
Collisions on SHA-0 in One Hour

Stéphane Manuel1,� and Thomas Peyrin2,3,4,��

1 INRIA
stephane.manuel@inria.fr

2 Orange Labs
thomas.peyrin@orange-ftgroup.com

3 AIST
4 Université de Versailles Saint-Quentin-en-Yvelines

Abstract. At Crypto 2007, Joux and Peyrin showed that the boomerang
attack, a classical tool in block cipher cryptanalysis, can also be very useful
when analyzing hash functions. They applied their new theoretical results
to SHA-1 and provided new improvements for the cryptanalysis of this al-
gorithm. In this paper, we concentrate on the case of SHA-0. First, we show
that the previous perturbation vectors used in all known attacks are not
optimal and we provide a new 2-block one. The problem of the possible ex-
istence of message modifications for this vector is tackled by the utilization
of auxiliary differentials from the boomerang attack, relatively simple to
use. Finally, we are able to produce the best collision attack against SHA-0
so far, with a measured complexity of 233,6 hash function calls. Finding one
collision for SHA-0 takes us approximatively one hour of computation on
an average PC.

Keywords: hash functions, SHA-0, boomerang attack.

1 Introduction

Cryptographic hash functions are an important tool in cryptography. Basically, a
cryptographic hash function H takes an input of variable size and returns a hash
value of fixed length while satisfying the properties of preimage resistance, second
preimage resistance, and collision resistance [11]. For a secure hash function that
gives an n-bit output, compromising these properties should require 2n, 2n, and
2n/2 operations respectively.

Usually, hash functions are built upon two components: a compression func-
tion and a domain extension algorithm. The former has the same security require-
ments that a hash function but takes fixed length inputs. The latter defines how
to use the compression function in order to handle arbitrary length inputs. From
the early beginning of hash functions in cryptography, designers relied on the
pioneering work of Merkle and Damg̊ard [8,17] concerning the domain extension
� The first author is supported in part by the french Agence Nationale de la Recherche

under the project designation EDHASH, DPg/ANR-CI FA/VB 2007-010.
�� The second author is supported by the Japan Society for Promotion of Science and

the French RNRT SAPHIR project (http://www.crypto-hash.fr).

K. Nyberg (Ed.): FSE 2008, LNCS 5086, pp. 16–35, 2008.
c© International Association for Cryptologic Research 2008

Collisions on SHA-0 in One Hour 17

algorithm. Given a collision resistant compression function, it became easy to
build a collision resistant hash function. However, it has been recently shown that
this iterative process presents flaws [9,12,13,15] and some new algorithms [1,4]
with better security properties have been proposed. One can distinguish three
different methods for compression function designs: block cipher based, related
to a well studied hard problem and from scratch.

The most famous design principle for dedicated hash functions is indisputably
the MD-SHA family, firstly introduced by R. Rivest with MD4 [24] in 1990 and its
improved version MD5 [23] in 1991. Two years after, the NIST publishes [19] a
very similar hash function, SHA-0, that will be patched [20] in 1995 to give birth
to SHA-1. This family is still very active, as NIST recently proposed [21] a 256-bit
new version SHA-256 in order to anticipate the potential cryptanalysis results
and also to increase its security with regard to the fast growth of the computa-
tion power. All those hash functions use the Merkle-Damg̊ard extension domain
and their compression function, even if considered conceived from scratch, is
built upon a dedicated block cipher in Davies-Meyer mode: the output of the
compression function is the output of the block cipher with a feed-forward of
the chaining variable.

Dobbertin [10] provided the first cryptanalysis of a member of this family
with a collision attack against MD4. Later, Chabaud-Joux [7] published the first
theoretical collision attack against SHA-0 and Biham-Chen [2] introduced the
idea of neutral bits, which led to the computation of a real collision with four
blocks of message [3]. Then, a novel framework of collision attack, using modular
difference and message modification techniques, surprised the cryptography com-
munity [26,27,28,29]. Those devastating attacks broke a lot of hash functions,
such as MD4, MD5, SHA-0, SHA-1, RIPEMD or HAVAL-128. In the case of SHA-0
the overall complexity of the attack was 239 message modification processes. Re-
cently, Naito et al. [18] lower this complexity down to 236 operations, but we
argue in this paper that it is a theoretical complexity and not a measured one.

At Crypto 2007, Joux and Peyrin [14] published a generalization of neutral bits
and message modification techniques and applied their results to SHA-1. The so-
called boomerang attack was first devoted for block ciphers cryptanalysis [25] but
their work showed that it can also be used in the hash functions setting. Used
in parallel with the automated tool from De Cannière and Rechberger [5] that
generates non-linear part of a differential path, this method turns out to be quite
easy to use and handy for compression functions cryptanalysis.

This article presents a new attack against the collision resistance of SHA-0
requiring only 233 hash computations and the theoretical analysis is confirmed
by experimentation. First, we show that the previously used perturbation vector,
originally found by Wang et al., is not optimal. We therefore introduce a new
vector, allowing ourselves to use two iterations of the compression function. In
order to compensate the loss of the known message modifications due to the
perturbation vector change, we use the boomerang attack framework in order
to accelerate the collision search. Finally, this work leads to the best collision

18 S. Manuel and T. Peyrin

attack against SHA-0 from now on, now requiring only one hour of computation
on an average PC.

We organized the paper as follows. In Section 2, we recall the previous attacks
and cryptanalysis techniques for SHA-0. Then, in Section 3, we analyze the per-
turbation vector problem and give new ones that greatly improve the complexity
of previous attacks. We then apply the boomerang technique as a speedup tech-
nique in Section 4 and provide the final attack along with its complexity analysis
in Section 5. Finally, we draw conclusions in Section 6.

2 Previous Collision Attacks on SHA-0

2.1 A Short Description of SHA-0

SHA-0 [19], is a 160-bit dedicated hash function based on the design principle
of MD4. It applies the Merkle-Damg̊ard paradigm to a dedicated compression
function. The input message is padded and split into k 512-bit message blocks.
At each iteration of the compression function h, a 160-bit chaining variable Ht

is updated using one message block Mt+1, i.e Ht+1 = h(Ht, Mt+1). The initial
value H0 (also called IV) is predefined and Hk is the output of the hash function.

