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1 Introduction

This article is concerned with automated complexity analysis of term rewrite systems (TRSs
for short). Since these systems underlie much of declarative programming, time complexity
of functions defined by TRSs is of particular interest.

Several notions to assess the complexity of a terminating TRS have been proposed in the
literature, compare [1, 2, 3, 4]. The conceptually simplest one was suggested by Hofbauer
and Lautemann in [2]: the complexity of a given TRS is measured as the maximal length of
derivation sequences. More precisely, the derivational complexity function with respect to a
terminating TRS relates the maximal derivation height to the size of the initial term. How-
ever, when analysing complexity of a function, it is natural to refine derivational complexity
so that only terms whose arguments are constructor terms are employed. Conclusively the
runtime complexity function with respect to a TRS relates the length of the longest deriva-
tion sequence to the size of the initial term, where the arguments are supposed to be in
normal form. This terminology was suggested in [4]. A related notion has been studied
in [1], where it is augmented by an average case analysis. Finally [3] studies the complexity
of the functions computed by a given TRS. This latter notion is extensively studied within
implicit computational complexity theory (ICC for short), see [5] for an overview. A con-
ceptual difference from runtime complexity is that polynomial computability addresses the
number of steps by means of (deterministic) Turing machines, while runtime complexity
measures the number of rewrite steps which is closely related to operational semantics of
programs. For instance, a statement like a quadratic complexity of sort algorithm is in the
latter sense.

This article presents methods for (over-)estimating runtime complexity automatically. We
establish the following results:
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1) We extend the applicability of direct techniques for complexity results by showing
how the monotonicity constraints can be significantly weakened through the employ
of usable replacement maps.

2) We revisit the dependency pair method in the context of complexity analysis. The
dependency pair method is originally developed for proving termination [6], and known
as one of the most successful methods in automated termination analysis.

3) We introduce the weight gap principle which allows the estimation of the complexity
of a TRS in a modular way.

4) We revisit the dependency graph analysis of the dependency pair method in the con-
text of complexity analysis. For that we introduce a suitable notion of path analysis
that allows to modularise complexity analysis further.

Note that while we have taken seminal ideas from termination analysis as starting points,
often the underlying principles are crucially different from those used in termination analysis.

A preliminary version of this article appeared in [4, 7]. Apart from the correction of some
shortcomings, we extend our earlier work in the following way: First, all results on usable
replacement maps are new (see Section 4). Second, the side condition for the weight gap
principle [4, Theorem 24] is corrected in Section 6. Thirdly, the weight gap principle is
extended by exploiting the initial term conditions and is generalised by means of matrix
interpretations (see Section 6). Finally, the applicability of the path analysis is strengthened
in comparison to the conference version [7] (see Section 7).

The remainder of this article is organised as follows. In the next section we recall basic
notions. We define runtime complexity and a subclass of matrix interpretations for its anal-
ysis in Section 3. In Section 4 we relate context-sensitive rewriting to runtime complexity.
In the next sections several ingredients in the dependency pair method are recapitulated
for complexity analysis: dependency pairs and usable rules (Section 5), reduction pairs via
the weight gap principle (Section 6), and dependency graphs (Section 7). In order to access
viability of the presented techniques all techniques have been implemented in the Tyrolean
Complexity Tool1 (TCT for short) and its empirical data is provided in Section 8. Finally
we conclude the article by mentioning related works in Section 9.

2 Preliminaries

We assume familiarity with term rewriting [8, 9] but briefly review basic concepts and
notations from term rewriting, relative rewriting, and context-sensitive rewriting. Moreover,
we recall matrix interpretations.

2.1 Rewriting

Let V denote a countably infinite set of variables and F a signature, such that F contains at
least one constant. The set of terms over F and V is denoted by T (F ,V). The root symbol
of a term t, denoted as root(t), is either t itself, if t ∈ V, or the symbol f , if t = f(t1, . . . , tn).
The set of position Pos(t) of a term t is defined as usual. We write PosG(t) ⊆ Pos(t) for

1 http://cl-informatik.uibk.ac.at/software/tct/ .
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the set of positions of subterms, whose root symbol is contained in G ⊆ F . The subterm
of t at position p is denoted as t|p, and t[u]p denotes the term that is obtained from t by
replacing the subterm at p by u. The subterm relation is denoted as E. Var(t) denotes the
set of variables occurring in a term t. The size |t| of a term is defined as the number of
symbols in t:

|t| :=

{
1 if t is a variable ,

1 +
∑

16i6n|ti| if t = f(t1, . . . , tn) .

A term rewrite system (TRS ) R over T (F ,V) is a finite set of rewrite rules l → r, such
that l /∈ V and Var(l) ⊇ Var(r). The smallest rewrite relation that contains R is denoted
by →R. The transitive closure of →R is denoted by →+

R, and its transitive and reflexive
closure by →∗

R. We simply write → for →R if R is clear from context. Let s and t be terms.
If exactly n steps are performed to rewrite s to t we write s →n t. Sometimes a derivation
s = s0 → s1 → · · · → sn = t is denoted as A : s →∗ t and its length n is referred to as |A|. A
term s ∈ T (F ,V) is called a normal form if there is no t ∈ T (F ,V) such that s → t. With
NF(R) we denote the set of all normal forms of a term rewrite system R. The innermost
rewrite relation i−→R of a TRS R is defined on terms as follows: s i−→R t if there exist a
rewrite rule l → r ∈ R, a context C, and a substitution σ such that s = C[lσ], t = C[rσ],
and all proper subterms of lσ are normal forms of R. Defined symbols of R are symbols
appearing at root in left-hand sides of R. The set of defined function symbols is denoted as
D, while the constructor symbols F \ D are collected in C. We call a term t = f(t1, . . . , tn)
basic or constructor based if f ∈ D and ti ∈ T (C,V) for all 1 6 i 6 n. The set of all basic
terms are denoted by Tb. A TRS R is called duplicating if there exists a rule l → r ∈ R such
that a variable occurs more often in r than in l. We call a TRS (innermost) terminating if
no infinite (innermost) rewrite sequence exists.

