∞), which yields:Tp ≤ T1

p
+ O(p.T∞). The

fully strict model implies that a parent process be blocked until all of its spawned tasks
return their results. It includes all Divide and Conquer parallel programs for example.
Some parallel programming environment that implement a “Divide & Conquer” pro-
gramming interface are for example Cilk [2, 3] and Satin [16,17].

Three important characteristics motivate the use of this programming model:

1. some of the most rated parallel programming interfaces are based on this model;
2. its use allows to have some performance bounds on the schedules (using workstea-

ling);
3. a large set of important applications can be efficiently programmed with such a

model. The LU factorization, Branch and Bound search, or sorting are examples.

Workstealing (and list scheduling) only uses a basic information of “load” about the
available processors in order to allocate tasks to them whenthey turn idle (or underlo-
aded). Typically, workstealing uses the number of processes in the local waiting list of
each processor to estimate its load.

Our scheduler is based on the assumption that the MPI-2 program is using a Di-
vide and Conquer programming model: basically, the idea is to use a Cilk-like pro-
gram, where the ‘fork’ construct would be substituted by theMPI Comm spawn, and
the ‘synch’ by theMPI Finalize. Processes migration is not allowed in this model,
which is also non-preemptive.

3 A Scheduler for MPI-2 Programs

The scheduler is constituted of two main parts: a set of header files that re-define some
of MPI-2’s constructs at compile-time; and a scheduler daemon that runs during the
execution of the application (thempirun script has been tampered in order to run
this extra process along with the “normal” application MPI processes). The overloaded
primitives are used to enable the communication between theMPI processes and the
scheduler, so that the latter may update its data-structureabout the MPI computation
and take the scheduling decisions.

The scheduler must maintain a task graph, in order to computethe best schedule of
the processes. It is implemented in two modules:sched which is in charge of updating



the task graph; andlibbetampi which implements the internal routines correspon-
ding to the overloaded MPI-2 routines.

3.1 The Scheduler

The task graph is maintained as a generalized tree, where a node may havep children,
p being the number of processes spawned by a parent. The implementation is made in
thegraph module. Each node in the tree points to an internal data-structure,struct
process desc, that represents a MPI process. Each process has a state, which can
beBlocked, Ready or Running. To control the states of processes, the scheduler
maintains lists that represent each state; it moves the processes from one list to another
when the parallel program executes. In the current version,the scheduler does not con-
trol the states of processes but this functionality will be included in a future version. The
overloaded MPI-2 primitives send (MPI) messages to the scheduler process to notify it
of each event regarding the program. The scheduler waits forthese messages, and when
it receives one, it proceeds with the necessary steps: update of the task graph; evolution
of the state of the process that sent the message; possible scheduling decision.

The scheduling decisions are to be taken:

– At process creation (as a result of aMPI Comm spawn call): the newly created
process(es) has to be assigned a processor where it will be physically forked;

– At process termination (MPI Finalize), since an occupied processor will be
freed; an already existing process may start running;

– When new processor(s) get(s) available. In the current version, this is not contem-
plated.

Since neither preemption nor migration are used, no other event may require a sche-
duling decision between the creation and the termination ofa process.

3.2 The Overloaded Primitives

To be consistent with the scheduling decisions, the MPI-2 primitives that require over-
loading are:

– MPI Comm spawn: the overloaded version has the following action: the parent
process first sends a MPI message to the scheduler, informingthe numbern of
processes that it wants to spawn, and its own pid. It then waits (with a blocking
MPI Recv) for a return from the scheduler.
At this point, there is an important issue about the physicalcreation of processes
(physical spawn), that may be done either by the parent process or by the scheduler.
In the first case, the scheduler will decide of the location ofthe children and return
the information to the parent process. After the creation ofthe children, the parent
process can determine their pids and send them back to the scheduler, so that it may,
later on, issue remote system call in order do priorize them.Thus, in this approach
there are two communications between the parent and the scheduler.
On the other hand, if the physical creation is done by the scheduler, it will decide
the location of the children, physically create them, and use the inter-communicator