The SHA-0 compression function is build upon the Davis-Meyer construction.
It uses a function E as a block cipher with Ht for the message input and Mt+1
for the key input, a feed-forward is then needed in order to break the invertibility
of the process:

Ht+1 = E(Ht, Mt+1) � Ht,

where � denotes the addition modulo 232 32-bit words by 32-bit words. This
function is composed of 80 steps (4 rounds of 20 steps), each processing a 32-
bit message word Wi to update 5 32-bit internal registers (A, B, C, D, E). The
feed-forward consists in adding modulo 232 the initial state with the final state
of each register. Since more message bits than available are utilized, a message
expansion is therefore defined.

Message Expansion. First, the message block Mt is split into 16 32-bit words
W0, . . . , W15. These 16 words are then expanded linearly, as follows:

Wi = Wi−16 ⊕ Wi−14 ⊕ Wi−8 ⊕ Wi−3 for 16 ≤ i ≤ 79.

State Update. First, the chaining variable Ht is divided into 5 32-bit words
to fill the 5 registers (A0, B0, C0, D0, E0). Then the following transformation is
applied 80 times:

STEPi+1 :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ai+1 = (Ai � 5) + fi(Bi, Ci, Di) + Ei + Ki + Wi,

Bi+1 = Ai,

Ci+1 = Bi � 2,

Di+1 = Ci,

Ei+1 = Di.

where Ki are predetermined constants and fi are boolean functions defined in
Table 1.

Collisions on SHA-0 in One Hour 19

Feed-Forward. The sums modulo 232: (A0 + A80), (B0 + B80), (C0 + C80),
(D0 + D80), (E0 + E80) are concatenated to form the chaining variable Ht+1.

Note that all updated registers but Ai+1 are just rotated copies, so we only
need to consider the register A at each step. Thus, we have:

Ai+1 = (Ai � 5) + fi(Ai−1, Ai−2 � 2, Ai−3 � 2) + Ai−4 � 2 + Ki + Wi. (1)

2.2 First Attacks on SHA-0

The first published attack on SHA-0 has been proposed by Chabaud and Joux in
1998 [7]. It focused on finding linear differential paths composed of interleaved
6-step local collisions, which have probability 1 to hold in a linearized version
of SHA-0. However, in the standard version of SHA-0, a local collision only has
a certain probability to hold. The overall probability of success of the attack is
the product of the holding probability of each local collision.

The core of the differential path is represented by a perturbation vector which
indicates where the 6-step local collisions are initiated. The probability of success
of the attack is then related to the number of local collisions appearing in the
perturbation vector. In their paper, Chabaud and Joux have defined 3 necessary
conditions on perturbation vectors in order to permit the differential path to end
with a collision for the 80-step compression function. Such a perturbation vector
should not have truncated local collisions, should not have two consecutive local
collisions initiated in the first 16th steps and should not start a local collision
after step 74. Under these constraints they were able to find a perturbation vector
(so-called L-characteristic) with a probability of success of 268. The running
complexity of their attack is decreased to 261 by a careful implementation of the
collision search. As the attacker has full control on the first 16 message blocks,
those blocks are chosen such that the local collisions of those early steps hold
with probability 1. See [7] for more details.

In 2004, Biham and Chen have improved the attack of Chabaud and Joux
by introducing the neutral bit technique. The idea is to multiply the number
of conformant message pairs up to a certain step s (message pairs that verify
the main differential path up to step s) for a cost almost null. This is done by
looking for different sets of small modifications in the message words such that
each set will have very low impact on the conformance of the message pair up
to step s. Basically, the attacker can effectively start the collision search at a
higher step than in a normal setting, and this improvement finally led to the

Table 1. Boolean functions and constants in SHA-0

round step i fi(B, C, D) Ki

1 1 ≤ i ≤ 20 fIF = (B ∧ C) ⊕ (B ∧ D) 0x5a827999

2 21 ≤ i ≤ 40 fXOR = B ⊕ C ⊕ D 0x6ed6eba1

3 41 ≤ i ≤ 60 fMAJ = (B ∧ C) ⊕ (B ∧ D) ⊕ (C ∧ D) 0x8fabbcdc

4 61 ≤ i ≤ 80 fXOR = B ⊕ C ⊕ D 0xca62c1d6

20 S. Manuel and T. Peyrin

computation of the first real collision for SHA-0 with four blocks of message [3]
with an overall complexity of 251 functions calls.

2.3 The Wang Approach

The attack on SHA-0 of Wang et al. is derived from the approach of Chabaud and
Joux. The principle of this attack consists in relaxing two of the three conditions
on the perturbation vectors defined by Chabaud and Joux, namely no truncated
local collision allowed and no consecutive local collisions in the 16th first steps.
Relaxing those conditions permits to search for better perturbation vectors, i.e.
higher probability linear differential paths.

However, the main drawback of this approach is that non corrected perturba-
tions inherited from truncated local collisions appear in the first steps. In order
to offset these unwanted perturbations, they had to construct a non linear dif-
ferential path (so-called NL-characteristic) which connects to the desired linear
differential path. Said in other words, they kept the same linear differential mask
on the message, but computed a new and much more complex differential mask
on the registers for the early steps of SHA-0. A NL-characteristic presents also
the advantage that consecutive local collisions in the early steps are no more a
problem. Using modular subtraction as the differential, the carry effect (a prop-
erty of the powers of 2, i.e. 2j = −2j −2j+1 . . .−2j+k−1 +2j+k) and by carefully
controlling the non linearity of the round function IF, they succeeded to build
their NL-characteristic by hand. A NL-characteristic holds only if specific con-
ditions are verified step by step by the register values. In their paper, Wang et
al. denoted these conditions as sufficient conditions. These sufficient conditions
are described with respect to the register A into one general form Ai,j = v
where Ai,j denotes the value of bit j of the register A at the step i and where
v is a bit value fixed to be 0 or 1 or a value that has been computed before
step i.

