Skip to main content

Canonical Big Operators

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5170))

Abstract

In this paper, we present an approach to describe uniformly iterated “big” operations, like \(\sum_{i=0}^n f(i)\) or max i ∈ I f(i) and to provide lemmas that encapsulate all the commonly used reasoning steps on these constructs.

We show that these iterated operations can be handled generically using the syntactic notation and canonical structure facilities provided by the Coq system. We then show how these canonical big operations played a crucial enabling role in the study of various parts of linear algebra and multi-dimensional real analysis, as illustrated by the formal proofs of the properties of determinants, of the Cayley-Hamilton theorem and of Kantorovitch’s theorem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbanera, F., Berardi, S.: Proof-irrelevance out of Excluded-middle and Choice in the Calculus of Constructions. Journal of Functional Programming 6(3), 519–525 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development, Coq’Art: the Calculus of Inductive Constructions. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  3. Biha, S.O.: Formalisation des mathématiques: une preuve du théorème de Cayley-Hamilton. In: Journées Francophones des Langages Applicatifs, pp. 1–14 (2008)

    Google Scholar 

  4. Coq development team. The Coq Proof Assistant Reference Manual, version 8.1 (2006)

    Google Scholar 

  5. Cowles, J., Gamboa, R., Baalen, J.V.: Using ACL2 Arrays to Formalize Matrix Algebra. In: ACL2 Workshop (2003)

    Google Scholar 

  6. Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system. INRIA Technical report, http://hal.inria.fr/inria-00258384

  7. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formalisation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Harrison, J.: HOL Light: A Tutorial Introduction. In: FMCAD, pp. 265–269 (1996)

    Google Scholar 

  9. Harrison, J.: A HOL Theory of Euclidian Space. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Huet, G., Saïbi, A.: Constructive category theory. In: Proof, language, and interaction: essays in honour of Robin Milner, pp. 239–275. MIT Press, Cambridge (2000)

    Google Scholar 

  11. Kammuller, F.: Modular Structures as Dependent Types in Isabelle. In: Altenkirch, T., Naraschewski, W., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 121–132. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Magaud, N.: Ring properties for square matrices, http://coq.inria.fr/contribs-eng.html

  13. Obua, S.: Proving Bounds for Real Linear Programs in Isabelle/HOL. In: Theorem Proving in Higher-Order Logics, pp. 227–244 (2005)

    Google Scholar 

  14. Paşca, I.: A Formal Verification for Kantorovitch’s Theorem. In: Journées Francophones des Langages Applicatifs, pp. 15–29 (2008)

    Google Scholar 

  15. Paulson, L.C.: Organizing Numerical Theories Using Axiomatic Type Classes. J. Autom. Reason. 33(1), 29–49 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pollack, R.: Dependently Typed Records for Representing Mathematical Structure. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 462–479. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Stein, J.: Documentation for the formalization of Linerar Agebra, http://www.cs.ru.nl/~jasper/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I. (2008). Canonical Big Operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2008. Lecture Notes in Computer Science, vol 5170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71067-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71067-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71065-3

  • Online ISBN: 978-3-540-71067-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics