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1 Introduction

Abella [3] is an interactive system for reasoning about aspects of object lan-
guages that have been formally presented through recursive rules based on syn-
tactic structure. Abella utilizes a two-level logic approach to specification and
reasoning. One level is defined by a specification logic which supports a trans-
parent encoding of structural semantics rules and also enables their execution.
The second level, called the reasoning logic, embeds the specification logic and
allows the development of proofs of properties about specifications. An impor-
tant characteristic of both logics is that they exploit the λ-tree syntax approach
to treating binding in object languages. Amongst other things, Abella has been
used to prove normalizability properties of the λ-calculus, cut admissibility for
a sequent calculus and type uniqueness and subject reduction properties. This
paper discusses the logical foundations of Abella, outlines the style of theorem
proving that it supports and finally describes some of its recent applications.

2 The Logic Underlying Abella

Abella is based on G, an intuitionistic, predicative, higher-order logic with fixed-
point definitions for atomic predicates and with natural number induction [4].

Representing binding. G uses the λ-tree syntax approach to representing syntactic
structures [7], which allows object level binding to be represented using meta-
level abstraction. Thus common notions related to binding such as α-equivalence
and capture-avoiding substitution are built into the logic, and the encodings of
object languages do not need to implement such features.

To reason over λ-tree syntax, G uses the ∇ quantifier which represents a
notion of generic judgment [9]. A formula ∇x.F is true if F is true for each x
in a generic way, i.e., when nothing is assumed about any x. This is a stronger
statement than ∀x.F which says that F is true for all values for x but allows
this to be shown in different ways for different values.

For the logic G, we assume the following two properties of ∇:

∇x.∇y.F x y ≡ ∇y.∇x.F x y ∇x.F ≡ F if x not free in F

A natural proof-theoretic treatment for this quantifier is to use nominal constants

to instantiate ∇-bound variables [16]. Specifically, the proof rules for ∇ are

Γ,B[a/x] ⊢ C

Γ,∇x.B ⊢ C
∇L

Γ ⊢ C[a/x]

Γ ⊢ ∇x.C
∇R
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where a is a nominal constant which does not appear in the formula underneath
the ∇ quantifier. Due to the equivalence of permuting ∇ quantifiers, nominal
constants must be treated as permutable, which is captured by the initial rule.

π.B = B′

Γ,B ⊢ B′
idπ

Here π is a permutation of nominal constants.

Definitions. The logic G supports fixed-point definitions of atomic predicates.
These definitions are specified as clauses of the form ∀x.(∇z.H) , B where the
head H is an atomic predicate. This notion of definition is extended from pre-
vious notions (e.g., see [9]) by admitting the ∇-quantifier in the head. Roughly,
when such a definition is used, in ways to be explained soon, these ∇-quantified
variables become instantiated with nominal constants from the term on which
the definition is used. The instantiations for the universal variables xmay contain
any nominal constants not assigned to the variables z. Thus ∇ quantification in
the head of a definition allows us to restrict certain pieces of syntax to be nominal
constants and to state dependency information for those nominal constants.

Two examples hint at the expressiveness of our extended form of definitions.
First, we can define a predicate name E which holds only when E is a nominal
constant. Second, we can define a predicate fresh X E which holds only when
X is a nominal constant which does not occur in E.

(∇x.name x) , ⊤ ∀E.(∇x.fresh x E) , ⊤

Note that the order of quantification in fresh enforces the freshness condition.
Definitions can be used in both a positive and negative fashion. Positively,

definitions are used to derive an atomic judgment, i.e., to show a predicate
holds on particular values. This use corresponds to unfolding a definition and is
similar to back-chaining. Negatively, an atomic judgment can be decomposed in
a case analysis-like way based on a closed-world reading of definitions. In this
case, the atomic judgment is unified with the head of each definitional clause,
where eigenvariables are treated as instantiatable. Also, both the positive and
negative uses of definitions consider permutations of nominal constants in order
to allow the ∇-bound variables z to range over any nominal constants. A precise
presentation of these rules, which is provided in Gacek et al. [4], essentially
amounts to introduction rules for atomic judgments on the right and left sides
of sequents in a sequent calculus based presentation of the logic.

Induction. G supports induction over natural numbers. By augmenting the pred-
icates being defined with a natural number argument, this induction can serve as
a method of proof based on the length of a bottom-up evaluation of a definition.

3 The Structure of Abella

The architecture of Abella has two distinguishing characteristics. First, Abella
is oriented towards the use of a specific (executable) specification logic whose
proof-theoretic structure is encoded via definitions in G. Second, Abella provides
tactics for proof construction that embody special knowledge of the specification
logic. We discuss these aspects and their impact in more detail below.
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∀m,n, a, b[of m (arr a b) ∧ of n a ⊃ of (app m n) b]

∀r, a, b[∀x[of x a ⊃ of (r x) b] ⊃ of (abs a r) (arr a b)]

Fig. 1. Second-order hereditary Harrop formulas for typing

3.1 Specification Logic

It is possible to encode object language descriptions directly in definitions in G,
but there are two disadvantages to doing so: the resulting definitions may not be
executable and there are common patterns in specifications with λ-tree syntax
which we would like to take advantage of. We address these issues by selecting
a specification logic which has the features that the G lacks, and embedding the
evaluation rules of this specification logic instead into G. Object languages are
then encoded through descriptions in the specification logic [6].

The specification logic of Abella is second-order hereditary Harrop formu-
las [8] with support for λ-tree syntax. This allows a transparent encoding of
structural operational semantics rules which operate on objects with binding.
For example, consider the simply-typed λ-calculus where types are either a base
type i or arrow types constructed with arr. Terms are encoded with the con-
structors app and abs. The constructor abs takes two arguments: the type of
the variable being abstracted and the body of the function. Rather than having
a constructor for variables, the body argument to abs is an abstraction in our
specification logic, thus object level binding is represented by the specification
logic binding. For example, the term (λf : i → i.(λx : i.(f x))) is encoded as

abs (arr i i) (λf.abs i (λx.app f x)).

In the latter term, λ denotes an abstraction in the specification logic. Given this
representation, the typing judgment of m t is defined in Figure 1. Note that these
rules do not maintain an explicit context for typing assumptions, instead using a
hypothetical judgment to represent assumptions. Also, there is no side-condition
in the rule for typing abstractions to ensure the variable x does not yet occur in
the typing context, since instead of using a particular x for recording a typing
assumption, we quantify over all x.

Our specification of typing assignment is executable. More generally, the
Abella specification logic is a subset of the language λProlog [11] which can be
compiled and executed efficiently [12]. This enables the animation of specifica-
tions, which is convenient for assessing specifications before attempting to prove
properties over them. This also allows specifications to be used as testing oracles
when developing full implementations.

The evaluation rules of our specification logic can be encoded as a definition
in G. A particular specification is then encoded in a separate definition which
is used by the definition of evaluation in order to realize back-chaining over
specification clauses. Reasoning over a specification is realized by reasoning over
its evaluation via the definition of the specification logic. Abella takes this further
and is customized towards the specification logic. For example, the context of
hypothetical judgments in our specification logic admits weakening, contraction,
and permutation, all of which are provable in G. Abella automatically uses this
meta-level property of the specification logic during reasoning. Details on the
benefits of this approach to reasoning are available in Gacek et al. [5].

3



3.2 Tactics

The user constructs proofs in Abella by applying tactics which correspond to
high-level reasoning steps. The collection of tactics can be grouped into those
that generically orchestrate the rules of G and those that correspond to meta-
properties of the specification logic. We discuss these classes in more detail below.

Generic tactics. The majority of tactics in Abella correspond directly to infer-
ence rules in G. The most common tactics from this group are the ones which
perform induction, introduce variables and hypotheses, conduct case analysis,
apply lemmas, and build results from hypotheses. In the examples suite dis-
tributed with Abella, these five tactics make up more than 90% of all tactic
usages. The remaining generic tactics are for tasks such as splitting a goal of
the form G1 ∧G2 into two separate goals for G1 and G2, or for instantiating the
quantifier in a goal of the form ∃x.G.

Specification logic tactics. Since our specification logic is encoded in G, we can
formally prove meta-level properties for it. Once such properties are proved, their
use in proofs can be built into tactics. Two important properties that Abella uses
in this way are instantiation and cut admissibility. In detail, negative uses of the
specification logic ∀ quantifier are represented in G as nominal constants (i.e.,
the ∇ quantifier), and the instantiation tactic allows such nominal constants to
be instantiated with specific terms. The cut tactic allows hypothetical judgments
to be relieved by showing that they are themselves provable.