The NL-characteristic found presents conditions on the initial value of the
registers1. However, since the initial value is fixed, Wang et al. have build their
collision with two blocks of message. The first block is needed in order to obtain a
chaining variable verifying the conditions, inherited from the NL-characteristic,
on the initial values of the register. This is detailed in Figure 1.

The attack of Wang et al. is thus divided into two phases. The first one is the
pre-computation phase:

1. search for a higher probability L-characteristic by relaxing conditions on the
perturbation vectors,

2. build a NL-characteristic which connects to the L-characteristic by offsetting
unwanted perturbations,

3. find a first block of message from which the incoming chaining variable ver-
ifies the conditions inherited from the NL-characteristic.

1 The conditions given by Wang et al. in their article are incomplete. In fact, two more
conditions need to be verified [16,18].

Collisions on SHA-0 in One Hour 21

�

�

� � NL L � �

�

�
�����

������

�
�����

������

+ +
ΔH0 = 0

ΔH1 = 0

Conditions
on H1

�
ΔH2 = 0

ΔM1 = 0 ΔM2 = Δ
Conditions

on M2
�

Fig. 1. Attack of Wang et al

The second phase is the collision search phase. It consists in searching for a sec-
ond block of message for which the sufficient conditions on the register values
are fulfilled for a maximum number of steps. In order to achieve that goal, they
use both basic modification technique and advanced modification technique. The
main idea of the former is simply to set Ai,j to the correct bit by modifying the
corresponding bit of the message word Wi−1. This is only possible for the first
16 steps, where the attacker has full control on the values Wi. The advanced
modification technique are to be applied to steps 17 and higher, where the mes-
sage words Wi are generated by the message expansion. The idea is to modify
the message words of previous steps in order to fulfill a condition in a given step.
Wang et al. claimed in their article that using both basic modification and ad-
vanced modification techniques, they are able to fulfill all the sufficient conditions
up to step 20. However very few details can be found on advanced modification
technique in their article. Finally, their attack has a claimed complexity of 239

SHA-0 operations.

Remark. Wang et al. optimized the choice of their perturbation vector taking
into account their ability to fulfill the conditions up to step 20.

2.4 Naito et al.

Naito et al. recently proposed [18] a new advanced modification technique so-
called submarine modification. Its purpose is to ensure that the sufficient condi-
tions from steps 21 to 24 are fulfilled. The main idea of submarine modifications
is to find modification characteristics which will permit to manipulate bit val-
ues of registers and message words after step 16. Each parallel characteristic is
specifically built to satisfy one target condition. In order to construct such a
characteristic, Naito et al. use two different approaches the cancel method and
the transmission method. The former is based on the local collision principle.
Whereas the transmission method combines the recurrence properties of the
message expansion and of the step update transformation.

Those modification characteristics define new sets of conditions on register val-
ues and message words. The new conditions should not interfere with the already

22 S. Manuel and T. Peyrin

pre-computed sufficient conditions. Naito et al. detailed their submarine modifica-
tions up to step 17 (see [18] proof of Theorem 1). They remarked that the probabil-
ity that one of these modifications can satisfy a target condition without affecting
the other sufficient conditions is almost 1. No detail is given about the impact of
the submarine modifications after step 24.

The claimed complexity of the attack described in [18] is 236 SHA-0 operations.
This is a theoretical complexity that will be further discussed in section 5. The
given collision example is based on the same NL-characteristic and perturbation
vector that Wang et al. used to produce their own collision. Taking into account
that their submarine modifications permit to fulfill the sufficient conditions up to
step 24, Naito et al. proposed a new perturbation vector which would therefore
minimizes the complexity of the attack. However, in order to effectively build an
attack based on the proposed vector, a new NL-characteristic and new submarine
modifications should be found.

3 A New Perturbation Vector

In order to lower the complexity of a collision search on SHA-0, high probabil-
ity L-characteristics are needed. In the previous attacks on SHA-0, the authors
have proposed perturbation vectors which do not have local collisions starting
after step 74. By relaxing this last condition, it may be possible to find better
perturbation vectors. Note that those vectors do not seem to be eligible for a
collision search, since they would lead to a near-collision (two compression func-
tion outputs with very few bits of difference) instead of a collision. However,
this problem can be tackled by using the multi-block technique as in [3]: the
attacker can take advantage of the feed-forward operation inherited from the
Davis-Meyer construction used in the compression function of SHA-0. Said in
other words, we allow ourselves to use several message blocks with differences,
whereas the previous known attacks on SHA-0 only use one of such blocks of mes-
sage. Thanks to the new automatic tool from De Cannière and Rechberger [5]
that can generate NL-characteristics on SHA-1, computing non linear parts for
SHA-0 is relatively easy. Indeed, SHA-1 and SHA-0 only differ on a rotation in the
message expansion, which has no effect on the validity of this tool. Moreover, the
ability to generate NL-characteristics reduce the multi-block problem to the use
of only two blocks. More precisely, we start with a L-characteristic L1 (defined
by a new perturbation vector), and modified on the early steps by a generated
NL-characteristic NL1. We thus obtain a specific near-collision ΔH1 = +d after
this first block. We then apply the same L-characteristic modified on the early
steps by a second generated NL-characteristic NL2, that takes in account the
new incoming chaining variable H1. Finally, before the feed-forward on this sec-
ond block, we look for the opposite difference ΔE(H1, m1) = −d and the two
differences cancel each over ΔH2 = 0. This is detailed in Figure 2.

