Scheduling Dynamically Spawned Processes in MPI-2

Marcia C. Cerd, Guilherme P. PezZj Mauricio L. Pilla?,
Nicolas B. Maillard, and Philippe O. A. Navaux

! Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,
{ntcera, pezzi, pilla, nicolas, navaux}@nf.ufrgs.br,
WWW home pageht t p: // ww. i nf. ufrgs. br
2 Universidade Cdlica de Pelotas, Pelotas, Brazil, WWW home page:
http://esin.ucpel.tche. br/

Abstract. The Message Passing Interface is one of the most well known parallel
programming libraries. Although the standard MPI-1.2 norm only deils av
fixed number of processes, determined at the beginning of the panedielition,
the recently implemented MPI-2 standard provides primitives to spavaepses
during the execution, and to enable them to communicate together.

However, the MPI norm does not include any way to schedule the meses
This paper presents a scheduler module, that has been implementedrVithy M
that determines, on-line (i.e. during the execution), on which proceseewly
spawned process should be run, and with which priority. The schedsloam-
puted under the hypotheses that the MPI-2 program follows a DivideCamnd
quer model, for which well-known scheduling algorithms can be usec:tailed
presentation of the implementation of the scheduler, as well as an exp&aime
validation, are provided. A clear improvement in the balance of the lodwisrs
by the experiments.

1 Introduction

The Message Passing Interface (MPI) [11] has imposed &s&iE 1996 as the library
for parallel programming in High Performance Computing G(JPMPI’s clean defi-
nition of messages, as well as the natural and efficient siierthat it provides to
classical sequential languages (C/Fortran), make it th&t ercountered parallel pro-
gramming interface for clusters and dedicated parallelhimas. Virtually all the dis-
tributed benchmarks in HPC have been ported to Mfgl Linpack [7], NAS [6]); and
nowadays the most challenging HPC applications are pragehin MPI €.g. weather
forecast, astrophysics, quantum chemistry, earthquaketear simulations. .. [14]).
The MPI 1.2 norm builds upon PVM (Parallel Virtual Machindp] to define a
SPMD (Single Program, Multiple Data) programming approaetsed on a fixed num-
ber of processes that can communicate through messagesl.RIB&fines groups of
processes, as well as a communication space (communitatsglate the communi-
cation within a group. In a group, each process is identifiec bank. Messages are
defined by a source and destination process, a basic type authlaer of elements
of this type. The data is packed by the programmer into a boffappropriated size.
Communication may be synchronous or not, blocking or not.rfém-blocking com-
munications, a set of primitives allows to test the completind to wait for it.

In spite of the success of MPI 1.2, one of PVM’s features, ngtlémented in
MPI 1.2, has long been missed: the dynamic creation of psesed he success of Grid
Computing and the necessity to adapt the behavior of thdl@igpeogram, during its
execution, to changing hardware, encouraged the MPI caesrid include the dyna-
mic management of processes (creation, insertion in a caonwatior, communication
with the newly created processes...) in the MPI-2 norm. Oegtures have also been
added, such as Remote Memory Access - RMA (one-sided concation) and pa-
rallel I/O. Although it has been defined in 1998, MPI-2 hasetalsome time to be
implemented, and was included in a few MPI distributionsyartcently.

Neither MPI 1.2 nor MPI-2 define a way to schedule the proces$a MPI pro-
gram. The processor on which each process will be executedth& order in which
the processes could run, is left to the MPI runtime impleraton and is not specified
in the norm. In the static case, for a regular application@mégeneous platforms, the
schedule is trivial, or can be guided by some informatiohegeed on the program [13].
Yet, in the dynamic case, a scheduling module should be oeedlto help decide on
which processor each process should be physically staltehg the execution. Since
MPI-2 implements the dynamic creation of processes, thedsding decision has to be
taken on-line. As will be shown in Sec. 5, the native LAM sutis far from being
efficient and may lead to very poor run-times.

