
A Formalized Theory for Verifying Stability and
Convergence of Automata in PVS!

Sayan Mitra and K. Mani Chandy

California Institute of Technology
Pasadena, CA 91125

{mitras,mani}@caltech.edu

Abstract. Correctness of many hybrid and distributed systems require
stability and convergence guarantees. Unlike the standard induction prin-
ciple for verifying invariance, a theory for verifying stability or conver-
gence of automata is currently not available. In this paper, we formalize
one such theory proposed by Tsitsiklis [25]. We build on the existing PVS
metatheory for untimed, timed, and hybrid input/output automata, and
incorporate the concepts about fairness, stability, Lyapunov-like func-
tions, and convergence. The resulting theory provides two sets of suf-
ficient conditions, which when instantiated and verified for particular
automata, guarantee convergence and stability, respectively.

1 Introduction

Verification of many classes of systems require proofs for stability and conver-
gence. For example, the requirement that a hybrid control system regains equi-
librium in the face of disturbances is a stability property; the requirement that
a set of mobile agents get arbitrarily close to the centroid of their initial posi-
tions through interaction is a convergence property. To best of our knowledge,
existing frameworks that formalize automata in higher-order logics do not define
these notions nor do they provide sufficient conditions for verifying them. In this
paper we present a PVS [21] metatheory for stating and verifying stability and
convergence properties. This theory extends the PVS interface for the Tempo
toolkit [1]; thus, along with invariance properties and implementation relations,
now we can also prove stability and convergence of automata, within the same
framework.

In a 1987 paper [25] Tsitsiklis analyzed stability and convergence of a general
class of models which he called Asynchronous Iterative Processes (henceforth,
AIPs). An AIP consists of a set X, and a finite collection of functions or “oper-
ators” Tk : X → X, k ∈ {1, . . . ,K}. Given an initial point x0 ∈ X, an execution
is obtained by choosing an arbitrary sequence of T ′

ks, and iteratively applying
them to x0. An AIP is stable around a given point x∗ ∈ X, with respect to
a given topological structure T on X, if for every neighborhood set U ∈ T

! The work is funded in part by the Caltech Information Science and Technology
Center and AFOSR MURI FA9550-06-1-0303.



containing x∗, there exists another neighborhood set V ∈ T , such that every
execution starting from V remains within U . An infinite execution is said to
be fair if every operator Tk is applied infinitely many times. An AIP converges
to x∗ with respect to a topological structure T around x∗, if for every U ∈ T
containing x∗, there exists n ∈ N, such that for every fair execution all the states
obtained after applying the first n operations, are in U . In general, neither of
these properties imply the other (see, Figure 1 for examples). In [25] the au-
thor provides sufficient conditions for proving stability and convergence of AIPs
in terms of Lyapunov-like functions [15]. Moreover, under some weak assump-
tions about the topological structures, it turns out that these conditions are also
necessary.

AIPs generalized to infinite (and possibly uncountable) set of operations
subsume the classes of discrete, timed, and hybrid automata, and therefore,
the sufficient conditions for proving convergence and stability of AIPs apply to
these classes as well. In this paper, we formalize Tsitsiklis’ theory of stability
and convergence in PVS. We build on the existing PVS metatheory for untimed,
timed, and hybrid I/O automata [3,14] which is integrated with the Tempo
toolkit [1]. The preexisting theory defines reachable states and implementation
relations for automata and provides theorems for inductively verifying invariant
properties and simulation relations. We extend this metatheory as follows:

(a) A real-valued distance function d on pairs of states is introduced as a pa-
rameter to the theory; for a given state s∗, the sublevel sets of d(s∗, .) define
a topological structure around s∗.

(b) Infinite executions of automata and fairness conditions are defined.
(c) Stability and convergence of automata are defined with respect to a given

state (or a set of states), a distance function, and a fairness condition.
(d) A set of theorems are stated and proved which provide sufficient conditions

for verifying convergence and stability.

The new metatheory can be downloaded from http://ist.caltech.edu/~mitras/
research/pvs/convergence/. In order to apply the theory to particular au-
tomata, the user has to supply a Lyapunov-like function and check that this
function satisfies the criteria prescribed in the theorems. This check can be per-
formed by analyzing the state transitions of the automaton and one need not
reason about infinite executions. We illustrate the application of the theory on
a simple distributed coordination protocol.

A key issue in formalizing this metatheory was to reconcile fairness of AIPs
with the notion of fair executions of automata. Recall that an AIP-execution
is fair, if every operator is applied infinitely often. This definition is too strong
for automata, where each operator corresponds to a specific state transition. A
fair execution for an automaton typically does not have every state transition
occurring infinitely many times, instead it has some set of transitions represented
infinitely often. More precisely, fairness of an automaton is defined with respect
to a collection F = {F1, F2, . . . , Fn}, where each Fi is a set of transitions. An
execution α is said to be F-fair if every Fi ∈ F is represented (or scheduled) in
α infinitely often. In our theory, we formalize this weaker notion of fairness, and

http://ist.caltech.edu/~mitras/research/pvs/convergence/
http://ist.caltech.edu/~mitras/research/pvs/convergence/


Fig. 1. Stable & convergent (left), stable & nonconvergent (middle), and con-
vergent & unstable (right) executions. In the last case, the execution from s0

converges, but executions starting from in the left neighborhood of s∗ diverge.

hence, the sufficient conditions we obtain are stronger than those in [25]. If each
Fi is defined to be a singleton transition then our conditions reduce to Tsitsiklis’.
There are several other relatively minor differences between the original theory
and our PVS formalization; these are discussed in Section 6.