Now that all the conditions on the perturbation vectors are relaxed, we need
to define what are the criteria for good perturbation vectors. In order to fulfill
the sufficient conditions inherited from NL1, NL2 and L1, we will use basic

Collisions on SHA-0 in One Hour 23

�

�
NL1 L1 � � NL2 L1 � �

�

�
�����

������

�
�����

������

+ +

ΔH0
= 0

ΔH1

= +d

ΔE
(H1, M2)

= −d

ΔH1 = +d

ΔH2
= 0

ΔM1 ΔM2

Fig. 2. Multi-block collision on SHA-0

Table 2. A new perturbation vector for SHA-0, along with the number of conditions
at each steps (the conditions before step 16 have been removed since not involved in
the complexity during the collision search)

Steps 1 to 40

vector 1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
� conditions - - - - - - - - - - - - - - - - 2 0 2 1 1 0 2 0 2 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1

Steps 41 to 80

vector 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
� conditions 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 2 1 2 2 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0

message modifications and boomerang techniques. In consequence, we focused
our search on perturbation vectors that have the smallest number of sufficient
conditions to fulfill in steps 17 to 80. Namely, a characteristic L1 for which the
probability of success of the attack is maximized. We used the same approach
of Chabaud and Joux in order to evaluate the probability of holding of each
local collision involved. See [7] and particularly Section 2.2 (Tables 4 and 5) for
detailed examples. There are a lot of perturbation vectors with an evaluated
probability of success around 2−40 for the steps between 17 and 80. However,
this probability can be affected by the NL-characteristic. Thus, we build the
NL-characteristics corresponding to each matching perturbation vector in order
to compute the exact probability of success. This aspect of the search will be
further detailed in the next section. The perturbation vector we chose, which
has 42 conditions between step 17 and 80, is given in Table 2.

4 Boomerang Attacks for SHA-0

Now that we found good perturbation vectors by relaxing certain conditions, a
problem remains. Indeed, no message modification and no NL-characteristic are
known for those vectors, and this makes the attack complexity drastically in-
crease. This is the major drawback of Wang et al. collision attack on SHA-0 and

24 S. Manuel and T. Peyrin

other hash functions: is not easily reusable and we are stuck with their perturba-
tion vector. Hopefully, some work have been done recently in order to theorize
Wang et al. major improvements. Recently, De Cannière and Rechberger [5]
introduced an automated tool that generates non linear part of a differential
path, thus resolving the NL-characteristic problem. Then, Joux and Peyrin [14]
provided a framework that generalizes message modifications and neutral bits.
Thanks to the so-called boomerang attack, they describe techniques that allows
an attacker to easily use neutral bits or message modifications, given only a
main perturbation vector. In fact, boomerang attacks and NL-characteristic au-
tomated search are exactly the two tools we need for our attack to be feasible.
Finally, we replace the loss of the message modifications because of the new
vector by the gain of the boomerang attack, which is a much more practical
technique and fit for our constraints.

Boomerang attacks for hash functions can be seen as a generalization of col-
lision search speed up techniques such as neutral bits or message modification.
However, new possibilities were also suggested. In the usual setting, the attacker
first sets the differential path and then tries to find neutral bits or message modi-
fications if possible. In the explicit conditions approach from boomerang attacks,
the attacker first set some constraints on the registers and the message words
and then tries to find a differential path taking in account those constraints.
One can see that for the latter part the NL-characteristic automated search tool
becomes really handy. The constraints are set in order to provide very good
message modifications or neutral bits that would not exist with a random dif-
ferential path, or with very low probability. More generally, this can be seen as
an auxiliary characteristic, different from the main one, but only fit for a few
steps and this auxiliary characteristic can later be used as a neutral bit or a
message modification, with very high probability (generally probability equal to
1) thanks to the preset constraints. Obviously the complexity of the collision
search will decrease by adding as much auxiliary characteristics as possible.

Building an auxiliary path requires the same technique as for a main path, that
is the local collisions. We refer to [14] for more details on this construction for
SHA-1, since the technique is identically applicable to SHA-0. In our attack, we will
consider two different types of auxiliary paths and we will use them as neutral bits
(and not message modifications). Informally, we define the range of an auxiliary
path to be the latest step where the uncontrolled differences from the auxiliary
path (after the early steps) do not interfere in the main differential path. The first
one, AP1, will have very few constraints but the range will be low. On contrary,
the second type, AP2, will require a lot of constraints but the range will be much
bigger. A trade-off among the two types needs to be considered in order not to
have to many constraints forced (which would latter makes the NL-characteristic
automated search tool fail) but also have a good set of auxiliary differential paths.
More precisely, AP1 and AP2 are detailed in Figures 3 and 4 respectively. AP1 is
build upon only one local collision but the first uncontrolled difference appears at
step 20. AP2 is build upon three local collisions but the first uncontrolled differ-
ence appears at step 25. Note that, as remarked in the original paper from Joux

Collisions on SHA-0 in One Hour 25

W0 to W15 W16 to W31

perturbation mask 0000001000000000

differences on W j 0000001000000000 0000101101100111

differences on W j+5 0000000100000000 0000010110110011

differences on W j−2 0000000000010000 0001001000000010

i Ai Wi

-1: --------------------------------
00: -------------------------------- --------------------------------
01: -------------------------------- --------------------------------
02: -------------------------------- --------------------------------
03: -------------------------------- --------------------------------
04: -------------------------------- --------------------------------
05: ---------------------------b---- --------------------------------
06: ---------------------------b---- -----------------------------a--
07: -----------------------------a-- ------------------------a-------
08: -------------------------------0 --------------------------------
09: -------------------------------1 --------------------------------
10: -------------------------------- --------------------------------
11: -------------------------------- -------------------------------a
12: -------------------------------- --------------------------------
13: -------------------------------- --------------------------------
14: -------------------------------- --------------------------------
15: -------------------------------- --------------------------------

Fig. 3. Auxiliary differential path AP1 used during the attack. The first table shows
the 32 first steps of the perturbation vector (with the first uncontrolled difference
on registers at step 20) and the second gives the constraints forced in order to have
probability one local collisions in the early steps in the case where the auxiliary path is
positioned at bit j = 2. The MSB’s are on the right and “-” stands for no constraint.
The letters represent a bit value and its complement is denoted by an upper bar on
the corresponding letter (see [14] for the notations).

and Peyrin, an auxiliary differential path used as a neutral bit with the first un-
controlled difference at step s is a valid neutral bit for step s + 3 with a very high
probability (the uncontrolled difference must first propagate before disrupting the
main differential path). Thus, in our attack, we will use AP1 and AP2 as neutral
bits for steps 23 and 28 respectively; that is as soon as we will find a conformant
message pair up to those step during the collision search, we will trigger the corre-
sponding auxiliary path in order to duplicate the conformant message pair. This
will directly provide new conformant message pairs for free.