We recall the notion of relative rewriting, cf. [10, 9]. Let R and S be TRSs. The relative
TRS R/S is the pair (R,S). We define s →R/S t := s →∗

S · →R · →∗
S t and we call →R/S

the relative rewrite relation of R over S. Note that →R/S = →R, if S = ∅. R/S is called
terminating if →R/S is well-founded. In order to generalise the innermost rewriting relation
to relative rewriting, we introduce the slightly technical construction of the restricted rewrite
relation, compare [11]. The restricted rewrite relation

Q
−→R is the restriction of →R where

all arguments of the redex are in normal form with respect to the TRS Q. We define the
innermost relative rewriting relation (denoted as i−→R/S) as follows:

i−→R/S :=
R∪S
−−−→∗

S ·
R∪S
−−−→R ·

R∪S
−−−→∗

S ,

We briefly recall context-sensitive rewriting. A replacement map µ is a function with
µ(f) ⊆ {1, . . . , n} for all n-ary functions with n > 1. The set Posµ(t) of µ-replacing
positions in t is defined as follows:

Posµ(t) =

{
{ǫ} if t is a variable ,

{ǫ} ∪ {ip | i ∈ µ(f) and p ∈ Posµ(ti)} if t = f(t1, . . . , tn) .

A µ-step s
µ
−→ t is a rewrite step s → t whose rewrite position is in Posµ(s). The set of all

non-µ-replacing positions in t is denoted by Posµ(t); namely, Posµ(t) := Pos(t) \ Posµ(t).
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2.2 Matrix Interpretations

One of the most powerful and popular techniques for analysing derivational complexities is
use of orders induced from matrix interpretations [12]. In order to define it first we define
(weakly) monotone algebras.

A proper order is a transitive and irreflexive relation and a preorder (or quasi-order) is
a transitive and reflexive relation. A proper order ≻ is well-founded if there is no infinite
decreasing sequence t1 ≻ t2 ≻ t3 · · · . We say a proper order ≻ and a TRS R are compatible
if R ⊆ ≻.

An F-algebra A consists of a carrier set A and a collection of interpretations fA for each
function symbol in F . By [α]A(·) we denote the usual evaluation function of A according
to an assignment α which maps variables to values in A. A monotone F-algebra is a pair
(A,≻) where A is an F-algebra and ≻ is a proper order such that for every function symbol
f ∈ F , fA is strictly monotone in all coordinates with respect to ≻. A weakly monotone
F-algebra (A,<) is defined similarly, but for every function symbol f ∈ F , it suffices that
fA is weakly monotone in all coordinates (with respect to the quasi-order <). A monotone
F-algebra (A,≻) is called well-founded if ≻ is well-founded. We write WMA instead of
well-founded monotone algebra.

Any (weakly) monotone F-algebra (A, R) induces a binary relation RA on terms: define
s RA t if [α]A(s) R [α]A(t) for all assignments α. Clearly if R is a proper order (quasi-
order), then RA is a proper order (quasi-order) on terms and if R is a well-founded, then
RA is well-founded on terms. We say A is compatible with a TRS R if R ⊆ RA. Let <A

denote the quasi-order induced by a weakly monotone algebra (A,<), then =A denotes the
equivalence (on terms) induced by <A. Let µ denote a replacement map. Then we call a
well-founded algebra (A,≻) µ-monotone if for every function symbol f ∈ F , fA is strictly
monotone on µ(f), i.e., fA is strictly monotone with respect to every argument position in
µ(f). Similarly a (strict) relation R is called µ-monotone if (strictly) monotone on µ(f) for
all f ∈ F . Let R be a TRS compatible with a µ-monotone relation R. Then clearly any
µ-step s

µ
−→ t implies s R t.

We recall the concept of matrix interpretations on natural numbers (see [12] but compare
also [13]). Let F denote a signature. We fix a dimension d ∈ N and use the set N

d as the
carrier of an algebra A, together with the following extension of the natural order > on N:

(x1, x2, . . . , xd) > (y1, y2, . . . , yd) :⇐⇒ x1 > y1 ∧ x2 > y2 ∧ . . . ∧ xd > yd .

Let µ be a replacement map. For each n-ary function symbol f , we choose as an interpre-
tation a linear function of the following shape:

fA : (~v1, . . . , ~vn) 7→ F1~v1 + · · ·+ Fn~vn + ~f ,

where ~v1, . . . , ~vn are (column) vectors of variables, F1, . . . , Fn are matrices (each of size
d × d), and ~f is a vector over N. Moreover, suppose for any i ∈ µ(f) the top left entry
(Fi)1,1 is positive. Then it is easy to see that the algebra A forms a µ-monotone WMA.
Let A be a matrix interpretation, let α0 denotes the assignment mapping any variable to
~0, i.e., α0(x) = ~0 for all x ∈ V, and let t be a term. In the following we write [t], [t]j as an
abbreviation for [α0]A(t), or ([α0]A(t))j (1 6 j 6 d), respectively, if the algebra A is clear
from the context.
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3 Runtime Complexity

In this section we formalise runtime complexity and then define a subclass of matrix inter-
pretations that give polynomial upper-bounds.

The derivation height of a term s with respect to a well-founded, finitely branching relation
→ is defined as: dh(s,→) = max{n | ∃t s →n t}. Let R be a TRS and T be a set of terms.
The complexity function with respect to a relation → on T is defined as follows:

comp(n, T,→) = max{dh(t,→) | t ∈ T and |t| 6 n} .

In particular we are interested in the (innermost) complexity with respect to →R ( i−→R) on
the set Tb of all basic terms.

Definition 3.1. Let R be a TRS. We define the runtime complexity function rcR(n), the
innermost runtime complexity function rciR(n), and the derivational complexity function
dcR(n) as comp(n,Tb,→R), comp(n,Tb,

i−→R), and comp(n,T (F ,V),→R), respectively.

Note that the above complexity functions need not be defined, as the rewrite relation →R

is not always well-founded and finitely branching. We sometimes say the (innermost) run-
time complexity of R is linear, quadratic, or polynomial if there exists a (linear, quadratic)

polynomial p(n) such that rc
(i)
R (n) 6 p(n) for sufficiently large n. The (innermost) runtime

complexity of R is called exponential if there exist constants c, d with c, d > 2 such that

cn 6 rc
(i)
R (n) 6 dn for sufficiently large n.