returned byMPI Comm spawn to locally determine the children’s pids. Thus,
the scheduler can definitely update its task graph. But then,it has to send the
MPI Comm spawn return code back to the parent process, as well as the inter-
communicator. This second option needs only one communication between the
scheduler and the parent.
The current version of the scheduler has been implemented with the first option,
where the physical spawn is done by the parent process. Figure 1 shows the steps
of the overloadedMPI Comm spawn. First, the parent process will create new
processes (children) through theMPI Comm spawn primitive (step1). The over-
loaded primitive will establish a communication (step2) between the parent and
the scheduler, to notify the creation of the processes and the number of children
that will be created (in the diagram, only one process is created). The scheduler up-
dates the task graph structure (step3), decides on which node the children should
physically be created, and returns this physical location of the new processes (step
4). The parent process, that had remained blocked in aMPI Recv, receives the
location and physically spawns the children (step5). It then enters into a blocking
receive of a message from the scheduler, until all his children complete, so that the
computation may be fully strict.

��

1

23

4

5


��
MPI_Comm_spawnscheduler

Fig. 1.MPI Commspawn overload.

Notice that the creation of new processes is delayed until the scheduler decides
where to execute them. This enables the manipulation of the (light) process des-
criptor data-structure, until there is some idle processor. Then, the scheduler may
decide to allocate the created processes to this processor,and only then will the
physical creation occur. Thus, the overhead of the heavy process creation is de-
layed until an otherwise idle processor may do it.

– MPI Finalize: this serves to notify the scheduler that a process has termina-
ted, and therefore that a processor will be idle. TheMPI Finalize just sends a
message to the scheduler.



Figure 2 shows theMPI Finalize overload. Step1 represents the call ofMPI Finalize,
where is send a message to scheduler (step2) notifying the scheduler of the process
completion. The scheduler updates the task graph structure(step3) and, if there are
processes waiting for a processor, it will unblock a process(shows in step4).

1

��

4

3
2

��
MPI_Finalize

scheduler

Fig. 2.MPI Finalize overload.

– MPI Init: in order to know if a MPI program is called as an “entry point”of the
computation,i.e. directly run bympirun or mpiexec, or as a spawned program
(i.e. throughMPI Comm spawn calls), theMPI Init function is overloaded and
tests the size of theMPI Parent group. It is zero if and only if the program has
been “mpirun”. In the other case, this call serves to get the parent communicator
and merge it together with the program’sMPI Comm world, so that all processes
may communicate through an unique communicator.

From the scheduler point of view, the decisions taken are:

– when it receives a message from a parent process, the scheduler updates its task
graph, associating the parent’s pid ton processes children (the pid andn are the in-
formation contained in the message). It then decides on which nodes then children
will be created (the heuristics are detailed in Sec. 3.4), and send their locations to
the parent. Afterwards, the scheduler will receive anothermessage from the parent,
with the pids of the children that have been created, in orderto store them in the
task graph.

– when it receives a message from a terminating process, the scheduler updates its
task graph to delete the terminated process, and can take theappropriate schedu-
ling decision; for instance, it could remotely contact the source processor of the
message, to notify the process with the new highest prioritythat it can use the
processor. Finally, it sends a message to the parent process, that was blocked in a
receive that would notify it that its children had completedtheir computation.

3.3 The Task Graph Structure of the Scheduler

The scheduler needs to update the task graph of the application dynamically. This graph
must allow for an arbitrary number of children for each element that will be known at
execution time. To support this feature, the scheduler usesa rooted tree data-structure,
with left-child, right-selling representation [5]. Each graph node has a pointer that will
cast to aprocess desc structure with the information about the MPI processes.