2 Related work

Convergence of general sequences has been formalized in the PVS and Isabelle
libraries for differential calculus [9], real-analysis [10], and topology [12]. There
are several formalizations of automata in higher-order logics of theorem provers
including Isabelle/HOL [19,20,23], PVS [3,6,18], and Coq [7,22]. These theories
formalize reachable states, invariant properties, and abstraction relations, but
neither stability nor convergence. Our theory builds on the PVS formalization
of input/output automata [16] presented in [3] and its subsequent extensions to
timed and hybrid I/O automata [11] that were presented in [18,17].

Literature on stability and convergence (also called asymptotic stability) of
purely discrete or continuous systems is extensive. Control theory textbooks,
such as [15], typically provide conditions for checking stability of processes evolv-
ing in Euclidean space. Stability conditions for hybrid and switched systems is
an active area of research; we refer the reader to [13] for an overview.

Although convergence is distinct from termination, constructing proofs for
both these properties rely on existence of Lyapunov-like functions from the state
space of the automaton to some well-ordered set. There is a large body of litera-
ture on proving termination of programs and recursive functions using theorem
provers (see, e.g., [4,24]). This research direction focuses on automatically find-
ing Lyapunov-like functions that prove termination. This connection is further
discussed in Section 6.

3 Automata and Executions

3.1 Preliminaries

In this paper, we present our PVS metatheory using standard set theoretic no-
tations, in as much of a syntax-free manner as possible. The set theoretic defi-
nitions, in most cases, correspond in an obvious way to the definitions in PVS’s



simply typed higher-order logic. Wherever necessary we note special constructs
that are necessary for this translation.

We denote the set of boolean constants by B = {true, false}, the set of natural
numbers by N = {0, 1, . . . , }, and the set of reals by R. For a set A, Aω is defined
as the set of infinite sequences of elements in A indexed by N. For aω ∈ Aω, i ∈ N,
we denote the ith element by aω

i . In the rest of this section we summarize the
relevant definitions and theorems from the existing metatheory of [3].

3.2 Formalization of Automata

An automaton A is a nondeterministic, labeled transition system. Formally, it
is a quintuple consisting of:

(a) a nonempty set S,
(b) a nonempty set A,
(c) a nonempty subset S0 of S,
(d) a function E : [S, A → B], and
(e) a function T : [S, A → S].

Elements of S, S0, and A are called states, starting states and actions, respec-
tively. E and T are called the enabling predicate and the transition function of
A . The actions are labels for state transitions. For s ∈ S and a ∈ A, E(s, a)
holds if an only if the transition labeled by a can be applied to s. In this case,
a is said to be enabled at s. At any state s, multiple actions may enabled. How-
ever, once an action a is fixed the post-state of the transition s′ is uniquely
determined. Specifically, s′ = T (a, s), if a is enabled at s, or else s′ = s.

The set of actions can be uncountably infinite and indeed actions can label
functions for discrete transitions as well as continuous evolution. We refer the
reader to [14] for models of timed and hybrid systems in this formalism.

The PVS metatheory formalizing automata is parameterized by S, A, S0,
E and T , where S and A are uninterpreted type parameters, and S0, E , and T
are parameters with the appropriate type constraints1. To apply the metatheory
to specific systems, the parameters are instantiated with concrete types and
function definitions. The following example shows such an instantiation.

Example 1. We model a distributed algorithm in which a set of N agents start
at arbitrary positions on a line and through interactions converge to a point.
Specifically, any two agents interact at any time; when they do, their positions
are atomically updated so that they move towards each other by some fraction
of the distance between them.

Table 1 provides concrete definitions for the types and the functions for
modeling this protocol as an automaton. N is a constant natural number. L is
a constant real in the range (0, 1). I is the type {0, . . . , N − 1}. The states type
is an array of R≥0 indexed by I. For any state s and i ∈ I, the ith component of
1 Each parameter corresponds to its unscripted version in our presentation of the

automaton theory. E.g., the set of states S is modeled as the type S in PVS.



the array is denoted by s[i]. The state s0 is an arbitrary but constant element of
S. The predicate S0 defines a state s to be a starting state if and only if it equals
s0. The action type is defined using a (datatype) constructor called interact.
This construct means that for every i, j ∈ I, r ∈ [L, 1− L] interact(i, j, r) is an
action; and nothing else is an action. The set of actions is uncountably infinite
because of the real parameter r.

The enabling predicate E(s, a) returns true for any action a and state s,
which means that agents i and j can interact always. Finally, for action a of the
form interact(i, j, r), the state transition function T (a, s) returns a sate s′ that
is identical to s except that the ith and the jth values of s′ are s[i]+r.(s[i]−s[j])
and s[j] − r.(s[i] − s[j]), respectively. Informally, for given i, j, each choice of r
defines a different proportion by which agents i and j move towards each other.
For example, interact(i, j, 1

2 ) causes s[i] and s[j] to move to their mid-point.