The next example illustrates a difference between derivational complexity and runtime
complexity.

Example 3.2. Consider the following TRS Rdiv
2

1: x− 0 → x 3: 0÷ s(y) → 0

2: s(x)− s(y) → x− y 4: s(x)÷ s(y) → s((x− y)÷ s(y)) .

Although the functions computed by Rdiv are obviously feasible this is not reflected in the
derivational complexity of Rdiv. Consider rule 4, which we abbreviate as C[x] → D[x, x].
Since the maximal derivation height starting with Cn[x] equals 2n−1 for all n > 0, Rdiv ad-
mits (at least) exponential derivational complexity. In general any duplicating TRS admits
(at least) exponential derivational complexity.

In general it is not possible to bound dcR polynomially in rcR, as witnessed by Example 3.2
and the observation that the runtime complexity of R is linear (see Example 4.10, below).
We will use Example 3.2 as our running example.

Below we define classes of orders whose compatibility with a TRS R bounds its run-
time complexity from the above. Note that dh(t,≻) is undefined, if the relation ≻ is not
well-founded or not finitely branching. In fact compatibility of a constructor TRS with
the polynomial path order >pop∗ ([15]) induces polynomial innermost runtime complexity,
whereas f(x) >pop∗ · · · >pop∗ · · · >pop∗ g2(x) >pop∗ g(x) >pop∗ x holds when precedence
f > g is used. Hence dh(t,>pop∗) is undefined, while the order >pop∗ can be employed in
complexity analysis.

2 This is Example 3.1 in Arts and Giesl’s collection of TRSs [14].
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Definition 3.3. Let R be a binary relation over terms, let ≻ be a proper order on terms, and
let G denote a mapping associating a term with a natural number. Then ≻ is G-collapsible
on R if G(s) > G(t), whenever s R t and s ≻ t holds. An order ≻ is collapsible (on R), if
there is a mapping G such that ≻ is G-collapsible (on R).

Lemma 3.4. Let R be a finitely branching and well-founded relation. Further, let ≻ be a
G-collapsible order with R ⊆ ≻. Then dh(t, R) 6 G(t) holds for all terms t.

The alert reader will have noticed that any proper order ≻ is collapsible on a finitely
branching and well-founded relation R: simply set G(t) := dh(t, R). However, this obser-
vation is of limited use if we wish to bound the derivation height of t in independence of
R.

If a TRS R and a µ-monotone matrix interpretation A are compatible, G(t) can be given
by [t]1. In order to estimate derivational or runtime complexity, one needs to associate [t]1
to |t|. For this sake we define degrees of matrix interpretations.

Definition 3.5. A matrix interpretation is of (basic) degree d if there is a constant c such
that [t]i 6 c · |t|d for all (basic) terms t and i, respectively.

An upper triangular complexity matrix is a matrix M in N
d×d such that we have Mj,k = 0

for all 1 6 k < j 6 d, and Mj,j 6 1 for all 1 6 j 6 d. We say that a WMA A is a triangular
matrix interpretation (TMI for short) if A is a matrix interpretation (over N) and all
matrices employed are of upper triangular complexity form. It is easy to define triangular
matrix interpretations, such that an algebra A based on such an interpretation, forms a well-
founded weakly monotone algebra. To simplify notation we will also refer toA as a TMI, if no
confusion can arise from this. A TMI A of dimension 1, that is a linear polynomial, is called
a strongly linear interpretation (SLI for short) if all interpretation functions fA are strongly
linear. Here a polynomial P (x1, . . . , xn) is strong linear if P (x1, . . . , xn) = x1+ · · ·+xn+ c.

Lemma 3.6. Let A be a TMI and let M denote the component-wise maximum of all ma-
trices occurring in A. Further, let d denote the number of ones occurring along the diagonal
of M . Then for all 1 6 i, j 6 d we have (Mn)i,j = O(nd−1).

Proof. The lemma is a direct consequence of Lemma 4 in [16] together with the observa-
tion that for any triangular complexity matrix, the diagonal entries denote the multiset of
eigenvalues.

Lemma 3.7. Let A and d be defined as in Lemma 3.6. Then A is of degree d.

Proof. For any (triangular) matrix interpretation A, there exist vectors ~vi and a vector ~w
such that the evaluation [t] of t can be written as follows:

[t] =

ℓ∑

i=1

~vi + ~w ,

where each vector ~vi is the product of those matrices employed in the interpretation of func-
tion symbols in A and a vector representing the constant part of a function interpretation.
It is not difficult to see that there is a one-to-one correspondence between the number of
vectors ~v1, . . . , ~vℓ and the number of subterms of t and thus ℓ = |t|. Moreover for each ~vi

7



the number of products is less than the depth of t and thus bounded by |t|. In addition, due
to Lemma 3.6 the entries of the vectors ~vi and ~w are bounded by a polynomial of degree at
most d− 1. Thus for all 1 6 j 6 d, there exists k 6 d such that ([t])j = O(|t|k).

Theorem 3.8. [16, Theorem 9],[17] Let A and d be defined as in Lemma 3.6. Then, ≻A

is O(nd)-collapsible.

Proof. The theorem is a direct consequence of Lemmas 3.6 and 3.7.

In order to cope with runtime complexity, a similar idea to restricted polynomial in-
terpretations (see [18]) can be integrated to triangle matrix interpretations. We call A a
restricted matrix interpretation (RMI for short) if A is a matrix interpretation, but for each
constructor symbol f ∈ F , the interpretation fA of f employs upper triangular complexity
matrices, only. The next theorem is a direct consequence of the definitions in conjunction
with Lemma 3.7.

Theorem 3.9. Let A be an RMI and let t be a basic term. Further, let M denote the
component-wise maximum of all matrices used for the interpretation of constructor symbol,
and let d denote the number of ones occurring along the diagonal of M . Then A is of basic
degree d. Furthermore, if M is the unit matrix then A is of basic degree 1.