3.4 Scheduling Heuristics

The scheduler can apply scheduling heuristics in two levels: to schedule processes into
resources and to priorize the execution of the processes that are ready to run. In the first
level the heuristics find a good distribution of processes among the available resources.
In the other level it can change the processes priority to geta better resource utilization
and performance.

The LAM MPI-2 implementation provides a Round-Robin mechanism to distribute
processes on the nodes through a special key,lam spawn sched round robin,
that can be set intoMPI Comm spawn’s MPI Info argument. In order to specify the
value of this information, theMPI Info set primitive is used. But this mechanism is
only efficient when more than one process are created by the sameMPI Comm spawn
call. If only one process is created by the call into a loop structure (for example into
a while), all the children processes will be allocated in thesame resource. To bypass
this restriction, our scheduler implements its own Round-Robin mechanism that is able
to distribute the processes in the available resources. With this mechanism, when only
one process is spawned by the call, the scheduler maintains information about the last
resource that has received a spawned process and allocates the new process to the
next available resource in the process topology (new resource = (last resource +
1)%total resources). If more than one process is spawned, then the MPI-2 standard
solution is used. The advantage of this approach is that the distribution occurs transpa-
rently, without any change in the implementation of the application.

The second level of scheduling isn’t implemented in the current version of the sche-
duler. The priority of the processes is left under the responsibility of the operating sys-
tem’s scheduler, on each node. But it is important to notice that it aims to execute
fully strict applications. To make it possible to enforce a coherent execution, one has
to provide a blocking mechanism to make the parent processeswait for the execu-
tion of their children. This is made through a blockingMPI Recv into the overloaded
MPI Comm spawn, that will wait until the scheduler sends a message (one by child),
triggered by the children’sMPI Finalize. This approach guarantees a hierarchical
execution where new processes have higher priority.

4 Programming with MPI-2: the Fibonacci Example

This section presents an example of how to program an MPI-2 application that dy-
namically spawns new processes. The example computesFibonacci numbers and is
programmed in a recursive way following this definition:

fib(n):

{

if n < 2 → fib(n) = n
else fib(n) = fib(n − 1) + fib(n − 2)

Although the Fibonacci sequence may seem somewhat artificial, its main interest
is in the recursive computational scheme. It is frequently used to test Divide and Con-
quer parallel programs. The recursive calls will be implemented, in MPI-2, with the
MPI Comm spawn primitive. The most technical decision when programming this re-
cursive application is about the synchronization at the start and the termination of the
processes. The MPI-2 primitive that spawns new processes takes as argument, besides



other information, the executable file name and the command line parameters. These
parameters may be used to pass data to the starting process without exchanging additi-
onal messages, but this may not be convenient for complex data-types. In this case, the
most portable way is to use normal message passing: the data is packed using a classical
MPI data-type and sent as a message. On the Fibonacci example, the first method has
been chosen, since only an integer has to be transmitted fromthe parent to the children.

The communication in MPI may be synchronous or not. In the contemplated case,
if synchronous send or receives were used, deadlock could occur: for example, a synch-
ronous send, in the parent, before spawning the children, would obviously prevent them
from being created and therefore from receiving the data andmatch the parent’s send.
In the case of the receives in the parent from the children, one wants them to be synch-
ronous, in order to implement a fully strict computation: the parent has to be blocked
until all its children end up their computation and send their output back.

From the children’s point of view, all they have to communicate is the result of their
computation. They have to send it back to their parent, and this communication must be
asynchronous in our implementation of the scheduler: remember that in order to block
the parent process until the return of its children, the overloadedMPI Comm spawn
blocks the parent into a receive. If the child process uses a synchronous send, it will
never complete, since it would wait for the matching receivefrom the parent’s side,
who is busy waiting for a message from the scheduler.