This paper presents an on-line scheduler which targetsaledi platforms and at-
tempts to minimize the execution time, regardless of othiggrea. This contribution is
organized as follows: Section 2 presents the dynamic psaestion part of the MPI-2
norm as well as the distributions of MPI that implement itd dlow MPI-2 programs
can scheduled. Section 3 details the implementation ofedsdar for MPI-2 programs.
In Sec. 4, the programming model, used in our test-casesvitiq2, is presented, and
Sec. 5 shows how the scheduler manages the balance of tharwat the proces-
sors, with two distinct benchmarks. Finally, Sec. 6 conebuthis article and hints at
the following work to be done.

2 Dynamic Creation of Processes in MPI

Since 1997, MPI-2 has provided an interface that allows téatmon of processes during
the execution of a MPI program, and the communication by agespassing. Although
MPI-2 provides more functionalities, this article is régied to the dynamic creation of
processes. Sec. 2.1 details tel _Conmspawn primitive which creates new MPI
processes, and show how they may exchange messages. Se2tjmresents how to
schedule such spawned processes.

There is an increasing number of distributions that impletéPI-2 functionali-
ties. LAM-MPI is the first distribution of MPI to have implemtd MPI-2. LAM also
ships some tools to support the run-time in a dynamic platfaghel angr ow and
| anshr i nk primitives allow to pass to the runtime information abouvheentering
or leaving processors in the MPI virtual parallel machind2INCH is the most classi-
cal MPI distribution, yet its implementation of MPI-2 datesck only to January 2005
only. This distribution aims at high-performance and saalip to tens or hundreds of
thousands of processors. Open-MPI is a brand new MPI-2 imgai¢ation based on

the experience gained from the developments of the LAM/MRIMPI, and FT-MPI
projects [8]. HP-MPI is a high-performance MPI implemeiatatdelivered by Hewlett-
Packard. It was announced in December, 2005, that it noweime@hts MPI-2.

2.1 MPI-2

MPI _Commspawn is the newly introduced primitive that creates new processeer
a MPI application has been started. It receives as arguntiemisame of an executa-
ble, that must have been compiled as a correct MPI prograuos,(thith the proper
MPI _I ni t andMPI _Fi nal i ze instructions); the possible parameters that should be
passed to the executable; the number of processes thatisfoateated to run the pro-
gram; a communicator, which is returned Myl _Commspawn and contains an inter-
communicator so that the newly created processes and teatpaay communicate
through classical MPI messages. Other parameters arel@wlbut are not relevant to
this work.MPI _Comm.s pawn is a collective operation over all processes of the original
communicator since it needs to be updated with the data abewhildren.

In the rest of this article, a process (or a group of procgssdise calledspawned
when it is created by a call tdPl _Commspawn, where the process that calls the
primitive is theparent and the new processes are thédren.

MPI _Commconnect / MPl _Conmaccept With MPI-2, it is possible to establish
a connection among dynamically created processes to egehiaformation in a cli-
ent/server model. To do this, a process (the server) cregied withMPl _Open _port ,

to which another process can connect afterwards. After tbation, the port name
is published byMPI _Publ i sh_nane. Once the port is open and its name is pu-
blished, the process allows connectiondM®y _Conmaccept which returns an inter-
communicator. This primitive is blocking and each procesthe input communicator
(MPI _Commaccept 's fourth argument) will be connected to a specific processus
the same port name.

On the other hand, the client process looks the name up of dhteppeviously
published withMPl _Lookup_nane. Afterwards, the client establishes connection to
the server throughvPl _Commconnect . The output of this primitive is an inter-
communicator to communicate with the server. When all comaoations are done,
the process can disconnect calligl _Commdi sconnect , and the server can close
the port withMPl _Cl ose _port . More details about these primitives can be found in
[12].

2.2 On-line Scheduling of Parallel Processes

The extensive work on scheduling of parallel programs helsligd relatively few results
in the case where the scheduling decisions are taken on-Enduring the execution.
Yet, in the case of dynamically evolving programs such asdluonsidered with MPI-2,
the schedule must be computed on-line. The problem is drsiiee a good, on-line,
schedule may grant both efficient run-time and portability.