S : Type := array[I !→ R≥0]
s0 : Const S
S0(s : S) : bool := (s = s0)

A : Datatype interact(i, j : I, r : [L, 1− L])

E(s : S, a : A) : bool := true

T (s : S, a : A) : S := [Case a ≡ interact(i, j, r) :
s With [(i) := s[i] + r(s[j]− s[i]), (j) := s[j]− r(s[j]− s[i])]]

Table 1. An instance of automaton metatheory

3.3 Executions, Reachability, and Invariance

The semantics of an automaton A is defined in terms of its executions. A ex-
ecution fragment of A is a (possibly infinite) alternating sequence of states
and actions s0, a0, s1, a1, s2, . . ., such that for each i, E(si, ai) holds and si+1 =
T (ai, si). An execution fragment is an execution if s0 is a starting state. The
length of a finite execution is the number of actions in it. For s ∈ S and a
natural number n, Reach rec(s, n) returns true if and only if there exists an
execution of length n that ends in the state s. The reachability predicate on
states is defined recursively as follows:

Reach rec(s, n) :=






s ∈ S0 n = 0

∃ s1 ∈ S, a ∈ A (E(a, s1) ∧ otherwise.

s = T (a, s1) ∧ Reach rec(s1, n− 1))

Reach(s) := ∃ n ∈ N, Reach rec(s, n).

An invariant of A is a predicate on its states that holds in all reachable
states. Invariants are useful for capturing safety requirements, such as, multiple



processes never access a critical resource simultaneously. The following theorem
formalizes Floyd’s induction principle [8] in this framework.

Theorem 1. Suppose G : [S → B] is a predicate on S, and

A1. ∀ s ∈ S0, G(s), and
A2. ∀ s ∈ S, a ∈ A, Reach(s) ∧ E(a, s) ∧ G(s) ⇒ G(T (a, s)).

Then ∀ s ∈ S, Reach(s) ⇒ G(s), that is, G is an invariant predicate.

This theorem has been employed for verifying safety properties of untimed [3],
timed [14], and hybrid automata [26]. Features of this verification method that
make it attractive are: (a) It suffices to check that the predicate G is preserved
over individual actions, and hence, the check breaks down into a case analy-
sis of actions. (b) This structure facilitates partial automation of proofs using
customized proof strategies [2].

4 Formalizing Stability and Convergence of Automata

In this section we present the extensions to the PVS metatheory for stability and
convergence verification. In order to define stability and convergence properties,
first, we have to explicitly define arbitrary prefixes of infinite executions of the
automaton. Given a state s ∈ S, an infinite sequence of actions aω ∈ Aω, and
n ∈ N, the recursively defined Trans(s, aω, n) function returns the state that is
obtained by applying the first n actions in aω to s.

Trans(s, aω, n) =






s if n = 0

T (aω
n−1, T rans(s, aω, n− 1)) if E(aω

n−1, T rans(s, aω, n− 1))

Trans(s, aω, n− 1) otherwise

Note that s, aω, and n, uniquely determine an execution fragment s0, aω
0 , s1, . . . ,

aω
n−1, sn of length n, where si = Trans(s, aω, i), for each i < n.

Stability and convergence of automaton A to a state s∗ ∈ S are defined with
respect to a topological structure around s∗. This topological structure is formal-
ized using a real-valued function. The metatheory can be easily generalized to
define stability (and convergence) with respect to arbitrarily defined topological
structures around a point; this is discussed further in Section 6.

Definition 1. A distance function d for a state s∗ ∈ S is a real-valued function
d : [S, S → R≥0], such that for all s (= s∗, d(s∗, s) > d(s∗, s∗). A distance
function d for a set of states S∗ ⊆ S is a real-valued function d : [2S , S → R≥0],
such that for all s /∈ S∗, s′ ∈ S∗, d(S∗, s) > d(S∗, s′).

For ε > 0 and s ∈ S, ε-ball around s, is the set

Bε(s) := {s1 ∈ S | d(s1, s) ≤ ε}.

The ε-balls around a given state s define a topological structure around s. In
the new PVS metatheory we add S∗ and d as theory parameters, in addition to
the six parameters enumerated in Section 3.2.



4.1 Stability

Informally, automaton A is stable if every execution fragment that starts close
to the equilibrium state s∗ remains close to s∗, where closeness is defined in
terms of the ε-balls of some distance function for s∗.

Definition 2. Let A be an automaton 〈S, A, S0, E, T 〉, s∗ be a state in S, and
d be a distance function for s∗. A is (s∗, d)-stable if

∀ ε > 0,∃ δ > 0, ∀s ∈ S, aω ∈ Aω, n ∈ N, s ∈ Bδ(s∗) ⇒ Trans(s, aω, n) ∈ Bε(s∗).

Note that stability is independent of the starting states of the automaton.
For a nonempty set S∗ ⊆ S, let d be a distance function for S∗. The definitions
for the ε-balls around S∗ (denoted by Bε(S∗)) and (S∗, d)-stability of A are
analogous to Definition 2.

The coarseness of the topological structure around s∗ (or S∗), and hence, the
meaning of stability depends on the function d. For example, suppose d(s∗, s) :=
0 if s∗ = s, and d(s∗, s) := 1, otherwise. Then, A is trivially (s∗, d)-stable. On
the other hand, if the set of states S is an Euclidean space and d is the Euclidean
metric on S, then d defines an uncountable set of distinct ε-balls around s∗. And
in this case (s∗, d)-stability of A depends on E and T .

4.2 Sufficient conditions for stability

In this section we present the sufficient conditions for proving stability of au-
tomaton A . The proofs of all the theorems presented in Section 4 have been
completed in PVS and are available as part of the metatheory. Here we present
summaries of these PVS proofs.

Let T be a set and < be a total order on T , and f be a function that maps
S to T . The range of f is denoted by Rngf , and the p-sublevel set is defined as
Lf,p := {s : S | f(s) ≤ p}. We omit the subscript f when the function is clear
from the context. The following theorem gives a sufficient condition for proving
stability of an automaton in terms of a Lypunov-like function.

Theorem 2. Let S∗ be a nonempty subset of S and d be a distance function for
S∗. Suppose there exists a totally ordered set (T, <) and a function f : [S → T ]
that satisfies the following conditions:

B1. ∀ ε ≥ 0, ∃ p ∈ T , such that Lp ⊆ Bε(S∗).
B2. ∀ p ∈ T , ∃ ε ≥ 0, such that Bε(S∗) ⊆ Lp.
B3. ∀ s ∈ S, a ∈ A, E(a, s) ⇒ f(T (a, s)) ≤ f(s).

Then A is (S∗, d)-stable.

B1 requires that every ε-ball around S∗ contains a p-sublevel set Lp. B2 is
symmetric; it requires that every sublevel set contains an ε-ball. B3 states that
the value of the function f does not increase if an action a is applied to state
where it is enabled.



Proof: Let us fix an ε > 0. We have to show that there exists a δ > 0, such
that any execution fragment that starts in Bδ(S∗) remains within Bε(S∗). There
exists p ∈ T , such that Lp ⊆ Bε(S∗) (by B1), and there exists a η ≥ 0, such that
Bη(S∗) ⊆ Lp ⊆ Bε(S∗) (by B2). Set δ = η, and fix an s ∈ Bδ(S∗), aω ∈ Aω.
We show by induction that every state in the execution fragment starting from
s and corresponding to aω remains within Bε(S∗).

Base case: We know that s ∈ Bδ(S∗) ⊆ Bε(S∗).
Inductive step: Let s′ be the state Trans(s, aω, j), 0 ≤ j ≤ n − 2. By the

induction hypothesis, s′ ∈ Bδ(S∗) ⊆ Lp. If aω
j is not enabled at s′, then

sj+1 = s′ ∈ Bδ(S∗) ⊆ Bε(S∗). Otherwise, sj+1 = T (am, s′). As f(sj+1) ≤
f(s′) (by B3), and it follows that sn ∈ Lp ⊆ Bε(S∗).

4.3 Fairness

An automaton A is said to converge to s∗ with respect to distance function d, if
for every infinite execution s0, a0, s1, . . . , an−1, sn . . ., d(s∗, sn) → 0 as n → ∞.
This captures the informal notion that every execution of the automaton gets
closer and closer to s∗.

In typical applications, the above definition of convergence is too strong be-
cause it quantifies over all infinite executions—including those in which some
set of actions never occur. For instance, consider an infinite execution α for the
automaton of Example 1 that starts from a state s0 with distinct values for all
s0[i]’s, and in which agent 0 never interacts with any other agent. It is easy to see
that such an execution does not converge. On the other hand, a different infinite
execution α′ = s0, a0, s1, . . ., does converges to s∗, where s∗[i] = 1

N

∑N
i=1 s0[i],

provided for every i, j ∈ I, infinitely many interact(i, j, ∗) actions occur in α′. In
fact, an infinite executions in which for every i ∈ I, interact(i, (i+1) mod N, ∗)
occurs infinitely often, also converges to s∗. This suggests that the convergence
of A can be studied under different sets of assumptions about the occurrence of
the actions. This motivates the following definition of fairness.

Definition 3. A fairness condition F for the set of actions A is a finite col-
lection {Fi}n

i=1, n ∈ N, where each Fi is a nonempty subset of A. An infinite
sequence of actions aω ∈ Aω is F-fair if

∀ F ∈ F , n ∈ N, ∃ m ∈ N, m > n, such that aω
m ∈ F.

An infinite execution α = s0, a0, s1, a1, . . . is said to F-fair if the corresponding
sequence of actions a0, a1, . . . is F-fair.

In other words, an execution is not F-fair if there exists F ∈ F such that no
action from F ever appears in some suffix of α.

Definition 4. Given fairness conditions F1 and F2 for the set of actions A, F1

is said to be weaker than F2, denoted by F1 ≤ F2, if ∀ F1 ∈ F1, ∃ F2 ∈ F2,
such that F2 ⊆ F1.



The next lemma states that an F2-fair execution is also F1-fair, if F1 is a
weaker fairness condition than F2.

Lemma 1. Let F1,F2 be fairness conditions for the set of actions A. If F1 ≤
F2, then every F2-fair execution is F1-fair.

4.4 Convergence

Having introduced fairness of executions, we now modify the previously sug-
gested definition of convergence as follows. Informally, automaton A converges
to s∗ with respect to distance function d and a fairness condition F , if every
F-fair execution converges to s∗.

Definition 5. Let A be an automaton 〈S, A, S0, E, T 〉, s∗ be an element of S,
d be a function for s∗, and F be a fairness condition for A. A is (s∗, d,F)-
convergent, if ∀ s0 ∈ S0, ε > 0, aω ∈ Aω

if aω is F-fair then ∃n ∈ N,∀m ∈ N, m > n ⇒ Trans(s, aω, m) ∈ Bε(s∗).

For a nonempty subset of states S∗ ⊆ S, the definition of (S∗, d,F)-convergence
is analogous to Definition 5. For s ∈ S, aω ∈ Aω, we define Rf (s, aω) as the set
of values in T that can be reached from s by applying some prefix of aω.

Rf (s, aω) := {p ∈ T | ∃ n ∈ N, T rans(s, aω, n) ∈ Lf,p}.