4 Usable Replacement Maps

Unfortunately, there is no RMI compatible with the TRS of our running example. The
reason is that the monotonicity requirement of TMI is too severe for complexity analysis.
Inspired by the idea of Fernández [19], we show how context-sensitive rewriting is used in
complexity analysis. Here we briefly explain our idea. Let n denote the numeral sn(0).
Consider the derivation from 4÷ 2:

4÷ 2 → s((3− 1)÷ 2) → s((2− 0)÷ 2) → s(2÷ 2) → · · ·

where redexes are underlined. Observe that e.g. any second argument of ÷ is never rewrit-
ten. More precisely, any derivation from a basic term consists of only µ-steps with the
replacement map µ: µ(s) = µ(÷) = {1} and µ(−) = ∅.

We present a simple method based on a variant of ICAP in [20] to estimate a suitable
replacement map. Let µ be a replacement map. Clearly the function µ is representable
as set of ordered pairs (f, i). Below we often confuse the notation of µ as a function or
as a set. Recall that Posµ(t) denotes the set of µ-replacing positions in t and Posµ(t) =
Pos(t) \ Posµ(t). Further, a term t is a µ-replacing term with respect to a TRS R if
t|p 6∈ NF(R) implies that p ∈ Posµ(t). The set of all µ-replacing terms is denoted by T (µ).
In the following R will always denote a TRS.

Definition 4.1. Let R be a TRS and let µ be a replacement map. We defined the operator
ΥR as follows:

ΥR(µ) := {(f, i) | l → C[f(r1, . . . , rn)] ∈ R and CAPl
µ(ri) 6= ri} .

8



Here CAPs
µ(t) is inductively defined on t as follows:

CAPs
µ(t) =





t t = s|p for some p ∈ Posµ(s) ,

u if t = f(t1, . . . , tn) and u and l unify for no l → r ∈ R ,

y otherwise ,

where, u = f(CAPs
µ(t1), . . . ,CAP

s
µ(tn)), y is a fresh variable, and Var(l) ∩ Var(u) = ∅ is

assumed.

We define the innermost usable replacement map µR
i as follows µR

i := ΥR(∅) and let the
usable replacement map µR

f denote the least fixed point of ΥR. The existence of ΥR follows
from the monotonicity of ΥR. If R is clear from context, we simple write µi, µf , and Υ,
respectively. Usable replacement maps satisfy a desired property for runtime complexity
analysis. In order to see it several preliminary lemmas are necessary.

First we take a look at CAPs
µ(t). Suppose s ∈ T (µ): observe that the function CAPs

µ(t)
replaces a subterm u of t by a fresh variable if uσ is a redex for some sσ ∈ T (µ). This is
exemplified below.

Example 4.2. Consider the TRS Rdiv. Let l → r be rule 4, namely, l = s(x) ÷ s(y) and
r = s((x − y) ÷ s(y)). Suppose µ(f) = ∅ for all functions f and let w and z be fresh
variables. The next table summarises CAPl

µ(t) for each proper subterm t in r. To see the
computation process, we also indicate the term u in Definition 4.1.

t x y x− y s(y) (x− y)÷ s(y)
u – – x− y s(y) w ÷ s(y)

CAPl
µ(t) x y w s(y) z

By underlining proper subterms t in r such that CAPl
µ(t) 6= t, we have

s((x− y)÷ s(y))

which indicates (s, 1), (÷, 1) ∈ Υ(µ).

The next lemma states a role of CAPs
µ(t).

Lemma 4.3. If sσ ∈ T (µ) and CAPs
µ(t) = t then tσ ∈ NF(R).

Proof. We use induction on t. Suppose sσ ∈ T (µ) and CAPs
µ(t) = t. If t = s|p for some

p ∈ Posµ(s) then tσ = (sσ)|p ∈ NF follows by definition of T (µ).
We can assume that t = f(t1, . . . , tn). Assume otherwise that t = x ∈ V, then CAPs

µ(x) =
x entails that xσ occurs at a non-µ-replacing position in sσ. Hence xσ ∈ NF follows from
sσ ∈ T (µ). Moreover, by assumption we have:

1) CAPs
µ(ti) = ti for each i, and

2) there is no rule l → r ∈ R such that t and l unify.

Due to 2) lσ is not reducible at the root, and the induction hypothesis yields tiσ ∈ NF

because of 1). Therefore, we obtain tσ ∈ NF.

9



For a smooth inductive proof of our key lemma we prepare a characterisation of the set
of µ-replacing terms T (µ).

Definition 4.4. The set {(f, i) | f(t1, . . . , tn) E t and ti 6∈ NF(R)} is denoted by υ(t).

Lemma 4.5. T (µ) = {t | υ(t) ⊆ µ}.

Proof. The inclusion from left to right essentially follows from the definitions. Let t ∈ T (µ)
and let (f, i) ∈ υ(t). We show (f, i) ∈ µ. By Definition 4.4 there is a position p ∈ Pos(t)
with t|p = f(t1, . . . , tn) and t|pi 6∈ NF. Thus pi ∈ Posµ(t) and i ∈ Posµ(t|p). Hence (f, i) ∈ µ
is concluded.

Next we consider the reverse direction {t | υ(t) ⊆ µ} ⊆ T (µ). Let t be a minimal term
such that υ(t) ⊆ µ and t 6∈ T (µ). One can write t = f(t1, . . . , tn). Then, there exists a
position p ∈ Posµ(t) such that t|p 6∈ NF. Because ǫ 6∈ Posµ(t) holds in general, p is of the
form iq with i ∈ N. As iq ∈ Posµ(t) one of (f, i) 6∈ µ or q ∈ Posµ(t|i) must hold. As t is
minimal and t|iq 6∈ NF implies that t|i 6∈ NF, we have (f, i) 6∈ µ. However, by Definition 4.4,
(f, i) ∈ υ(t) ⊆ µ. Contradiction.

The next lemma about the operator Υ is a key for the main theorem. Note that every
subterm of a µ-replacing term is a µ-replacing term.

Lemma 4.6. If l → r ∈ R and lσ ∈ T (µ) then rσ ∈ T (µ ∪Υ(µ)).

Proof. Let l → r ∈ R and suppose lσ ∈ T (µ). By Lemma 4.5 we have

T (µ) = {t | υ(t) ⊆ µ} T (µ ∪Υ(µ)) = {t | υ(t) ⊆ µ ∪Υ(µ)} .