4 Implementation

Abella is implemented in OCaml. The most sophisticated component of this
implementation is higher-order unification which is a fundamental part of the
logic G. It underlies how case analysis is performed, and in the implementation,
unification is used to decide when tactics apply and to determine their result.
Thus an efficient implementation of higher-order unification is central to an
efficient prover. For this, Abella uses the the higher-order pattern unification
package of Nadathur and Linnell [10]. We have also extended this package to
deal with the particular features and consequences of reasoning in G.

Treatment of nominal constants. As their name suggests, nominal constants can
be treated very similarly to constants for most of the unification algorithm, but
there are two key differences. First, while traditional constants can appear in the
instantiation of variables, nominal constants cannot appear in the instantiation
of variables. Thus dependency information on nominal constants is tracked via
explicit raising of variables. Second, nominal constants can be permuted when
determining unifiability. However, even in our most sophisticated examples the
number of nominal constants appearing at the same time has been at most two.
Thus, naive approaches to handling permutability of nominal constants have
sufficed and there has been little need to develop sophisticated algorithms.
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Simple extensions. The treatment of case analysis via unification for eigenvari-
ables creates unification problems which fall outside of the higher-order pattern
unification fragment, yet still have most general unifiers. For example, consider
the clause for β-contraction in the λ-calculus:

step (app (abs R) M) (R M).

Case analysis on a hypotheses of the form step A B will result in the attempt to
solve the unification problemB = R M where B, R, andM are all instantiatable.
This is outside of the higher-order pattern unification fragment since R is applied
to an instantiatable variable, but there is a clear most general unifier. When
nominal constants are present, this situation is slightly more complicated with
unification problems such as B x = R M x or B x = R (M x), where x is a
nominal constant. The result is the same, however, that a most general unifier
exists and is easy to find.

5 Examples

This section briefly describes sample reasoning tasks we have conducted in
Abella. The detailed proofs are available in the distribution of Abella [3].

Results from the λ-calculus. Over untyped λ-terms, we have shown the equiva-
lence of big-step and small-step evaluation, preservation of typing for both forms
of evaluation, and determinacy for both forms of evaluation. We have shown that
the λ-terms can be disjointly partitioned into normal and non-normal forms.
Over simply-typed λ-terms, we have shown that typing assignments are unique.

Cut admissibility. We have shown that the cut rule is admissible for a sequent
calculus with implication and conjunction. The representation of sequents in our
specification logic used hypothetical judgments to represent hypotheses in the
sequent. This allowed the cut admissibility proof to take advantage of Abella’s
built-in treatment of meta-properties of the specification logic.

The POPLmark challenge. The POPLmark challenge [1] is a selection of prob-
lems which highlight the traditional difficulties in reasoning over systems which
manipulate objects with binding. The particular tasks of the challenge involve
reasoning about evaluation, typing, and subtyping for F<:, a λ-calculus with
bounded subtype polymorphism. We have solved parts 1a and 2a of this chal-
lenge using Abella, which represent the fundamental reasoning tasks involving
objects with binding.

Proving normalizability à la Tait. We have shown that all closed terms in the
call-by-value, simply-typed λ-calculus are normalizable using the logical rela-
tions argument in the style of Tait [14]. Fundamental in this proof was the
encoding of arbitrary cascading substitutions which allows one to consider all
closed instantiations for an open λ-term. Encoding and reasoning over this form
of substitution makes essential use of the extended form of definitions in G.
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6 Future and Related Work

Induction and coinduction The logic G currently supports induction on natural
numbers. Similar logics have been extended to support structural induction and
coinduction on definitions [15]. Already, the implementation of Abella has sup-
port for these features. A paper which describes the extended logic supporting
these features is in preparation.

User programmability. Tactics-based theorem provers often support tacticals

which allow users to compose tactics in useful ways. Some systems even go
beyond this and offer a full programming language for creating custom tactics.
We would like to extend Abella with such features.

Proof search. Many proofs in Abella follow a straightforward pattern of essen-
tially induction, case analysis, and building from hypotheses. We would like to
extend Abella to perform these types of proofs automatically. Recent results on
focusing in similar logics may offer some insight into a disciplined approach to
automated proof search [2].

Related work. A closely related system is Twelf [13] which is based on a depen-
dently typed λ-calculus for specification. Controlling for dependent types, the
most significant difference is that our meta-logic is significantly richer than the
one in Twelf. Also related is the Nominal package [17] for Isabelle/HOL which
allows for reasoning over α-equivalence classes. This approach leverages on ex-
isting theorem proving work, but does not address the full problem of reasoning
with binding. In particular, all work related to substitution is left to the user. A
more detailed comparison with these works is available in Gacek et al. [5].
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