The next theorem gives sufficient conditions for proving convergence of automa-
ton A in terms of a Lyapunov-like function.

Theorem 3. Let S∗ be a nonempty subset of S, d be a distance function for
S∗, and F be a fairness condition on A. Suppose there exists a totally ordered
set (T, <) and a function f : S → T that satisfies the following conditions:

C1. ∀ p, q ∈ T, p < q ⇒ Lp ! Lq.
C2. ∀ ε > 0, ∃ p ∈ T , such that Lp ⊆ Bε(S∗).
C3. ∀ s ∈ S, a ∈ A, (Reach(s) ∧ E(a, s)) ⇒ f(T (a, s)) ≤ f(s).
C4. ∀ p ∈ T , Lp (= S∗ implies ∃ F ∈ F , such that ∀ a ∈ F, s ∈ Lp, Reach(s) ⇒

(E(a, s) ∧ f(T (a, s)) < f(s)).
C5. ∀ s ∈ S0 and F-fair sequence aω ∈ Aω, R′ ⊆ Rf (s, aω), if R′ is lower

bounded then it has a smallest element.

Then A is (S∗, d,F)-convergent.

Some remarks about the hypothesis of the theorem are in order. C1 implies
that every sublevel set of the function f is distinct. C2 requires that for any ε > 0,
there exists a p-sublevel set of f that is contained within the ε-ball around S∗.
This is identical to condition B1. C3 requires that the function f is nonincreasing
over all transitions from reachable states. This is a weaker version of B3. C4
requires that for any sublevel set Lp that is not equal to the convergence set
S∗, there exists a fair set of actions F ∈ F , such that any action a ∈ F strictly



decreases the value of f—possibly by some arbitrarily small amount. C5 requires
that for all s, aω, every lower-bounded subset of Rf (s, aω) has a smallest element.
This is a weaker assumption than requiring Rf (s, aω) to be well-ordered. Instead
of C5 it is sometimes easier to prove that the set T is well-ordered.

Before proving Theorem 3, we state a set of intermediate lemmas that are
used in the proof. In the following, S∗ is a subset of S, F is a fairness condition on
A, (T, <) is a total order, and f is a function S → T satisfying conditions C1-5.
We make the following assumption, without any loss of generality.

∃ p∗ ∈ T, such that ∀ s ∈ S, if s ∈ S∗ then f(s) = p∗, otherwise f(s) > p∗.

This is without loss of generality because for any given f ′ we can define f(x) :=
p∗ = infs∈S∗ f(s) if x ∈ S∗ and f ′(x) := f(x) otherwise. Then f satisfies the
assumption and we work with it instead of f ′.

Lemma 2. For all aω ∈ Aω, n ∈ N, p ∈ T, s ∈ Lp: Trans(s, aω, n) ∈ Lp.

Lemma 3. For all s ∈ S, s ∈ S∗ iff Lf(s) = S∗.

Lemma 4. For all s0 ∈ S0 and F-fair action sequence aω, Rngf = Rf (s0, aω).

Proof: Let us fix an aω, s0, and f . We abbreviate Rf (s0, aω) as R. From its
definition it is clear that R ⊆ Rngf , so, we have to show that for every p ∈ Rng,
there is an n such that f(Trans(s0, aω, n)) ≤ p. Let us fix a value of p ∈ Rng,
and suppose for the sake of contradiction that p /∈ R. We know that f(s0) < p,
because otherwise Trans(s0, aω, 0) = s0 ∈ Lp, that is, p would be in R. We
consider two subcases:

Case 1: R has a lower bound. R has a smallest element, say pmin (by C5). If
pmin ≤ p then p ∈ R, so, we consider the case where p < pmin. There exists
p∗ such that f(s) = p∗ for every s ∈ S∗, and p∗ < f(s) outside S∗ (by
Lemma 3).
Case 1.1: pmin ≤ p∗. Then p < p∗ and this contradicts our assumption that

p∗ is the smallest value attained by f .
Case 1.2: p∗ < p < pmin: Since Lp (= S∗, there exists an F ∈ F , such

that for every a ∈ F and for every reachable state s in Lp, a is en-
abled at s, and f(T (a, s)) < p (by C4). Also, there exists n0 such that
Trans(s0, aω, n0)) ∈ Lpmin (by definition of pmin). Since aω is an F-
fair sequence, there exists an m, m > n0, such that aω

m ∈ F. We define
s′ := Trans(s0, aω, m − 1). It follows that s′ ∈ Lpmin (by Lemma 2),
that is, f(T (aω

m, s′)) < pmin. As f(T (aω
m, s′)) ∈ R, this contradicts our

assumption that pmin is the smallest element in R.
Case 2: R does not have a lower bound. Then there exists q ∈ R, such that q < p,

and by C1, Lq ! Lp. That is, there exists n, such that Trans(s0, aω, n) ∈ Lp,
and therefore, contrary to our assumption p ∈ R.

Proof of Theorem 3: Let us fix ε ≥ 0, f satisfying the conditions in the
hypothesis, s0 ∈ S0, and an F-fair sequence aω = a0, a1, . . .. There exists



p ∈ Rngf , such that Lf,p ⊆ Bε(S∗) (by C2). There exists n ∈ N, such that
Trans(s0, aω, n) ∈ Lf,p ⊆ Bε(S∗) (by Lemma 4). It follows that for all m > n,
Trans(s0, aω, m) ∈ Lf,p ⊆ Bε(S∗) (by Lemma 2).