Hence it is sufficient to show υ(rσ) ⊆ µ ∪ Υ(µ). Let (f, i) ∈ υ(rσ). There is p ∈ Pos(rσ)
with rσ|p = f(t1, . . . , tn) and ti 6∈ NF. If p is below some variable position of r, rσ|p is
a subterm of lσ, and thus υ(rσ|p) ⊆ υ(lσ) ⊆ µ. Otherwise, p is a non-variable position
of r. We may write r|p = f(r1, . . . , rn) and riσ = ti 6∈ NF. Due to Lemma 4.3 we obtain
CAPl

µ(ri) 6= ri. Therefore, (f, i) ∈ Υ(µ).

Remark that if s, t ∈ T (µ) and p ∈ Posµ(s) then s[t]p ∈ T (µ).

Lemma 4.7. The following implications hold.

1) If s ∈ T (µi) and s i−→ t then t ∈ T (µi).

2) If s ∈ T (µf) and s → t then t ∈ T (µf).

Proof. We show property 1). Suppose s ∈ T (µi) and s i−→ t is a rewrite step at p. Due to
the definition of innermost rewriting, we have s|p ∈ T (∅). Hence, t|p ∈ T (µi) is obtained
by Lemma 4.6. Because s ∈ T (µi) we have p ∈ Posµi

(s). Hence due to t|p ∈ T (µi) we
conclude t = s[t|p]p ∈ T (µi) due to the above remark. The proof of 2) proceeds along the
same pattern and is left to the reader.

We arrive at the main result of this section.

Theorem 4.8. Let R be a TRS, and let →∗(L) denote the descendants of the set of terms
L. Then i−→∗

R (T (∅)) ⊆ T (µi) and →∗
R (T (∅)) ⊆ T (µf).
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Proof. Recall that →∗(L) := {t | ∃s ∈ L such that s →∗ t}. We focus on the second part of
the theorem, where we have to prove that t ∈ T (µf), whenever there exists s ∈ T (∅) such
that s →∗

R t. As T (∅) ⊆ T (µf) this follows directly from Lemma 4.7.

Note that T (∅) is the set of all argument normalised terms. Therefore, Tb ⊆ T (∅). The
following corollary to Theorem 4.8 is immediate.

Corollary 4.9. Let R be a TRS and let
µi−→,

µf−→ denote the µi-step and µf-step relation,
respectively. Then for all terminating terms t ∈ Tb we have dh(t, i−→R) 6 dh(t,

µi−→) and
dh(t,→R) 6 dh(t,

µf−→).

An advantage of the use of context-sensitive rewriting is that the compatibility require-
ment of monotone algebra in termination or complexity analysis is relaxed to µ-monotone
algebra. We illustrate its use in the next example.

Example 4.10. Recall the TRS Rdiv given in Example 3.2 above. The usable argument
positions are as follows:

µi(−) = ∅ µi(s) = µi(÷) = {1} µf(s) = µf(−) = µf(÷) = {1} .

Consider the 1-dimensional RMI A (i.e., linear polynomial interpretations) with

0A = 1 sA(x) = x+ 2 −A(x, y) = x+ 1 ÷A(x, y) = 3x .

which is strictly µi-monotone and µf-monotone. The rules in Rdiv are interpreted and
ordered as follows.

1: x+ 1 > x 3: 3 > 1

2: x+ 3 > x+ 2 4: 3x+ 6 > 3x+ 5 .

Therefore, Rdiv ⊆ >A holds. By an application of Theorem 3.9 we conclude that the
(innermost) runtime complexity is linear, which is optimal.

We cast the observations in the example into another corollary to Theorem 4.8.

Corollary 4.11. Let R be a TRS and let A be a d-degree µi-monotone (or µf-monotone)

RMI compatible with R. Then the (innermost) runtime complexity function rc
(i)
R with respect

to R is bounded by a d-degree polynomial.

Proof. It suffices to consider the case for full rewriting. Let s, t be terms such that s →R t.
By the theorem, we have s

µf−→ t. Furthermore, by assumption R ⊆ ≻A and for any f ∈ F ,
fA is strictly monotone on all µf(f). Thus s ≻A t follows. Finally, the corollary follows by
application of Theorem 3.9.

We link Theorem 4.8 to related work by Fernández [19]. In [19] it is shown how context-
sensitive rewriting is used for proving innermost termination.

Proposition 4.12 ([19]). A TRS R is innermost terminating if
µi−→ is terminating.

Proof. We show the contraposition. If R is not innermost terminating, there is an infinite
sequence t0

i−→ t1
i−→ t2

i−→ · · · , where t0 ∈ T (∅). From Theorem 4.8 and Lemma 4.7 we
obtain t0

µi−→ t1
µi−→ t2

µi−→ · · · . Hence,
µi−→ is not terminating.

11



One might think that a similar claim holds for full termination if one uses µf . The next
examples clarifies that this is not the case.

Example 4.13. Consider the famous Toyama’s example R

f(a, b, x) → f(x, x, x) g(x, y) → x g(x, y) → y .

The replacement map µf is empty. Thus, the algebra A over N

fA(x, y, z) = max{x− y, 0} gA(x, y) = x+ y + 1 aA = 1 bA = 0 .

is µf-monotone and we have R ⊆ >A. However, we should not conclude termination of R,
because f(a, b, g(a, b)) is non-terminating.

5 Weak Dependency Pairs

In Section 4 we investigated argument positions of rewrite steps. This section is concerned
about contexts surrounding rewrite steps. Recall the derivation:

4÷ 2 →Rdiv
s( (3− 1)÷ 2 ) →2

Rdiv
s( 2÷ 2 )

→Rdiv
s(s( (1− 1)÷ 2 )) →2

Rdiv
s(s( 0÷ 2 ))

→Rdiv
s(s(0)) ,

where we boxed outermost occurrences of defined symbols. Obviously, their surrounding
contexts are not rewritten. Here an idea is to simulate rewrite steps from basic terms with
new rewrite rules, obtained by dropping unnecessary contexts. In termination analysis this
method is known as the dependency pair method [6]. We recast its main ingredient called
dependency pairs.