Figure 3 presents the example code that shows how the synchronization was im-
plemented, and this synchronization prevents any deadlock. MPI Comm spawn calls
the executableFibo, that includes the code segment of the figure 3. Notice that the
MPI Comm spawn is a collective operation which imposes a synchronization among
all processes in a same communicator (since the latter must be updated with the descrip-
tors of the children processes). This feature does not influence the scheduling decisions,
but may impact the overhead imposed by the scheduler. Yet, inthe case of Divide and
Conquer parallel programs, the children processes are recursively created from one uni-
que parent an its communicator. Thus, in the context of this work, the synchronization
occurs between one parent and each one of its children without any global synchroni-
zation.

5 Experimental Evaluation of the Scheduler

This section presents and analyzes the executions of two example programs with three
different schedulers: the LAM scheduler, an scheduler directly embedded in the appli-
cation and the proposed scheduler, discussed in Sec. 3. All tests have been made on
a cluster of up to 20 Pentium-4 nodes dual, each one with 1 GB deRAM. The main
purpose of these tests is to find out how the spawned processesare distributed on the
processors, with each one of the three schedulers. Our claimis that the use of the pro-
posed scheduler enables a good distribution of the spawned processes.

In the following, the section 5.1 presents a Fibonacci test-case designed with MPI-2
and some results and conclusions about this experiment. Afterwards, Sec. 5.2 shows a
second benchmark that demonstrates the behavior of the schedulers in a situation that
is more CPU-involved and which is highly irregular.



if (n < 2) {
MPI_Isend (&n, 1, MPI_LONG, 0, 1, parent, &req);

}
else{

sprintf (argv[0], "%ld", (n - 1));
MPI_Comm_spawn ("Fibo", argv, 1, local_info, myrank,

MPI_COMM_SELF, &children_comm[0], errcodes);
sprintf (argv[0], "%ld", (n - 2));
MPI_Comm_spawn ("Fibo", argv, 1, local_info, myrank,

MPI_COMM_SELF, &children_comm[1], errcodes);
MPI_Recv (&x, 1, MPI_LONG, MPI_ANY_SOURCE, 1,

children_comm[0], MPI_STATUS_IGNORE);
MPI_Recv (&y, 1, MPI_LONG, MPI_ANY_SOURCE, 1,

children_comm[1], MPI_STATUS_IGNORE);
fibn = x + y;
MPI_Isend (&fibn, 1, MPI_LONG, 0, 1, parent, &req);

}
MPI_Finalize ();

Fig. 3.Part of MPI-2 code from the Fibonacci example.

5.1 The Fibonacci Test-Case with MPI-2

This implementation of the Fibonacci program is not designed for speed measurements,
since it implies two recursive calls (following the exact definition) and could be imple-
mented using only one recursion. Thus, the numberN(p) of spawned processes to com-
pute fib(p) is exponential (it is trivial to obtain thatN(p) = 1 + N(p− 1) + N(p− 2),
with N(2) = N(1) = 1, and thusN(p) ≥ fib(p) = ⌈ Φp

√
5
⌉, Φ = 1+

√
5

2
.

In all experiments have been used the LAM-MPI distribution.To run the Fibonacci
test-case, three different configurations have been used:

1. Simple calls toMPI Comm Spawnwere issued, using only LAM’s embedded sche-
duling mechanism. With the default providedMPI Info, LAM uses the Round-
Robin policy.

2. TheMPI Info Set primitive has been issued before each spawn, not with the
lam spawn sched round robin key, but directly with the hard-coded ID of
the node onto which should run the process. This is the internal mechanism direc-
tly written in the source code. The node ID is computed to implement a simple
Round-Robin allocation to the nodes. Notice that each process that issued a spawn
computes the round-robin allocation from the node ID on which it is executing.

3. A proposed scheduler has been used, with the scheduling heuristic as described
in Sec. 3.4 (Round-Robin), yet this time the scheduling decision is external to the
source application.

First, Table 1 presents the schedules obtained when computing the 6th Fibonacci
number with the three configurations using 5 nodes.



Table 1.Comparing different schedules: number of processes spawned oneach node.