Corollary 1. If A is (S∗, d,F1)-convergent and F1 ≤ F2 then A is (S∗, d,F2)-
convergent.

4.5 Special case

In certain applications the function d which defines the topological structure
around s∗ can itself be used as the Lyapunov-like function for proving conver-
gence. The obvious advantage of doing so is that C2 follows automatically. We
provide a restricted version of Theorem 3 which can be applied in such cases.

Corollary 2. Let S∗ be a nonempty subset of S and F be a fairness condition
on A. We define f : S → R≥0 as f(s) := d(S∗, s). Suppose there exists a strictly
decreasing sequence pω ∈ R≥0

ω of valuations of f that converges to 0, such that:

D1. ∀ i, j ∈ N, i > j ⇒ Lpi ! Lpj .
D2. ∀ s ∈ S, a ∈ A, i ∈ N (Reach(s) ∧ E(a, s) ∧ s ∈ Lpi) ⇒ T (a, s) ∈ Lpi .
D3. ∀ i ∈ N, pi (= 0 implies ∃ F ∈ F , such that ∀ a ∈ F, s ∈ Lpi , Reach(s) ⇒

(E(a, s) ∧ T (a, s) ∈ Lpi+1).

Then A (S∗, d,F)-convergent.

Proof: : We check that the defined function f satisfies the conditions in the
hypothesis of Theorem 3. C1 follows from D1. C2 follows from the convergence
of the sequence pω. C3 follows from D2. C4 follows from D3 and the strictly
decreasing property of the sequence pω. It remains to show C5.

Let us fix s ∈ S0 and a F-fair sequence aω ∈ Aω, and let pmin > 0 be a lower
bound for a subset R′ ⊆ Rf (s, aω). Suppose, for the sake of contradiction, that R′

does not have a smallest element. Then there exists a i ∈ N such that pi ∈ R′, and
for all j > i, pj < pmin. There exists s ∈ Lpi , such that s′ = Trans(s0, aω, m),
for some m ∈ N (by definition of R′). There exists F ∈ F , such that for all
a ∈ F, s ∈ Lpi , if s is reachable then E(a, s) and T (a, s) ∈ Lpi+1 (by D3).
We fix such an F . As aω is an F-fair sequence, there exists k > m, such that
ak ∈ F . Let s′ = Trans(s0, aω, k). As s′ is reachable and so is T (ak, s′). Since
f(T (ak, s′)) ≤ pi+1 < pi, it contradicts our assumption.

5 An Application

In this section, we illustrate the application of our convergence theory to verify
the convergence of the protocol introduced in Example 1. Recall, the set of
states S is defined as arrays of R≥0 indexed by I, where I = {0, 1, . . . , N − 1}.
For i ∈ I, s[i] corresponds to the value of the ith participating agent at state
s. The starting state s0 is an arbitrary but constant element of S. We define a



real-valued constant M that corresponds to the average of the initial values of
the agents: M := 1

N

∑N−1
j=0 s0[j]. Let s∗ ∈ S be defined as the constant array:

s∗ : Const S := [M, . . . , M ]

We would like to prove convergence of this protocol to s∗, and in order to do
so we have to first define some notion of neighborhood around s∗ and a fairness
condition for the actions of this automaton. We define the neighborhood around
s∗ with the standard Euclidean distance between any state s ∈ S and s∗.

d(s∗, s) :=
∑

j

(s[j]− s∗[j])2

Next, we specify the fairness condition F . Informally, we require that no two sets
of participating agents are partitioned perpetually. That is, an action sequence
aω is F-fair, if for every n ∈ N, and for every pair of disjoint subsets J, K ⊂ I,
there exists m > n, such that am = interact(j, k, r) for some j ∈ J, k ∈ K and
r ∈ [L, 1− L]. Formally, let J, K be any two subsets of I. We define

FJ,K := {interact(j, k, r) | j ∈ J, k ∈ K, r ∈ [L, 1− L] },
F := {FJ,K | J ∩K = ∅}.

Our goal is to prove that automaton A is (s∗, d,F)-convergent. To this end
we invoke Corollary 2. In this case S∗ = {s∗}. We define

f(s) := s(s∗, s) =
∑

j

(s[j]−M)2,

and the sequence pω, as pi = Mβi, where β := (1− 2L(1−L)
N3 ). It is easy to check

that pω converges to 0 and that f satisfies condition D1. In the remainder of
this section we check that f satisfies D2 and D3.

We define sorted(s) as a derived variable that returns the sorted version of
the array s. That is, sorted(s) : [I → R≥0] has the following ordering property.
For all i, j ∈ I, sorted(s)(i) < sorted(s)(j) if and only if s[i] > s[j] or s[i] = s[j]
and i > j. That is, sorted(s)[k] is the kth largest element of s.

Prior to checking D2 and D3 the following invariant properties are verified
using Theorem 1. The first invariant follows from the property of the protocol
that

∑N−1
i=0 s[i] = MN remains constant in all reachable states.

Invariant 4. For every s ∈ S, Reach(s) implies
∑N−1

i=0 (sorted(s)[i]−M) = 0.

Invariant 5. For every s ∈ S, Reach(s) and s (= s∗ implies

N−2∑

i=0

sorted(s)[i]− sorted(s)[i + 1] ≥
√

f(s)
N

.