The most used technique is to keep a list of ready tasks, asltbttate them to idle
processors. Such an algorithm is callestischeduling. The description of the tasks must

be such that it allows to compute, at runtime, which taskseady. Thus, the program-
ming environment must enable the description of the taslsoftheir dependencies,
typically the input and output data for each task [9]. Thetké&cal grounds of list sche-
duling relies on Graham’s analysis [10]. LBt denote the total time of the computation
related to a sequential schedule, and the critical time on an unbounded number of
identical processors. If the overheé@qd induced by the list scheduling (management
of the list, process creation, communications) is not aersid, therf), < T} /p + t,
which is nearly optimal il ., < 7. This bound is extended to non identical processors
by Bender and Rabin [1].

Workstealing is a distributed version of list schedulingtthas been proven to be
optimal for a class of programs called fully strict. In thise, with a high probability,
each processor makés(T,.) steal attempts [4]. The total number of steal attempts
made byp processors is bound Y (p.T), which yields:T,, < % +O0(p.Tx). The
fully strict model implies that a parent process be blocketl all of its spawned tasks
return their results. It includes all Divide and Conquergtlat programs for example.
Some parallel programming environment that implement aitigi & Conquer” pro-
gramming interface are for example Cilk [2, 3] and Satin [II8,

Three important characteristics motivate the use of thegiamming model:

1. some of the most rated parallel programming interface®ased on this model;

2. its use allows to have some performance bounds on thewdelsgdsing workstea-
ling);

3. a large set of important applications can be efficientlygpgmmed with such a
model. The LU factorization, Branch and Bound search, dirgpare examples.

Workstealing (and list scheduling) only uses a basic infdiam of “load” about the
available processors in order to allocate tasks to them whenturn idle (or underlo-
aded). Typically, workstealing uses the number of processthe local waiting list of
each processor to estimate its load.

Our scheduler is based on the assumption that the MPI-2 gmodg using a Di-
vide and Conquer programming model: basically, the idea isse a Cilk-like pro-
gram, where the ‘fork’ construct would be substituted by M _Conmspawn, and
the ‘synch’ by thevPl _Fi nal i ze. Processes migration is not allowed in this model,
which is also non-preemptive.

3 A Scheduler for MPI-2 Programs

The scheduler is constituted of two main parts: a set of hdfdds that re-define some
of MPI-2’s constructs at compile-time; and a scheduler daethat runs during the
execution of the application (thepi r un script has been tampered in order to run
this extra process along with the “normal” application MRygesses). The overloaded
primitives are used to enable the communication betweemPkeprocesses and the
scheduler, so that the latter may update its data-struetowet the MPI computation
and take the scheduling decisions.

The scheduler must maintain a task graph, in order to contpatbest schedule of
the processes. Itis implemented in two modugashed which is in charge of updating

the task graph; andi bbet anpi which implements the internal routines correspon-
ding to the overloaded MPI-2 routines.

3.1 The Scheduler

The task graph is maintained as a generalized tree, wherdeamay have children,
p being the number of processes spawned by a parent. The implation is made in
thegr aph module. Each node in the tree points to an internal datatsime,st r uct
process_desc, that represents a MPI process. Each process has a stath, vemi
be Bl ocked, Ready or Runni ng. To control the states of processes, the scheduler
maintains lists that represent each state; it moves thepses from one list to another
when the parallel program executes. In the current ver#iirenscheduler does not con-
trol the states of processes but this functionality willbbeluded in a future version. The
overloaded MPI-2 primitives send (MPI) messages to thedidke process to notify it
of each event regarding the program. The scheduler waiteése messages, and when
it receives one, it proceeds with the necessary steps: eipfittie task graph; evolution
of the state of the process that sent the message; posdileléwing decision.

The scheduling decisions are to be taken:

— At process creation (as a result oMl _Commspawn call): the newly created
process(es) has to be assigned a processor where it willisécphy forked;

— At process terminationMPl _Fi nal i ze), since an occupied processor will be
freed; an already existing process may start running;

— When new processor(s) get(s) available. In the currentaersis is not contem-
plated.

Since neither preemption nor migration are used, no otrertevay require a sche-
duling decision between the creation and the terminatianmbcess.

3.2 The Overloaded Primitives

To be consistent with the scheduling decisions, the MPIifives that require over-
loading are:

— MPI _Conmspawn: the overloaded version has the following action: the paren
process first sends a MPI message to the scheduler, infortinéngumber of
processes that it wants to spawn, and its own pid. It thenswmiith a blocking
MPI _Recv) for a return from the scheduler.