The next step is now to build a main differential path with the tool from
De Cannière and Rechberger, containing as much auxiliary paths as possible (of
course while favoring AP2 instead of AP1, the latter being less powerful). We refer
to [5] for the details of this algorithm. The tool works well for SHA-0 as for SHA-1
and given a random chaining variable, it is easy to find a main differential path
containing at least five auxiliary paths, with at least three AP2 characteristics.

26 S. Manuel and T. Peyrin

W0 to W15 W16 to W31

perturbation mask 1010000000100000

differences on W j 1010000000100000 0000000010110110

differences on W j+5 0101000000010000 0000000001011011

differences on W j−2 0001111100000011 0000000000001110

i Ai Wi

-1: ---------------------------d----
00: ---------------------------d---- -----------------------------a--
01: ---------------------------e-a-- ------------------------a-------
02: ---------------------------e---1 -----------------------------b--
03: -----------------------------b-0 ------------------------b------a
04: -------------------------------0 -------------------------------a
05: -------------------------------0 -------------------------------a
06: -------------------------------- -------------------------------b
07: -------------------------------- -------------------------------b
08: -------------------------------- --------------------------------
09: ---------------------------f---- --------------------------------
10: ---------------------------f---- -----------------------------c--
11: -----------------------------c-- ------------------------c-------
12: -------------------------------0 --------------------------------
13: -------------------------------0 --------------------------------
14: -------------------------------- -------------------------------c
15: -------------------------------- -------------------------------c

Fig. 4. Auxiliary differential path AP2 used during the attack. The first table shows
the 32 first steps of the perturbation vector (with the first uncontrolled difference
on registers at step 25) and the second gives the constraints forced in order to have
probability one local collisions in the early steps in the case where the auxiliary path is
positioned at bit j = 2. The MSB’s are on the right and “-” stands for no constraint.
The letters represent a bit value and its complement is denoted by an upper bar on
the corresponding letter (see [14] for the notations).

Note that this part, as the automated tool, is purely heuristic and often more
auxiliary paths can be forced2. However, the behavior of the automated tool is
quite dependant of the perturbation vector. Thus, among the possible good ones,
we chose a perturbation vector (depicted in Table 2) that seemed to work well
with the automated search tool. Note that since the perturbation vector remains
the same during the two parts of the attack, this property will be true for the
two blocks of message.

2 The auxiliary path AP2 has one condition on the IV (the bit d in Figure 4) and this
harden the task of the attacker to place a lot of them in the main differential trail.
However, this is already taken in account in the evaluation. There remains space for
improvements on this part but we chose to describe an easy-to-implement attack
instead of the best possible but hard to implement one.

Collisions on SHA-0 in One Hour 27

5 The Final Collision Attack

At this point, we have all the required elements to mount the attack and analyze
it. Its total complexity will be the addition of the complexities of the collision
search for both blocks3. Note that, unlike for the 2-block collision attacks for
SHA-1 where the first block complexity is negligible compared to the second
block one, here our perturbation vector imposes the same raw complexity for
both blocks.

5.1 A Method of Comparison

As observed in [6,14], there are many different collision search speeding tech-
niques for the SHA family of hash functions. However, their real cost is often
blurry and it becomes hard to compare them. Thus, it has been advised to mea-
sure the efficiency of those tools with an efficient implementation of the various
hash functions attacked, for example by using OpenSSL [22]. For any computer
utilized, one can give the complexity of the attack in terms of number of function
calls of the hash function with an efficient implementation, which is relatively
independent of the computer used.

In their paper [18], Naito et al. claimed a complexity of 236 SHA-0 calls for
their collision attack. However, their implementation required approximatively
100 hours on average in order to find one collision on a PentiumIV 3, 4 GHz. 100
hours of SHA-0 computations on this processor would correspond to 240,3 SHA-0
calls approximatively with OpenSSL, which is far from the claimed complexity.

Thus, in this paper, we chose to handle the complexities in terms of number of
SHA-0 calls with OpenSSL in order to allow an easy comparison. The time measure-
ments have been done on a single PC with an AMD Opteron 2, 2 GHz processor.

5.2 Without Collision Search Speedup

Without even using boomerang attacks, our new differential paths already pro-
vides an improvement on the best known collision attack against SHA-0. Indeed,
in our perturbation vector, 42 conditions remain after step 17. However, by re-
fining the differential path utilized (i.e. by forcing some conditions just before
step 17, without any impact on the complexity since located in the early steps),
one can easily take care of the two conditions from step 17 before beginning the
collision search. Therefore, we are finally left with 40 conditions per message
block. Since for each basic message pair tested during the collision search only
one quarter of a whole SHA-0 is computed in average, we expect a complexity
of 240/22 = 238 SHA-0 evaluations for one block and thus a total complexity of
239 SHA-0 evaluations for one complete collision. This theoretical complexity is
fully confirmed by practical implementation (237,9 and 237,8 SHA-0 evaluations

3 One can argue that the cost of the NL-characteristics automated search tool has also
to be counted. However, unlike in the SHA-1 case, for SHA-0 the number of possible
collisions that can be generated with only one full differential path construction is
really big. Thus, this cost becomes largely negligible compared to the collision search.