Proof: Since s (= s∗, f(s) > 0. There exists j ∈ I such that (s[j]−M)2 ≥ f(s)/N
(by definition of f(s)). Let us fix such a j. Since (s[j]−M)2 ≥ f(s)/N we con-
clude that (sorted(s)[0]−M)2 ≥ f(s)/N . We assume that (sorted(s)[0]−M)2 >

0; proof for the negative case is symmetric. From Invariant 4,
∑N−1

i=0 (sorted(s)[i]−
M) = 0 and the positivity of sorted(s)[0] − M it follows that there exists
k ∈ I, such that sorted(s)[k] − M < 0. Thus, sorted(s)[N − 1] − M < 0.∑N−2

i=0 (sorted(s)[i]− sorted(s)[i + 1])

= sorted(s)[0]− sorted(s)[N − 1]

= sorted(s)[0]−M − (sorted(s)[N − 1]−M) ≥
√

f(s)
N

.

Proposition 1. f satisfies D2.

Proof: We have to show that from every reachable state s ∈ S and for any action
a ∈ A, f(T (a, s)) ≤ f(s). Every action a of A, is of the form interact(j, k, r),
where r ∈ [L, 1−L], and L ∈ (0, 1). We fix j, k ∈ I and a reachable state s ∈ S,
and define δ := s[k] − s[j]. From the definition of the transition function T for
action interact(j, k, r) we know:

T (interact(j, k)s)[i] =






s[i] + δr if i = j

s[i]− δr if i = k

s[i] otherwise.

(1)

Thus, f(s) − f(T (interact(j, k, r), s)) = 2δr(1 − r), and since r ∈ [L, 1 − L],
f(s)− f(T (interact(j, k, r), s)) ≥ 2.δ2.L.(1− L) ≥ 0

Proposition 2. f satisfies D3.

Proof: Consider any reachable state s such that s (= s∗. It suffices to show
that there exists F ∈ F , such that for any action a ∈ F f(T (a, s)) ≤ βf(s),
where β has been defined to be 1 − 2L(1−L)

N3 . From Invariant 5 we know that
∑N−2

i=0 sorted(s)[i]−sorted(s)[i+1] >
√

f(s)
N . Since each term in the summation

is nonnegative, we conclude that there exists k ∈ I, sorted(s)[k]− sorted(s)[k +

1] ≥ 1
N

√
f(s)
N . We fix such a k and define two subsets of I:

A = {j ∈ I | s[j] ≥ s[k]}
B = {j ∈ I | s[j] ≤ s[k − 1]}

Since A and B are disjoint subsets of I, FA,B ∈ F . Now we show that for any
action a ∈ FA,B , f(T (a, s)) ≤ βf(s). Let a = interact(j, k, r), where j ∈ A and
k ∈ B. From Proposition 1 it follows that

f(s)− f(T (interact(j, k, r), s)) ≥ 2L(1− L)(s[j]− s[k])2

≥ 2f(s)L(1− L)
N3

(by definition of A, B)

f(T (interact(j, k, r), s)) ≤
[
1− 2L(1− L)

N3

]
f(s).



6 Discussions

Comparison with Tsitsiklis’ theory. Apart from the more general notion of
fairness that we have formalized, our theory for stability and convergence differs
from that presented in [25] in the following ways.

Specifying topologies. In [25] closeness to the point of convergence s∗ is defined
in terms of a topological structure called a neighborhood system around s∗. A
neighborhood system around s∗ is a collection U of subsets of S that satisfies
the following conditions: (i) s∗ ∈ U , ∀U ∈ S. (ii) For all s ∈ S, s (= s∗, there
exists U ∈ U such that s /∈ U . (iii) U is closed under finite intersections and
arbitrary unions. For most natural definitions for the distance function d, the
ε-balls of d satisfy conditions (i), (ii) and (iii). We decided to use this functional
specification of the neighborhood sets because (a) it is concise, and (b) in many
applications there exists an inherent metric with respect to which we prove
convergence (or stability). Introducing neighborhood systems in the style of [25]
would require us make relatively minor modifications to B1, B2, and C2.

Reachability. In [25] reachability conditions for states of AIPs are not introduced.
Consequently, C4 and C5 in Theorem 3 are weaker than the corresponding con-
ditions in [25]. This is because we require the f to be nonincreasing (decreasing,
resp.) only from the reachable states. Thus, invariant properties proved using
Theorem 1, can be used to verify these conditions.

Convergence and termination. The general method for proving termination
is based on finding a function which decreases along every transition of an au-
tomaton. If the co-domain of the function is wellfounded, the automaton must
terminate, because there are no infinite descending chains.

The standard definition of termination—that of an automaton or a program
executing a finite sequence of transitions and then stopping with an answer—
is not directly applicable to reactive system models where the automaton runs
forever producing an infinite sequence of outputs. Thus, we redefine termination
as follows: given a subset of states ST , A terminates at ST if for every execution
s0, a1, s1, . . ., there exits n ∈ N, such that for all m > n, sm ∈ ST . If we set
S∗ = ST , then this definition of termination is equivalent to the definition of
convergence if one allows ε to be 0. With this interpretation, termination is
a stronger property than convergence. Indeed, many distributed systems, such
as the consensus protocol of Example 1, only convergence (for ε > 0) can be
guaranteed and not termination.

7 Conclusions

We have formalized fairness, stability, and convergence within an existing PVS
framework for verifying untimed, timed, and hybrid automata. The theory pro-



vides a very general set of sufficient conditions for proving stability and conver-
gence. These conditions can be checked using the PVS prover or using other tools.
For example, the nonincreasing condition for convergence C3 can be checked with
a model-checker. The theory extends the PVS interface for the Tempo toolkit,
and hence, enables us to now verify invariance, implementation, convergence,
and stability, all within the same software framework.