At this point, there is an important issue about the physicahtion of processes
(physical spawn), that may be done either by the parent psameby the scheduler.
In the first case, the scheduler will decide of the locatiothefchildren and return
the information to the parent process. After the creatiothefchildren, the parent
process can determine their pids and send them back to thdwdeh, so that it may,
later on, issue remote system call in order do priorize thEms, in this approach
there are two communications between the parent and thesgehe

On the other hand, if the physical creation is done by theddee it will decide
the location of the children, physically create them, arelthe inter-communicator

returned byMPlI _Conmspawn to locally determine the children’s pids. Thus,
the scheduler can definitely update its task graph. But themas to send the
MPI _Commspawn return code back to the parent process, as well as the inter-
communicator. This second option needs only one commuoicéietween the
scheduler and the parent.

The current version of the scheduler has been implementtddthe first option,
where the physical spawn is done by the parent process.a~igahows the steps
of the overloadedvPl _Conmspawn. First, the parent process will create new
processes (children) through tM®l _Conmspawn primitive (stepl). The over-
loaded primitive will establish a communication (st8pbetween the parent and
the scheduler, to notify the creation of the processes amchtimber of children
that will be created (in the diagram, only one process istethaThe scheduler up-
dates the task graph structure (s8pdecides on which node the children should
physically be created, and returns this physical locatfdh®new processes (step
4). The parent process, that had remained blocked MPla_Recv, receives the
location and physically spawns the children (siplt then enters into a blocking
receive of a message from the scheduler, until all his ofiidlomplete, so that the
computation may be fully strict.

(® MPI_comm_spawn
(U@

Fig. 1. MPI_Commspawn overload.

Notice that the creation of new processes is delayed umilsttheduler decides
where to execute them. This enables the manipulation ofligjiet)(process des-
criptor data-structure, until there is some idle procesbben, the scheduler may
decide to allocate the created processes to this procesgbionly then will the
physical creation occur. Thus, the overhead of the heavgegsscreation is de-
layed until an otherwise idle processor may do it.

— MPI _Fi nal i ze: this serves to notify the scheduler that a process hasnearmi
ted, and therefore that a processor will be idle. M® _Fi nal i ze just sends a
message to the scheduler.

Figure 2 shows thePI _Fi nal i ze overload. Step represents the call &Pl _Fi nal i ze,
where is send a message to scheduler 3teptifying the scheduler of the process
completion. The scheduler updates the task graph strusiee3) and, if there are
processes waiting for a processor, it will unblock a pro¢skews in step).

scheduler J@ MPI_Finalize
® N ® i

Fig. 2. MPI_Finalize overload.

— MPI _I ni t :in order to know if a MPI program is called as an “entry poiofthe
computationj.e. directly run bynpi r un or npi exec, or as a spawned program
(i.e. throughiPl _Commspawn calls), theMPl _I ni t function is overloaded and
tests the size of thePl _Par ent _gr oup. Itis zero if and only if the program has
been “mpirun”. In the other case, this call serves to get trem communicator
and merge it together with the progranvBl _Conmwor | d, so that all processes
may communicate through an unique communicator.

From the scheduler point of view, the decisions taken are:

— when it receives a message from a parent process, the seheghalates its task
graph, associating the parent’s piditprocesses children (the pid andre the in-
formation contained in the message). It then decides onhwiodes the: children
will be created (the heuristics are detailed in Sec. 3.4),snd their locations to
the parent. Afterwards, the scheduler will receive anotiessage from the parent,
with the pids of the children that have been created, in ometore them in the
task graph.

— when it receives a message from a terminating process, tteglsler updates its
task graph to delete the terminated process, and can talapepriate schedu-
ling decision; for instance, it could remotely contact tloeirge processor of the
message, to notify the process with the new highest prishiéy it can use the
processor. Finally, it sends a message to the parent prdbassvas blocked in a
receive that would notify it that its children had completbdir computation.