Environment Node 1Node 2Node 3Node 4Node 5
fib(6) with LAM standard scheduler 25 0 0 0 0
fib(6) with embedded scheduler 8 4 8 2 3
fib(6) with proposed scheduler 5 5 5 5 5

In the first case (LAM’s native schedule) all processes were spawned in the same
node. The second case just changed the starting node and thisis reflected by a non-
constant number of processes allocated to each node. In the last case, our scheduler
provides an effective Round-Robin distribution of processes among the nodes and a
perfect load balance.

The question that remains is about the first case: if the LAM scheduler uses a Round
Robin algorithm, should it not spawn processes on all nodes?The reason why this does
not happen is that LAM does not keep scheduling information between two spawns.
That means that LAM will always start spawning on the same node and only if mul-
tiple processes are spawned in the same call the processes will be balanced. This si-
tuation gets clearer observing Table 2 with an experiment that compares the result of
spawning 20 processes in a single call,vs. in a loop of multiple, individual spawns
(MPI Comm Spawn).

Table 2. Spawning 20 processes in 5 nodes using single and multiple spawn calls with LAM
scheduler.

Environment Node 1Node 2Node 3Node 4Node 5
20 spawns of 1 process 20 0 0 0 0
1 spawn of 20 processes 4 4 4 4 4

In order to stress the scheduler with a higher number of spawned processes, the exe-
cution of the computation of fib(13) has been used. It results in 753 processes. Table 3
shows the distribution of the processes among 5 nodes, obtained with our scheduler.

Table 3.Computing the 13th Fibonacci number with the new scheduler.

Node 1Node 2Node 3Node 4Node 5Total Number of Processes
fib(13) 151 151 151 150 150 753

Table 3 shows again the effect of our scheduler: besides the good load balance
that has been reached, the proposed scheduler makes it possible to compute the 13th
Fibonacci number, which is not practicable with the standard LAM mechanism: on our



experimental platform, LAM tries to run all the processes ona single node, reaches
an internal upper bound on the number of processes descriptors that it can handle, and
fails.

5.2 Computing Prime Numbers in an Interval

In this test-case, the number of prime numbers in a given interval (between1 andN ) is
computed by recursive search. As in the Fibonacci program, anew process is spawned
for each recursive subdivision of the interval. Due to the irregular distribution of prime
numbers and irregular workload to test a single number, the parallel program is natively
unbalanced.

Table 4 presents the distribution of the processes among 5 nodes when executing the
computation in an interval between 1 and 20 millions, using LAM’s native scheduler
and the proposed one.

Table 4.Comparing LAM’s standard scheduler and the proposed one: numberof processes spaw-
ned on each node.

Environment Node 1Node 2Node 3Node 4Node 5
LAM’s standard scheduler 39 0 0 0 0
proposed scheduler 8 8 8 8 7

Table 4 shows, once more, the good load balance that has been reached with the
proposed scheduler. Measuring the execution time, the average duration of the parallel
program has been181.15s using LAM’s standard scheduler and46.12s with the propo-
sed scheduler. Clearly, the good load balance with our solution has a direct consequence
about the performance of the application.

In this kind of application where the tasks are irregular, a solution that gathers infor-
mation about the load on each node in order to decide where to run each process should
be more efficient. Future work on the proposed scheduler should tackle this issue.

6 Conclusion and Future Work

The implementation of MPI-2 is a new reality in distributed programming, which per-
mits the use of MPI’s based HPC codes with new infrastructures such as computational
grids. However, the diversity of programming models that can be supported by MPI-2
is difficult to match with efficient scheduling strategies. The approach presented in this
paper is to restrict MPI-2 programs to fully strict computations, which enable the use
of Workstealing.

This article has shown how MPI-2 can be used to program with such a model,
and how it can be coupled with a central scheduler. Some preliminary tests have been
presented, that show that LAM MPI’s native scheduling functionalities are clearly out-
performed by such a solution. Although a distributed solution would be much more



scalable, this centralized prototype results in a simple implementation and already vali-
dates the interest in such a scheduler of dynamic spawned processes in MPI.