Currently we are applying the proposed metatheory to verify timed and hy-
brid system models; in particular, convergence of asynchronous pattern forma-
tion algorithms for mobile agent systems [5]. We plan on developing PVS strate-
gies that exploit the common structural properties in these models and automate
convergence and stability proofs.

References

1. Tempo toolset, version 0.2.2 beta, January 2008. http://www.veromodo.com/
tempo/.

2. M. Archer. TAME: PVS Strategies for special purpose theorem proving. Annals
of Mathematics and Artificial Intelligence, 29(1/4), February 2001.

3. M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS interface to simplify proofs
for automata models. In Proceedings of UITP ’98, July 1998.

4. L. Bulwahn, A. Krauss, and T. Nipkow. Finding lexicographic orders for termina-
tion proofs in isabelle/hol. In TPHOLs, volume 4732 of Lecture Notes in Computer
Science, pages 38–53. Springer, 2007.

5. K. M. Chandy, S. Mitra, and C. Pilotto. Formations of mobile agents with message
loss and delay, 2007. preprint http://www.ist.caltech.edu/~mitras/research/
2008/asynchcoord.pdf.

6. M. Devillers. Translating IOA automata to PVS. Technical Report CSI-R9903,
Computing Science Institute, University of Nijmegen, February 1999. Available at
http://www.cs.ru.nl/research/reports/info/CSI-R9903.html.

7. J. Filli. Finite automata theory in coq: A constructive proof of kleene’s theorem.
Technical report, LIP -ENS, Research Report 97-04, Lyon, February 1997.

8. R. Floyd. Assigning meanings to programs. In Sympyposium on Applied Mathe-
matics. Mathematical Aspects of Computer Science, pages 19–32. American Math-
ematical Society, 1967.

9. H. Gottliebsen. Transcendental functions and continuity checking in pvs. In
TPHOLs ’00: Proceedings of the 13th International Conference on Theorem Prov-
ing in Higher Order Logics, pages 197–214, London, UK, 2000. Springer-Verlag.

10. J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.
11. D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O

Automata. Synthesis Lectures on Computer Science. Morgan Claypool, November
2005. Also available as Technical Report MIT-LCS-TR-917.

12. D. Lester. NASA langley PVS library for topological spaces. http://shemesh.
larc.nasa.gov/fm/ftp/larc/PVS-library/topology-details.html.

13. D. Liberzon. Switching in Systems and Control. Systems and Control: Foundations
and Applications. Birkhauser, Boston, June 2003.

14. H. Lim, D. Kaynar, N. Lynch, and S. Mitra. Translating timed I/O automata
specifications for theorem proving in pvs. In Proceedings of Formal Modelling
and Analysis of Timed Systems (FORMATS’05), number 3829 in LNCS, Uppsala,
Sweden, September 2005. Springer.

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/topology-details.html
http://www.veromodo.com/tempo/
http://www.veromodo.com/tempo/
http://www.ist.caltech.edu/~mitras/research/2008/asynchcoord.pdf
http://www.ist.caltech.edu/~mitras/research/2008/asynchcoord.pdf
http://www.cs.ru.nl/research/reports/info/CSI-R9903.html
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/topology-details.html


15. D. G. Luenberger. Introduction to Dynamic Systems: Theory, Models, and Appli-
cations. John Wiley and Sons, Inc., New York, 1979.

16. N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-
Quarterly, 2(3).

17. S. Mitra. A Verification Framework for Hybrid Systems. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA 02139, September 2007.

18. S. Mitra and M. Archer. PVS strategies for proving abstraction properties of
automata. Electronic Notes in Theoretical Computer Science, 125(2):45–65, 2005.

19. T. Nipkow and K. Slind. I/O automata in Isabelle/HOL. In P. Dybjer, B. Nord-
ström, and J. Smith, editors, Types for Proofs and Programs, volume 996 of LNCS,
pages 101–119. Springer, 1995.

20. Olaf Müller. A Verification Environment for I/O Automata Based on Formalized
Meta-Theory. PhD thesis, Technische Universität München, Sept. 1998.

21. S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: Combining spec-
ification, proof checking, and model checking. In R. Alur and T. A. Henzinger,
editors, Computer-Aided Verification, CAV ’96, number 1102 in LNCS, pages 411–
414, New Brunswick, NJ, July/August 1996. Springer-Verlag.

22. C. Paulin-Mohring. Modelisation of timed automata in coq. In TACS ’01: Pro-
ceedings of the 4th International Symposium on Theoretical Aspects of Computer
Software, pages 298–315, London, UK, 2001. Springer-Verlag.

23. L. C. Paulson. Mechanizing UNITY in Isabelle. ACM Transactions on Computa-
tional Logic, 1(1):3–32, 2000.

24. E. Rohwedder and F. Pfenning. Mode and termination checking for higher-order
logic programs. In ESOP ’96: Proceedings of the 6th European Symposium on
Programming Languages and Systems, pages 296–310, London, UK, 1996. Springer-
Verlag.

25. J. N. Tsitsiklis. On the stability of asynchronous iterative processes. Theory of
Computing Systems, 20(1):137–153, December 1987.

26. S. Umeno and N. A. Lynch. Safety verification of an aircraft landing protocol: A
refinement approach. In HSCC, pages 557–572, 2007.


	A Formalized Theory for Verifying Stability and Convergence of Automata in PVS
	Sayan Mitra and K. Mani Chandy