3.3 The Task Graph Structure of the Scheduler

The scheduler needs to update the task graph of the appiichthamically. This graph
must allow for an arbitrary number of children for each elatrtbat will be known at
execution time. To support this feature, the scheduler agested tree data-structure,
with left-child, right-selling representation [5]. Eachagh node has a pointer that will
cast to gpr ocess_desc structure with the information about the MPI processes.

3.4 Scheduling Heuristics

The scheduler can apply scheduling heuristics in two letelschedule processes into
resources and to priorize the execution of the processtarthaeady to run. In the first
level the heuristics find a good distribution of processesragithe available resources.
In the other level it can change the processes priority t@dpettter resource utilization
and performance.

The LAM MPI-2 implementation provides a Round-Robin medkamto distribute
processes on the nodes through a special lkeypspawn_sched_r ound_r obi n,
that can be set inthPI _Commspawn’s MPI _I nf o argument. In order to specify the
value of this information, th&PI _I nf o_set primitive is used. But this mechanism is
only efficient when more than one process are created by thelg@l _Conmspawn
call. If only one process is created by the call into a loopatrre (for example into
a while), all the children processes will be allocated in $hene resource. To bypass
this restriction, our scheduler implements its own RoumiR mechanism that is able
to distribute the processes in the available resource$ Mg mechanism, when only
one process is spawned by the call, the scheduler maint#mrenation about the last
resource that has received a spawned process and allobategw process to the
next available resource in the process topologyu(_resource = (last_resource +
1)%total resources). If more than one process is spawned, then the MPI-2 stedndar
solution is used. The advantage of this approach is thatisftiebdition occurs transpa-
rently, without any change in the implementation of the ayapion.

The second level of scheduling isn’t implemented in theentrversion of the sche-
duler. The priority of the processes is left under the resitmlity of the operating sys-
tem’s scheduler, on each node. But it is important to nofig it aims to execute
fully strict applications. To make it possible to enforceaherent execution, one has
to provide a blocking mechanism to make the parent procesagsfor the execu-
tion of their children. This is made through a blockikBl _Recv into the overloaded
MPI _Comm.s pawn, that will wait until the scheduler sends a message (one bg)ch
triggered by the children'®Pl _Fi nal i ze. This approach guarantees a hierarchical
execution where new processes have higher priority.

4 Programming with MPI-2: the Fibonacci Example

This section presents an example of how to program an MPIglicapion that dy-
namically spawns new processes. The example compilbesacci numbers and is
programmed in a recursive way following this definition:
fib(n): { if n <2—fib(n)=n
77) else fibq) = fib(n — 1) + fib(n — 2)

Although the Fibonacci sequence may seem somewhat alfifisianain interest
is in the recursive computational scheme. It is frequenglgduto test Divide and Con-
quer parallel programs. The recursive calls will be implated, in MPI-2, with the
MPI _Comm.s pawn primitive. The most technical decision when programmirig th-
cursive application is about the synchronization at the stad the termination of the
processes. The MPI-2 primitive that spawns new proceskes t&s argument, besides

other information, the executable file nhame and the commialedplarameters. These
parameters may be used to pass data to the starting prodassitxchanging additi-
onal messages, but this may not be convenient for complextggaes. In this case, the
most portable way is to use normal message passing: thesqaaked using a classical
MPI data-type and sent as a message. On the Fibonacci exah®fast method has
been chosen, since only an integer has to be transmittedtfrearent to the children.

The communication in MPI may be synchronous or not. In theéemoplated case,
if synchronous send or receives were used, deadlock coald:dor example, a synch-
ronous send, in the parent, before spawning the childrealdsabviously prevent them
from being created and therefore from receiving the datanaatth the parent’s send.
In the case of the receives in the parent from the childree vaants them to be synch-
ronous, in order to implement a fully strict computatiore fharent has to be blocked
until all its children end up their computation and sendrtbeiput back.

From the children’s point of view, all they have to communmécia the result of their
computation. They have to send it back to their parent, asccttmmunication must be
asynchronous in our implementation of the scheduler: relpegrthat in order to block
the parent process until the return of its children, the loegledMPl _Conmmspawn
blocks the parent into a receive. If the child process usesahsonous send, it will
never complete, since it would wait for the matching recdieen the parent’s side,
who is busy waiting for a message from the scheduler.