28 S. Manuel and T. Peyrin

Table 3. Message instance for a 2-block collision: H(M1, M2) = H(M ′
1, M

′
2) =

A2||B2||C2||D2||E2, computed according to the differential path given in Tables 5,
6, 7 and 8 from appendix

1st block 2nd block
M1 M ′

1 M2 M ′
2

W0 0x4643450b 0x46434549 0x9a74cf70 0x9a74cf32

W1 0x41d35081 0x41d350c1 0x04f9957d 0x04f9953d

W2 0xfe16dd9b 0xfe16dddb 0xee26223d 0xee26227d

W3 0x3ba36244 0x3ba36204 0x9a06e4b5 0x9a06e4f5

W4 0xe6424055 0x66424017 0xb8408af6 0x38408ab4

W5 0x16ca44a0 0x96ca44a0 0xb8608612 0x38608612

W6 0x20f62444 0xa0f62404 0x8b7e0fea 0x0b7e0faa

W7 0x10f7465a 0x10f7465a 0xe17e363c 0xe17e363c

W8 0x5a711887 0x5a7118c5 0xa2f1b8e5 0xa2f1b8a7

W9 0x51479678 0xd147963a 0xca079936 0x4a079974

W10 0x726a0718 0x726a0718 0x02f2a7cb 0x02f2a7cb

W11 0x703f5bfb 0x703f5bb9 0xf724e838 0xf724e87a

W12 0xb7d61841 0xb7d61801 0x37ffc03a 0x37ffc07a

W13 0xa5280003 0xa5280041 0x53aa8c43 0x53aa8c01

W14 0x6b08d26e 0x6b08d26c 0x90811819 0x9081181b

W15 0x2e4df0d8 0xae4df0d8 0x312d423e 0xb12d423e

A2 B2 C2 D2 E2

0x6f84b892 0x1f9f2aae 0x0dbab75c 0x0afe56f5 0xa7974c90

on average for the first and second blocks respectively). Our computer needs 39
hours on average in order to find a collision, which is much faster than Naito et
al.’s attack and this with a less powerful processor.

5.3 Using the Boomerang Improvement

As one can use many collision search speedup techniques, a good choice can
be the boomerang attack for its simplicity of use. We give in the appendix a
possible differential path for the first block (Tables 5 and 6) and the second block
(Tables 7 and 8). The notations used are also given in the appendix in Table 4.
The chaining variable of the second block is the output of the first valid message
pair found (i.e. conformant to the whole differential path) for the first block. As
for the previous subsection, we are left with 40 conditions for each blocks since
the two conditions from step 17 can be easily cancelled before the collision search.
The differential path for the second block possesses 5 auxiliary paths. However,
as explained before, it is possible to build NL-characteristics containing more
auxiliary paths but we only take in account the average case and not the best case

Collisions on SHA-0 in One Hour 29

of behavior of the automated NL-characteristics search tool. For example, one
can check that there are 3 AP2 auxiliary paths in bit positions j = {17, 22, 30}
and 2 AP1 auxiliary paths in bit positions j = {9, 11} for the second block.
The first block case is particular since the chaining variable is the predefined
IV which is highly structured. This particular structure greatly improves our
capability to place auxiliary paths since the condition on the chaining variable
for AP2 is verified on much more bit positions than what someone would expect
in the random case. Thus, for the first block one can place 2 more AP2 on average
and one can check in Table 5 that there are 5 AP2 auxiliary paths in bit positions
j = {10, 14, 19, 22, 27} and 2 AP1 auxiliary paths in bit positions j = {9, 11}.

In theory, with k auxiliary paths, one would expect an improvement of a
factor 2k. However, this slightly depends on the type and the number of auxiliary
paths used. Obviously, compared to the AP1 auxiliary path, using the AP2 type is
better during the collision search. Thus, we expect an improvement of the attack
of a factor approximatively 27 = 128 for the first block and 25 = 32 for the second
one. We get something close in practice with a measured complexity of 232,2 and
233 function calls for the first and second block respectively. This leads to a
final complexity for a collision on the whole SHA-0 of 233,6 function calls, which
compares favourably in theory and practice to the best known collision attack
on this hash function: our computer can generate a 2-block collision for SHA-0
in approximatively one hour on average (instead of 100 hours of computation on
a faster processor for the best known attack). For proof of concept, we provide
in Table 3 a 2-block message pairs that collides with SHA-0.

6 Conclusion

In this paper, we introduced a new attack against SHA-0. By relaxing the pre-
viously established constraints on the perturbation vector, we managed to find
better candidates. Then, as a collision search speedup technique, we applied on
those candidates the boomerang attack which provides a good improvement with
a real practicality of use. This work leads to the best collision attack on SHA-0
so far, requiring only one hour of computation on an average PC. Yet, there
stills space for further improvements as some parts of the attack are heuristic.
Moreover, this work shows the efficiency of the dual use of the boomerang attack
for hash functions combined with a differential path automated search tool.

References

1. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

2. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M.K. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

3. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions
of SHA-0 and Reduced SHA-1. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

30 S. Manuel and T. Peyrin

4. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions: HAIFA.
In: Proceedings of Second NIST Cryptographic Hash Workshop (2006),
www.csrc.nist.gov/pki/HashWorkshop/2006/program 2006.htm

5. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

6. De Cannire, C., Mendel, F., Rechberger, C.: Collisions for 70-step SHA-1: On the
Full Cost of Collision Search. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007.
LNCS, vol. 4876. Springer, Heidelberg (2007)

7. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

8. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

9. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton Uni-
versity (1999)

10. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 53–69. Springer, Heidelberg (1996)

11. Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryp-
tography. CRC Press, Inc., Boca Raton (1996)

12. Hoch, J.J., Shamir, A.: Breaking the ICE - Finding Multicollisions in Iterated
Concatenated and Expanded (ICE) Hash Functions. In: Robshaw, M.J.B. (ed.)
FSE 2006. LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006)

13. Joux, A.: Multi-collisions in Iterated Hash Functions. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)

14. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidel-
berg (2007)

15. Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less
Than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

16. Manuel, S.: Cryptanalyses Différentielles de SHA-0. Mémoire pour l’obtention du
Mastère Recherche Mathematiques Applications au Codage et à la Cryptographie.
Université Paris 8 (2006), http://www-rocq.inria.fr/codes/Stephane.Manuel

17. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

18. Naito, Y., Sasaki, Y., Shimoyama, T., Yajima, J., Kunihiro, N., Ohta, K. (eds.):
ASIACRYPT 2006. LNCS, vol. 4284, pp. 21–36. Springer, Heidelberg (2006)

19. National Institute of Standards and Technology. FIPS 180: Secure Hash Standard
(May 1993), http://csrc.nist.gov

20. National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard
(April 1995), http://csrc.nist.gov

21. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard
(August 2002), http://csrc.nist.gov