Let X be a set of symbols. We write C〈t1, . . . , tn〉X to denote C[t1, . . . , tn], whenever
root(ti) ∈ X for all 1 6 i 6 n and C is an n-hole context containing no X-symbols. (Note
that the context C may be degenerate and doesn’t contain a hole � or it may be that C is
a hole.) Then, every term t can be uniquely written in the form C〈t1, . . . , tn〉X .

Lemma 5.1. Let t be a terminating term, and let σ be a substitution. Then dh(tσ,→R) =∑
16i6n dh(tiσ,→R), whenever t = C〈t1, . . . , tn〉D∪V .

The idea is to replace such a n-hole context with a fresh n-ary function symbol. We define
the function com as a mapping from tuples of terms to terms as follows: com(t1, . . . , tn)
is t1 if n = 1, and c(t1, . . . , tn) otherwise. Here c is a fresh n-ary function symbol called
compound symbol. The above lemma motivates the next definition of weak dependency pairs.

Definition 5.2. Let t be a term. We set t♯ := t if t ∈ V, and t♯ := f ♯(t1, . . . , tn) if
t = f(t1, . . . , tn). Here f ♯ is a new n-ary function symbol called dependency pair symbol.
For a signature F , we define F ♯ = F ∪ {f ♯ | f ∈ F}. Let R be a TRS. If l → r ∈ R

and r = C〈u1, . . . , un〉D∪V then the rewrite rule l♯ → com(u♯1, . . . , u
♯
n) is called a weak

dependency pair of R. The set of all weak dependency pairs is denoted by WDP(R).
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While dependency pair symbols are defined with respect to WDP(R), these symbols are
not defined with respect to the original system R. In the sequel defined symbols refer to
the defined function symbols of R.

Example 5.3 (continued from Example 3.2). The set WDP(Rdiv) consists of the next four
weak dependency pairs:

5 : x−♯ 0 → x 7: 0÷♯ s(y) → c

6: s(x)−♯ s(y) → x−♯ y 8: s(x)÷♯ s(y) → (x− y)÷♯ s(y) .

Here c denotes a fresh compound symbols of arity 0.

The derivation on page 12 corresponds to the derivation of WDP(Rdiv) ∪Rdiv:

4÷♯ 2 →WDP(Rdiv) (3− 1)÷♯ 2 →2
Rdiv

2÷♯ 2

→WDP(Rdiv) (1− 1)÷♯ 2 →2
Rdiv

0÷♯ 2

→WDP(Rdiv) c ,

which preserves the length. The next lemma states that this is generally true.

Lemma 5.4. Let t ∈ T (F ,V) be a terminating term with defined root. Then we obtain:
dh(t,→R) = dh(t♯,→WDP(R)∪R).

Proof. We show dh(t,→R) 6 dh(t♯,→WDP(R)∪R) by induction on dh(t,→R). Let ℓ =
dh(t,→R). If ℓ = 0, the inequality is trivial. Suppose ℓ > 0. Then there exists a term
u such that t →R u and dh(u,→R) = ℓ − 1. We distinguish two cases depending on the
rewrite position p.

1) If p is a position below the root, then clearly root(u) = root(t) ∈ D and t♯ →R u♯.
Induction hypothesis yields dh(u,→R) 6 dh(u♯,→WDP(R)∪R), and we obtain ℓ 6

dh(t♯,→WDP(R)∪R).

2) If p is a root position, then there exist a rewrite rule l → r ∈ R and a substitution σ
such that t = lσ and u = rσ. There exists a context C such that r = C〈u1, . . . , un〉D∪V

and thus by definition l♯ → com(u♯1, . . . , u
♯
n) ∈ WDP(R) such that t♯ = l♯σ. Now,

either ui ∈ V or root(ui) ∈ D for every 1 6 i 6 n. Suppose ui ∈ V. Then u♯iσ = uiσ
and clearly no dependency pair symbol can occur and thus,

dh(uiσ,→R) = dh(u♯iσ,→R) = dh(u♯iσ,→WDP(R)∪R) .

Otherwise, if root(ui) ∈ D then u♯iσ = (uiσ)
♯. Hence dh(uiσ,→R) 6 dh(u,→R) < ℓ,

and we conclude dh(uiσ,→R) 6 dh(u♯iσ,→WDP(R)∪R) from the induction hypothesis.
Therefore,

ℓ = dh(u,→R) + 1

=
∑

16i6n

dh(uiσ,→R) + 1 6
∑

16i6n

dh(u♯iσ,→WDP(R)∪R) + 1

= dh(com(u♯1, . . . , u
♯
n)σ,→WDP(R)∪R) + 1 6 dh(t♯,→WDP(R)∪R) .

Here we used Lemma 5.1 for the second equality.
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Note that t is R-reducible if and only if t♯ is WDP(R) ∪ R-reducible. Hence as t is termi-
nating, t♯ is terminating on →WDP(R)∪R. Thus, similarly, dh(t,→R) > dh(t♯,→WDP(R)∪R)

is shown by induction on dh(t♯,→WDP(R)∪R).

In the case of innermost rewriting we need not include collapsing dependency pairs as in
Definition 5.2. This is guaranteed by the next lemma.

Lemma 5.5. Let t be a terminating term and σ a substitution such that xσ is a normal
form of R for all x ∈ Var(t). Then dh(tσ,→R) =

∑
16i6n dh(tiσ,→R), whenever t =

C〈t1, . . . , tn〉D.

Definition 5.6. Let R be a TRS. If l → r ∈ R and r = C〈u1, . . . , un〉D then the rewrite

rule l♯ → com(u♯1, . . . , u
♯
n) is called a weak innermost dependency pair of R. The set of all

weak innermost dependency pairs is denoted by WIDP(R).

Example 5.7 (continued from Example 3.2). The set WIDP(Rdiv) consists of the next three
weak innermost dependency pairs (with respect to i−→):

s(x)−♯ s(y) → x−♯ y 0÷♯ s(y) → c

s(x)÷♯ s(y) → (x− y)÷♯ s(y) .

The next lemma adapts Lemma 5.4 to innermost rewriting.