Figure 3 presents the example code that shows how the syrization was im-
plemented, and this synchronization prevents any deadiek Conmspawn calls
the executabléi bo, that includes the code segment of the figure 3. Notice theat th
MPI _Commspawn is a collective operation which imposes a synchronizatimorg
all processes in a same communicator (since the latter reugidated with the descrip-
tors of the children processes). This feature does not infleighe scheduling decisions,
but may impact the overhead imposed by the scheduler. Yétgicase of Divide and
Conquer parallel programs, the children processes aresieely created from one uni-
que parent an its communicator. Thus, in the context of tligwthe synchronization
occurs between one parent and each one of its children withmyuglobal synchroni-
zation.

5 Experimental Evaluation of the Scheduler

This section presents and analyzes the executions of twopggrograms with three
different schedulers: the LAM scheduler, an schedulerctlirembedded in the appli-
cation and the proposed scheduler, discussed in Sec. 3e## have been made on
a cluster of up to 20 Pentium-4 nodes dual, each one with 1 GRAM. The main
purpose of these tests is to find out how the spawned procassebstributed on the
processors, with each one of the three schedulers. Our iddimat the use of the pro-
posed scheduler enables a good distribution of the spawnoedgses.

In the following, the section 5.1 presents a Fibonaccitaske designed with MPI-2
and some results and conclusions about this experimergrwdrds, Sec. 5.2 shows a
second benchmark that demonstrates the behavior of thddeh in a situation that
is more CPU-involved and which is highly irregular.

if (n<2) {
MPl _Isend (&1, 1, MPI_LONG O, 1, parent, &req);
}
el se{
sprintf (argv[0], "%d", (n - 1));
MPlI _Comm spawn ("Fi bo", argv, 1, local_info, nyrank,
MPI _COW SELF, &children_comi 0], errcodes);
sprintf (argv[0], "%d", (n - 2));
MPlI _Comm spawn ("Fi bo", argv, 1, local_info, nyrank,
MPI _COW SELF, &children_commi 1], errcodes);
MPI _Recv (&x, 1, MPI _LONG MPI_ANY_SOURCE, 1,
children_comi 0], MPI_STATUS | GNORE);
MPI _Recv (&, 1, MPI_LONG MPI _ANY_SOURCE, 1,
children_comi 1], MPI_STATUS | GNORE);
fibn = x +vy;
MPl _Isend (& ibn, 1, MPI_LONG 0, 1, parent, &eq);
}
MPI _Finalize ();

Fig. 3. Part of MPI-2 code from the Fibonacci example.

5.1 The Fibonacci Test-Case with MPI-2

This implementation of the Fibonacci program is not dedigioe speed measurements,
since it implies two recursive calls (following the exacfidition) and could be imple-
mented using only one recursion. Thus, the nuniér) of spawned processes to com-
pute fibp) is exponential (it is trivial to obtain thaV (p) =1+ N(p — 1) + N(p — 2),
with N(2) = N(1) = 1, and thusN (p) > fib(p) = [22],& = 15,

In all experiments have been used the LAM-MPI distributibmrun the Fibonacci
test-case, three different configurations have been used:

1. Simple calls td/PI _Conm Spawn were issued, using only LAM’s embedded sche-
duling mechanism. With the default provid&! _| nf o, LAM uses the Round-
Robin policy.

2. TheMPl _I nf 0_Set primitive has been issued before each spawn, not with the
| amspawn_sched_r ound_r obi n key, but directly with the hard-coded ID of
the node onto which should run the process. This is the iatenechanism direc-
tly written in the source code. The node ID is computed to en@nt a simple
Round-Robin allocation to the nodes. Notice that each potieat issued a spawn
computes the round-robin allocation from the node ID on Wilitiés executing.

3. A proposed scheduler has been used, with the schedulumistie as described
in Sec. 3.4 (Round-Robin), yet this time the schedulingsieniis external to the
source application.

First, Table 1 presents the schedules obtained when camgptlte 6th Fibonacci
number with the three configurations using 5 nodes.

Table 1. Comparing different schedules: number of processes spawneacbmode.