22. OpenSSL. The Open Source toolkit for SSL/TLS (2007),
http://www.openssl.org/source

23. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992),
http://www.ietf.org/rfc/rfc1321.txt

24. Rivest, R.L.: RFC 1320: The MD4 Message Digest Algorithm (April 1992),
http://www.ietf.org/rfc/rfc1320.txt

25. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

www.csrc.nist.gov/pki/HashWorkshop/2006/program_2006.htm
http://www-rocq.inria.fr/codes/Stephane.Manuel
http://csrc.nist.gov
http://csrc.nist.gov
http://csrc.nist.gov
http://www.openssl.org/source
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1320.txt

Collisions on SHA-0 in One Hour 31

26. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

27. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

28. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

29. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

Appendix

Table 4. Notations used in [5] for a differential path: x represents a bit of the first
message and x∗ stands for the same bit of the second message

(x, x∗) (0, 0) (1, 0) (0, 1) (1, 1)

? � � � �
- � - - �
x - � � -

0 � - - -

u - � - -

n - - � -

1 - - - �
- - - -

(x, x∗) (0, 0) (1, 0) (0, 1) (1, 1)

3 � � - -

5 � - � -

7 � � � -

A - � - �
B � � - �
C - - � �
D � - � �
E - � � �

32 S. Manuel and T. Peyrin

Table 5. Steps 1 to 39 of the main differential path of the first block

i Ai Wi

-4: 00001111010010111000011111000011
-3: 01000000110010010101000111011000
-2: 01100010111010110111001111111010
-1: 11101111110011011010101110001001
00: 01100111010001010010001100000001 0100111001001011000001010n0010u1
01: 1110110111111111100111011n1111u0 0100000011011011010100001n000000
02: 01100111011111111101n10101101010 1111011000011110100111011n011011
03: 001101010010100n00001100n0uuuuu0 0011100010101001011100100u000101
04: 111100000nu000001010110001110000 u110010001000000010100000u0101n1
05: 00111n00000010011000100000u0n1u1 n0010100110010000101010010100000
06: 10110101110110110000101u100u1001 n010001011110100001111000u000100
07: 100unnnnnnnnn0100nu0100101u11001 00010010111101000101011001011010
08: 1000011100001n000n100u0n010nn001 0101101001110001000110001n0001u1
09: 0010000000000010un00nu1u1un01100 n101000101000111100101100u1110n0
10: 11100110100101000nu01u10un00n100 01111010011000100100011100011000
11: 011110001110001101nuu10101000101 0111000100110111010110011u1110u0
12: 01001101011010000010u0000n110000 10110111110101-----1-----u000001
13: 010110011100000----010-0-01001u0 101001010----------------n0000u1
14: 10111100--------------1--110u011 01101-0----0--1----0---0-1-011u0
15: 10100------------------0-1-u0100 n0101-0----0--1----0---0-1-11000
16: --01-----------------------n0011 010001110----------------00101n0
17: -----------------------------1n- n1000-0----1--1----1---0-u-10011
18: 1----------------------------0-- 01000-0----1--1----0---0-0-011u0
19: -------------------------------- n00110100----------------0001011
20: -------------------------------- n0110-0----1-------0-----0-000u1
21: ------------------------------n- u1100-1------------------u-10111
22: -------------------------------- 00001-1------------------0-00110
23: ------------------------------n- n1011-1----0-------0-----u-11001
24: -------------------------------- u0000-0------------------1-11100
25: ------------------------------n- 01101-1------------------u-10111
26: -------------------------------- u1010-1----0-------1-----0-011u0
27: -------------------------------- 01001-1------------------0-01110
28: -------------------------------- u0000-0------------------1-11011
29: -------------------------------- u0111-0------------------0-00010
30: -------------------------------- 01101-1------------------1-10010
31: -------------------------------- 10110-1------------------0-01001
32: -------------------------------- 00111-1------------------1-00100
33: -------------------------------- 01011-1------------------1-11101
34: -------------------------------- 00010-0------------------0-010u0
35: ------------------------------u- 10001-0------------------n-10110
36: -------------------------------- 11100-0------------------0-000u1
37: -------------------------------- n0010-0------------------0-001u0
38: ------------------------------u- n1101-0------------------n-11110
39: -------------------------------- n1100-1------------------0-001n0

· · · · · ·

Collisions on SHA-0 in One Hour 33

Table 6. Steps 40 to 80 of the main differential path of the first block

i Ai Wi

· · · · · ·
40: -------------------------------- n1111-0------------------0-10000
41: -------------------------------- n0010-1------------------0-11010
42: -------------------------------- n0100-0------------------1-110u1
43: ------------------------------u- 00000-1------------------n-01010
44: -------------------------------- 00011-0------------------0-100n0
45: -------------------------------- n0111-1------------------1-10110
46: -------------------------------- n0111-1------------------0-00010
47: -------------------------------- u0010-1------------------1-00000
48: -------------------------------- 01101-0------------------0-010n0
49: ------------------------------n- 11111-1------------------u-10011
50: -------------------------------- 01000-1------------------0-100u0
51: -------------------------------- u1110-1------------------0-10010
52: -------------------------------- n1101-1------------------1-11110
53: -------------------------------- n0001-1------------------1-001u0
54: ------------------------------u- 11011-0------------------n-11110
55: -------------------------------- 10001-0------------------0-000n0
56: -------------------------------- n0111-1------------------0-001n1
57: ------------------------------n- n0110-1------------------u-11101
58: -------------------------------- u1110-1------------------1-11001
59: ------------------------------n- u1110-0------------------u-010u1
60: ------------------------------u- n1111-1------------------n-100n1
61: -------------------------------- 01010-0------------------0-010n1
62: -------------------------------- 01111-1------------------1-11111
63: -------------------------------- 10011-1------------------0-00010
64: -------------------------------- n1000-0------------------0-10110
65: -------------------------------- 01000-0------------------1-00011
66: -------------------------------- 01000-0------------------0-101u1
67: ------------------------------u- 01001-0------------------n-01001
68: -------------------------------- 10001-0------------------0-100u0
69: -------------------------------- u0010-1------------------1-11000
70: -------------------------------- u1010-0------------------1-011n1
71: ------------------------------n- u0101-0------------------u-01101
72: -------------------------------- 00011-1------------------0-100u0
73: -------------------------------- n1010-1------------------0-11000
74: -------------------------------- n1100-0------------------0-10010
75: -------------------------------- u1110-1------------------1-110n1
76: ------------------------------n- 11011-1------------------u-00100
77: -------------------------------- 00111-0------------------1-000n1
78: -------------------------------- n0011-0------------------1-11101
79: -------------------------------- u0101-0------------------1-01000
80: --------------------------------