Lemma 5.8. Let t be an innermost terminating term in T (F ,V) with root(t) ∈ D. We
have dh(t, i−→R) = dh(t♯, i−→WIDP(R)∪R).

Looking at the simulated version of the derivation on page 12, rules 1 and 2 are used, but
neither rule 3 nor 4 is used in the R-steps. In general we can approximate a subsystem of
a TRS that can be used in derivations from basic terms, by employing the notion of usable
rules in the dependency pair method (cf. [6, 21, 22]).

Definition 5.9. We write f ⊲d g if there exists a rewrite rule l → r ∈ R such that
f = root(l) and g is a defined function symbol in Fun(r). For a set G of defined function
symbols we denote by R↾G the set of rewrite rules l → r ∈ R with root(l) ∈ G. The set
U(t) of usable rules of a term t is defined as R↾{g | f ⊲d

∗ g for some f ∈ Fun(t)}. Finally,
if P is a set of (weak) dependency pairs then U(P) =

⋃
l→r∈P U(r).

Example 5.10 (continued from Examples 5.3 and 5.7). The set U(WDP(Rdiv)) of usable
rules for the weak dependency pairs consists of the two rules:

1 : x− 0 → x 2: s(x)− s(y) → x− y .

Note that we have that U(WDP(Rdiv)) = U(WIDP(Rdiv)).

We show a usable rule criterion for complexity analysis by exploiting the property that
the starting terms are basic. Recall that Tb denotes the set of basic terms; we set T ♯

b = {t♯ |
t ∈ Tb}.

Lemma 5.11. Let P be a set of weak dependency pairs and let (ti)i=0,1,... be a (finite or

infinite) derivation of P ∪R. If t0 ∈ T ♯
b then (ti)i=0,1,... is a derivation of P ∪ U(P).
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Proof. Let G be the set of all non-usable symbols with respect to P. We write P (t) if
t|q ∈ NF(R) for all q ∈ PosG(t). First we prove by induction on i that P (ti) holds for all i.

1) Assume i = 0. Since t0 ∈ T ♯
b , we have t0 ∈ NF(R) and thus t|p ∈ NF(R) for all

positions p. The assertion P follows trivially.

2) Suppose i > 0. By induction hypothesis, P (ti−1) holds, i.e., there exist p ∈ Pos(ti−1),
a substitution σ, and l → r ∈ U(P) ∪ P, such that ti−1|p = lσ and ti|p = rσ. In
order to show property P for ti, we fix a position q ∈ PosG(t). We have to show
ti|q ∈ NF(R). We distinguish three subcases:

• Suppose that q is above p. Then ti−1|q is reducible, but this contradicts the
induction hypothesis P (ti−1).

• Suppose p and q are parallel but distinct. Since ti−1|q = ti|q ∈ NF(R) holds, we
obtain P (ti).

• Otherwise, q is below p. Then, ti|q is a subterm of rσ. Because r contains no
G-symbols by the definition of usable symbols, ti|q is a subterm of xσ for some
x ∈ Var(r) ⊆ Var(l). Therefore, ti|q is also a subterm of ti−1|q, from which
ti|q ∈ NF(R) follows. We obtain P (ti).

Hence property P holds for all ti in the assumed derivation. Thus any reduction step
ti →R∪P ti+1 can be simulated by a step ti →U(P)∪P ti+1. From this the lemma follows.

Note that the proof technique adopted for termination analysis [21, 22] cannot be directly
used in this context. The technique transforms terms in a derivation to exclude non-usable
rules. However, since the size of the initial term increases, this technique does not suit to our
use. On the other hand, the transformation employed in [22] is adaptable to a complexity
analysis in the large, cf. [23].

The next theorem follows from Lemmas 5.4 and 5.8 in conjunction with the above
Lemma 5.11. It adapts the usable rule criteria to complexity analysis.

Theorem 5.12. Let R be a TRS and let t ∈ Tb. If t is terminating with respect to →
then dh(t,→) = dh(t♯,→P∪U(P)), where → denotes →R or i−→R depending on whether P =
WDP(R) or P = WIDP(R).

To clarify the applicability of the theorem in complexity analysis, we instantiate the
theorem by considering RMIs.

Corollary 5.13. Let R be a TRS, let µ be the (innermost) usable replacement map and let
P = WDP(R) (or P = WIDP(R)). If P ∪ U(P) is compatible with a d-degree µ-monotone

RMI A, then the (innermost) runtime complexity function rc
(i)
R with respect to R is bounded

by a d-degree polynomial.

Proof. For simplicity we suppose P = WDP(R) and let A be a µ-monotone RMI of degree
d. Compatibility of A with P ∪ U(P) implies the well-foundedness of the relation →P∪U(P)

on the set of terms T ♯
b , cf. Theorem 4.8. This in turn implies the well-foundedness of

→R, cf. Lemma 5.11. Hence Theorem 5.12 is applicable and we conclude dh(t,→R) =
dh(t♯,→P∪U(P)). On the other hand, due to Theorem 3.9 compatibility with A implies

that dh(t♯,→P∪U(P)) = O(|t♯|d). As |t♯| = |t|, we can combine these equalities to conclude
polynomial runtime complexity of R.
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The below given example applies Corollary 5.13 to the motivating Example 3.2 introduced
in Section 1.

Example 5.14 (continued from Example 5.10). Consider the TRS Rdiv for division used
as running example; the weak dependency pairs P := WDP(Rdiv) are given in Example 5.3.
We have U(P) = {1, 2} and let S = P ∪ U(P). The usable replacement map µ := µS

f is
defined as follows:

µ(s) = µ(−) = µ(−♯) = ∅ µ(÷♯)= {1} .

Note that µS
f is smaller than µR

f on F (see Example 4.10). Consider the 1-dimensional

RMI A with 0A = cA = dA = 0, sA(x) = x + 2, −A(x, y) = −♯
A(x, y) = x + 1, and

÷♯
A(x, y) = x+1. The algebra A is strictly monotone on all usable argument positions and

the rules in S are interpreted and ordered as follows:

1: x+ 1 > x 5: 1 > 0 7: 1 > 0

2: x+ 3 > x+ 1 6: x+ 3 > x+ 1 8: x+ 3 > x+ 2 .