Environment Node 1Node 2Node 3Node 4Node 5
fib(6) with LAM standard scheduler 25 0 0 0 0
fib(6) with embedded scheduler 8 4 8 2 3
fib(6) with proposed scheduler 5 5 5 5 5

In the first case (LAM'’s native schedule) all processes wpeveed in the same
node. The second case just changed the starting node and tkftected by a non-
constant number of processes allocated to each node. Imshedse, our scheduler
provides an effective Round-Robin distribution of proessamong the nodes and a
perfect load balance.

The question that remains is about the first case: if the LAMedaler uses a Round
Robin algorithm, should it not spawn processes on all nod@les®eason why this does
not happen is that LAM does not keep scheduling informatietwken two spawns.
That means that LAM will always start spawning on the sameeraxatd only if mul-
tiple processes are spawned in the same call the proceséd® walanced. This si-
tuation gets clearer observing Table 2 with an experimeait ¢tbmpares the result of
spawning 20 processes in a single cad, in a loop of multiple, individual spawns
(MPI _Comm.Spawn).

Table 2. Spawning 20 processes in 5 nodes using single and multiple spawn calls AWth L
scheduler.

Environment Node 1Node 2ZNode 3Node 4Node 5
20 spawns of 1 process 20 0 0 0 0
1 spawn of 20 processes 4 4 4 4 4

In order to stress the scheduler with a higher number of spedywrocesses, the exe-
cution of the computation of f{13) has been used. It results in 753 processes. Table 3
shows the distribution of the processes among 5 nodes neltaiith our scheduler.

Table 3. Computing the 13th Fibonacci number with the new scheduler.

Node 1Node ZNode 3Node 4Node §Total Number of Processes
fib(13)| 151 151 151 150 150 753

Table 3 shows again the effect of our scheduler: besides dbd tpad balance
that has been reached, the proposed scheduler makes blpasscompute the 13th
Fibonacci number, which is not practicable with the staddaM mechanism: on our

experimental platform, LAM tries to run all the processesaosingle node, reaches
an internal upper bound on the number of processes degeripit it can handle, and
fails.

5.2 Computing Prime Numbers in an Interval

In this test-case, the number of prime numbers in a givemiatébetweenl andN) is
computed by recursive search. As in the Fibonacci programewaprocess is spawned
for each recursive subdivision of the interval. Due to thegular distribution of prime
numbers and irregular workload to test a single number, énallel program is natively
unbalanced.

Table 4 presents the distribution of the processes amondésnshen executing the
computation in an interval between 1 and 20 millions, usiddgM’s native scheduler
and the proposed one.

Table 4. Comparing LAM’s standard scheduler and the proposed one: nushpescesses spaw-
ned on each node.

Environment Node INode ZNode 3Node 4Node 5
LAM'’s standard scheduler 39 0 0 0 0
proposed scheduler 8 8 8 8 7

Table 4 shows, once more, the good load balance that has éaelmed with the
proposed scheduler. Measuring the execution time, thegeeturation of the parallel
program has beel81.15s using LAM’s standard scheduler and.12s with the propo-
sed scheduler. Clearly, the good load balance with ourisoltias a direct consequence
about the performance of the application.

In this kind of application where the tasks are irregulaglatsoon that gathers infor-
mation about the load on each node in order to decide whetmteach process should
be more efficient. Future work on the proposed scheduleridhackle this issue.

6 Conclusion and Future Work

The implementation of MPI-2 is a new reality in distribute@gramming, which per-
mits the use of MPI's based HPC codes with new infrastrustaueh as computational
grids. However, the diversity of programming models that ba supported by MPI-2
is difficult to match with efficient scheduling strategiefieTapproach presented in this
paper is to restrict MPI-2 programs to fully strict compigas, which enable the use
of Workstealing.

This article has shown how MPI-2 can be used to program witth sumodel,
and how it can be coupled with a central scheduler. Somenpuiredry tests have been
presented, that show that LAM MPI’s native scheduling fiordlities are clearly out-
performed by such a solution. Although a distributed solutivould be much more

scalable, this centralized prototype results in a simplg@émentation and already vali-
dates the interest in such a scheduler of dynamic spawnedsgses in MPI.