34 S. Manuel and T. Peyrin

Table 7. Steps 1 to 39 of the main differential path of the second block

i Ai Wi

-4: 111011010000101010001110101010u1
-3: 01000110011100010110101100101000
-2: 10010000011011111010001110100111
-1: 11100110001011011100010100001001
00: 01011110101010111100001100111101 1001101001110110110011110u1100n0
01: u0111011010011100010111unn1010n1 0000010010111001100101010u111101
02: 11010011001110011011u000110u0111 1110111000100100001000100n111101
03: 111001111000010u000unnnnnn000100 1001101001000110011001001n110101
04: u0100101unn01010000u100011110110 u011100001000000000010101u1101u0
05: n000un001000011u00100000000nn0n0 u0111000011000000000011000010010
06: nnn0010001011110011100n1nu1u011u u000101101111110100001011u101010
07: 10nuuuuuuuuuuuuu11100n00un0u1001 11100001011111111111011000111100
08: 0001111100000000unnn11010001n001 1010001011110001101110001u1001n1
09: 00000111111111111110001n111un111 u100101000000111100110010n1101u0
10: 1110110110111111110100nu111uu011 00000010111100001010011111001011
11: 00111110010001010011011uu0n000u0 1111011101100100111010101n1110n0
12: 010001101000111000111111nuu1u011 001101111111-------------n111010
13: 101010000000----0--------01111u0 01010--------------------u0000u1
14: 00110001-----------------1010010 10010------0----1--------00110n1
15: 10011--------------------10101n0 n0110------0----1--------0111110
16: 0-------------------------011000 10000--------------------11010u1
17: 1-----------------------------n- u1000------1----1--------u100111
18: 0------------------------------- 01100------1----0--------01111u0
19: -------------------------------- n1010--------------------1110100
20: -------------------------------- u1000------1-------------10000n1
21: ------------------------------n- n1101--------------------u010011
22: -------------------------------- 11101--------------------1100010
23: ------------------------------n- u1011------0-------------u110101
24: -------------------------------- n1001--------------------0010110
25: ------------------------------u- 00010--------------------n001011
26: -------------------------------- u0001------1-------------01110u0
27: -------------------------------- 10111--------------------0011001
28: -------------------------------- n1110--------------------1101001
29: -------------------------------- u0000--------------------0010100
30: -------------------------------- 01000--------------------0001001
31: -------------------------------- 01011--------------------1000101
32: -------------------------------- 00101--------------------1010111
33: -------------------------------- 11000--------------------0010001
34: -------------------------------- 01110--------------------00000n0
35: ------------------------------n- 10101--------------------u101001
36: -------------------------------- 10011--------------------10110u1
37: -------------------------------- n1000--------------------01100u0
38: ------------------------------u- n1001--------------------n010100
39: -------------------------------- n0001--------------------11000n0

· · · · · ·

Collisions on SHA-0 in One Hour 35

Table 8. Steps 40 to 80 of the main differential path of the second block

i Ai Wi

· · · · · ·
40: -------------------------------- u0101--------------------1001001
41: -------------------------------- n0100--------------------0010111
42: -------------------------------- u0000--------------------01100u1
43: ------------------------------u- 00111--------------------n101101
44: -------------------------------- 10001--------------------01011n0
45: -------------------------------- n0011--------------------1010000
46: -------------------------------- n0011--------------------1100111
47: -------------------------------- n0011--------------------0011000
48: -------------------------------- 11101--------------------10011u0
49: ------------------------------u- 01010--------------------n001000
50: -------------------------------- 01110--------------------11100n0
51: -------------------------------- n0111--------------------0111000
52: -------------------------------- n0001--------------------1101011
53: -------------------------------- n0100--------------------11100u0
54: ------------------------------u- 11000--------------------n000010
55: -------------------------------- 00111--------------------00001n0
56: -------------------------------- u1100--------------------10001u0
57: ------------------------------u- u0001--------------------n110000
58: -------------------------------- n1000--------------------1101011
59: ------------------------------u- u1111--------------------n0000u1
60: ------------------------------u- n0010--------------------n0100n0
61: -------------------------------- 01100--------------------10100n1
62: -------------------------------- 11001--------------------0101000
63: -------------------------------- 01100--------------------0000100
64: -------------------------------- n0011--------------------0101001
65: -------------------------------- 00101--------------------0101000
66: -------------------------------- 01011--------------------11101n0
67: ------------------------------n- 11111--------------------u100000
68: -------------------------------- 11110--------------------10100n1
69: -------------------------------- n0100--------------------1010011
70: -------------------------------- n0010--------------------00011n0
71: ------------------------------n- n0100--------------------u100001
72: -------------------------------- 10011--------------------10101u1
73: -------------------------------- n1001--------------------0010111
74: -------------------------------- n0101--------------------1101110
75: -------------------------------- u1111--------------------11001n1
76: ------------------------------n- 01100--------------------u111110
77: -------------------------------- 00001--------------------11010n0
78: -------------------------------- n0111--------------------1101000
79: -------------------------------- n0001--------------------0110011
80: --------------------------------

	Collisions on SHA-0 in One Hour
	Introduction
	Previous Collision Attacks on SHA-0
	A Short Description of SHA-0
	First Attacks on SHA-0
	The Wang Approach
	Naito et al.

	A New Perturbation Vector
	Boomerang Attacks for SHA-0
	The Final Collision Attack
	A Method of Comparison
	Without Collision Search Speedup
	Using the Boomerang Improvement

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