It is therefore interesting to continue the development of such a scheduler, to imple-
ment a real workstealing algorithm: an easy way to do it is to decide on which processor
to execute the processes, based on information about their respective loads. Future work
could also include altering the priority of the processes oneach node, through remote
system calls, to control the execution of the parallel, dynamic program.

Special thanks: this work has been partially supported by HP Brazil.

References

1. A. M. Bender, , and M. O. Rabin. Online scheduling of parallel programs on heterogeneous
systems with applications to cilk. InTheory of Computing Systems, Special Issue on SPAA
’00, volume 35, pages 289–304, 2002.

2. M. A. Bender and M. O. Rabin. Scheduling cilk multithreaded parallel programs on pro-
cessors of different speeds. InTwelfth annual ACM Symposium on Parallel Algorithms and
Architectures - SPAA, pages 13–21, Bar Harbor, Maine, USA, 2000.

3. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. C. E.
Zhou. Cilk: an efficient multithreaded runtime system.ACM SIGPLAN Notices, 30(8):207–
216, Aug. 1995.

4. R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling ofmultithreaded computati-
ons.SIAM Journal on Computing, 27(1):202–229, 1998.

5. T. H. Cormen, C. E. Leiserson, and R. L. R. ans Clifford Stein.Introduction to Algorithms.
The MIT Press, 2 edition, 2001.

6. D. Bailey et al. The NAS parallel benchmarks. Technical Report RNR-91-002, NAS Systems
Division, Jan. 1991.

7. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark: past, present and future.
Concurrency and Computation: Practice and Experience, 15(9):803–820, 2003.

8. E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R.L. Graham, and T. S.
Woodall. Open MPI: Goals, concept, and design of a next generation MPI implementation.
In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages 97–104, Budapest,
Hungary, September 2004.

9. F. Galiĺee, J.-L. Roch, G. Cavalheiro, and M. Doreille. Athapascan-1: On-line Building Data
Flow Graph in a Parallel Language. In IEEE, editor,International Conference on Parallel
Architectures and Compilation Techniques, PACT’98, pages 88–95, Paris, France, October
1998.

10. R. Graham. Bounds on multiprocessing timing anomalies.SIAM J. Appl. Math., 17(2):416–
426, 1969.

11. W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable Parallel Programming with the
Message Passing Interface. MIT Press, Cambridge, Massachusetts, USA, Oct. 1994.

12. W. Gropp, E. Lusk, and R. Thakur.Using MPI-2 Advanced Features of the Message-Passing
Interface. The MIT Press, Cambridge, Massachusetts, USA, 1999.

13. N. Maillard, R. Ennes, and T. Divério. Automatic data-flow graph generation of mpi pro-
grams. InSBAC’05, Rio de Janeiro, Brazil, November 2005.

14. S. Moore, F. Wolf, J. Dongarra, S. Shende, A. D. Malony, and B. Mohr. A scalable approach
to mpi application performance analysis. InRecent Advances in Parallel Virtual Machine
and Message Passing Interface, 12th European PVM/MPI Users’ Group Meeting, volume
3666 ofLecture Notes in Computer Science, pages 309–316. Springer, 2005.



15. V. S. Sunderam. PVM: A framework for parallel distributed computing. Concurrency:
practice and experience, 2(4):315–339, Dec. 1990.

16. R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. Satin: Efficient Parallel Divide-and-
Conquer in Java. InEuro-Par 2000 Parallel Processing, number 1900 in Lecture Notes in
Computer Science, pages 690–699, Munich, Germany, Aug. 2000. Springer.

17. R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, and H. E. Bal. Satin: Simple
and efficient java-based grid programming. InAGridM 2003 Workshop on Adaptive Grid
Middleware, New Orleans, Louisiana, USA, 2003.