It is therefore interesting to continue the developmentuchsa scheduler, to imple-
ment a real workstealing algorithm: an easy way to do it isswide on which processor
to execute the processes, based on information about ésgiective loads. Future work
could also include altering the priority of the processegach node, through remote
system calls, to control the execution of the parallel, dyicgprogram.

Soecial thanks: this work has been partially supported by HP Brazil.

References

1. A. M. Bender, , and M. O. Rabin. Online scheduling of parallel paogg on heterogeneous
systems with applications to cilk. fheory of Computing Systems, Special Issue on SPAA
’00, volume 35, pages 289-304, 2002.

2. M. A. Bender and M. O. Rabin. Scheduling cilk multithreaded paralley@ams on pro-
cessors of different speeds. Twelfth annual ACM Symposium on Parallel Algorithms and
Architectures - SPAA, pages 13-21, Bar Harbor, Maine, USA, 2000.

3. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, KREndall, and Y. C. E.
Zhou. Cilk: an efficient multithreaded runtime systeACM S GPLAN Notices, 30(8):207—
216, Aug. 1995.

4. R.D. Blumofe and C. E. Leiserson. Space-efficient schedulimguliithreaded computati-
ons. SSAM Journal on Computing, 27(1):202—229, 1998.

5. T. H. Cormen, C. E. Leiserson, and R. L. R. ans Clifford Stétroduction to Algorithms.
The MIT Press, 2 edition, 2001.

6. D.Bailey etal. The NAS parallel benchmarks. Technical RepoRFIN-002, NAS Systems
Division, Jan. 1991.

7. J.Dongarra, P. Luszczek, and A. Petitet. The LINPACK bencknpaist, present and future.
Concurrency and Computation: Practice and Experience, 15(9):803-820, 2003.

8. E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarrkl. Bquyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Danidl, Braham, and T. S.
Woodall. Open MPI: Goals, concept, and design of a next generatidrinvifiementation.
In Proceedings, 11th European PVM/MPI Users Group Meeting, pages 97—104, Budapest,
Hungary, September 2004.

9. F. Galiee, J.-L. Roch, G. Cavalheiro, and M. Doreille. Athapascan-1: GnBinlding Data
Flow Graph in a Parallel Language. In IEEE, editoternational Conference on Parallel
Architectures and Compilation Techniques, PACT' 98, pages 88-95, Paris, France, October
1998.

10. R. Graham. Bounds on multiprocessing timing anoma$sM J. Appl. Math., 17(2):416—
426, 1969.

11. W. Gropp, E. Lusk, and A. SkjellunUsing MPI: Portable Parallel Programming with the
Message Passing Interface. MIT Press, Cambridge, Massachusetts, USA, Oct. 1994.

12. W. Gropp, E. Lusk, and R. Thakwsing MPI-2 Advanced Features of the Message-Passing
Interface. The MIT Press, Cambridge, Massachusetts, USA, 1999.

13. N. Maillard, R. Ennes, and T. CBvio. Automatic data-flow graph generation of mpi pro-
grams. INSBAC' 05, Rio de Janeiro, Brazil, November 2005.

14. S. Moore, F. Wolf, J. Dongarra, S. Shende, A. D. Malony, and&hr. A scalable approach
to mpi application performance analysis. Racent Advances in Parallel Virtual Machine
and Message Passing Interface, 12th European PVM/MPI Users' Group Mesting, volume
3666 ofLecture Notes in Computer Science, pages 309-316. Springer, 2005.

15.

16.

17.

V. S. Sunderam. PVM: A framework for parallel distributed cotiqgu Concurrency:
practice and experience, 2(4):315-339, Dec. 1990.

R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. Satin: Efficientaal Divide-and-
Conquer in Java. liEuro-Par 2000 Parallel Processing, number 1900 in Lecture Notes in
Computer Science, pages 690-699, Munich, Germany, Aug. 2QoiDgsr.

R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, anl.HBal. Satin: Simple
and efficient java-based grid programming. AG&ridM 2003 Workshop on Adaptive Grid
Middleware, New Orleans, Louisiana, USA, 2003.