Therefore, S is compatible with A and the runtime complexity function rcR is linear. Re-
mark that by looking at the coefficients of the interpretations more precise bound can be
inferred. Since all coefficients are at most one, we obtain rcR(n) 6 n+ c for some c ∈ N.

It is worth stressing that it is (often) easier to analyse the complexity of P ∪ U(P) than
the complexity of R. This is exemplified by the next example.

Example 5.15. Consider the TRS RD

D(c) → 0 D(x+ y) → D(x) + D(y) D(x× y) → (y ×D(x)) + (x× D(y))

D(t) → 1 D(x− y) → D(x)− D(y) .

There is no 1-dimensional µf-monotone RMI compatible with RD. On the other hand
WDP(RD) consists of the five pairs

D♯(c) → c1 D♯(x+ y) → c3(D
♯(x),D♯(y)) D♯(x× y) → c5(y,D

♯(x), x,D♯(y))

D♯(t) → c2 D♯(x− y) → c4(D
♯(x),D♯(y)) ,

and U(WDP(RD)) = ∅. The usable replacement map µf for WDP(RD) ∪ U(RD) is defined
as µf(c3) = µf(c4) = {1, 2}, µf(c5) = {2, 4}, and µf(f) = ∅ for all other symbols f . Since
the 1-dimensional µf -monotone RMI A with

D
♯
A(x) = 2x cA = tA = 1 +A(x, y) = −A(x, y) = ×A(x, y) = x+ y + 1

c1A = c2A = 0 c3A(x, y) = c4A(x, y) = x+ y c5A(x, y, z, w) = y + w ,

is compatible with RD, linear runtime complexity of RD is concluded. Remark that this
bound is optimal.

We conclude this section by discussing the (in-)applicability of standard dependency pairs
(see [6]) in complexity analysis. For that we recall the definition of standard dependency
pairs.
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Definition 5.16 ([6]). The set DP(R) of (standard) dependency pairs of a TRSR is defined
as {l♯ → u♯ | l → r ∈ R, u E r, root(u) is defined, and u 6⊳ l}.

The next example shows that Lemma 5.4 (Lemma 5.8) does not hold if we replace weak
(innermost) dependency pairs with standard dependency pairs.

Example 5.17. Consider the one-rule TRS R: f(s(x)) → g(f(x), f(x)). DP(R) is the
singleton of f♯(s(x)) → f♯(x). Let tn = f(sn(x)) for each n > 0. Since tn+1 →R g(tn, tn)

holds for all n > 0, it is easy to see dh(tn+1,→R) > 2n, while dh(t♯n+1,→DP(R)∪R) = n.

6 The Weight Gap Principle

Let P = WDP(Rdiv) and recall the derivation over P ∪Rdiv on page 13. This derivation can
be represented as derivation of P modulo U(P):

4÷♯ 2 →P/U(P) 2÷♯ 2 →P/U(P) 0÷♯ 2 →P/U(P) c .

As we see later linear runtime complexity of U(P) and P/U(P) can be easily obtained. If
linear runtime complexity of P ∪ U(P) would follow from them, linear runtime complexity
of R could be established in a modular way.

In order to bound complexity of relative TRSs we define a variant of a reduction pair [6].
Note that G is associated to a given collapsible order.

Definition 6.1. A µ-complexity pair for a relative TRS R/S is a pair (&,≻) such that & is
a µ-monotone proper order and ≻ is a strict order. Moreover & and ≻ are compatible, that
is, & · ≻ ⊆ ≻ or ≻ · & ⊆ ≻. Finally ≻ is collapsible on →R/S and all compound symbols
are µ-monotone with respect to ≻.

Lemma 6.2. Let P = WDP(R) and (&,≻) a µf
P∪U(P)-complexity pair for P/U(P). If

P ⊆ ≻ and U(P) ⊆ & then dh(t,→P/U(P)) 6 G(t) for any t ∈ T ♯
b .

Example 6.3 (continued from Example 5.14). Consider the 1-dimensional RMI A with

0A = cA = dA = 0 sA(x) = x+ 1 −A(x, y) = −♯
A(x, y) = ÷♯

A(x, y) = x ,

which yields the complexity pair (>A, >A) for P/U(P). Since P ⊆ >A and U(P) ⊆ >A

hold, comp(n,T ♯
b ,→P/U(P)) = O(n).

First we show the main theorem of this section.

Definition 6.4. Let A be a matrix interpretation and let R/S be a relative TRS. A weight
gap on a set T of terms is a number ∆ ∈ N such that s ∈ →∗

R∪S(T ) and s →R t implies
[t]1 − [s]1 6 ∆.

Let T be a set of terms and let R/S be a relative TRS.

Theorem 6.5. If R/S is terminating, A admits a weight gap ∆ on T , and A is a matrix
interpretation of degree d such that S is compatible with A, then there exists c ∈ N such that
dh(t,→R∪S) 6 (1+∆)·dh(t,→R/S)+c·|t|d for all t ∈ T . Consequently, comp(n, T,→R∪S) =

O(comp(n, T,→R/S) + nd) holds.
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Proof. Let m = dh(s,→R/S) and n = |s|. Any derivation of →R∪S is representable as
follows:

s = s0 →
k0
S t0 →R s1 →

k1
S t1 →R · · · →km

S tm .

Without loss of generality we may assume that the derivation is maximal and ground. We
observe:

1) ki 6 [si]1−[ti]1 holds for all 0 6 i 6 m. This is because [s]1 > [t]1, whenever s →S t by
the assumption S is compatible with A. By definition of >, we conclude [s]1 > [t]1+1
whenever s →S t. From the fact that si →

ki
S ti we thus obtain ki 6 [si]1 − [ti]1.

2) ([si+1])1 6 ([ti])1 +∆ holds for all 0 6 i < m by the assumption.

3) There exists a number c such that for any term s ∈ T , [s]1 6 c · |s|d. This follows by
the degree of A.

We obtain the following inequalities:

dh(s0,→R∪S) = m+ k0 + · · ·+ km

6 m+ ([s0]1 − [t0]1) + · · ·+ ([sm]1 − [tm]1)

= m+ [s0]1 + ([s1]1 − [t0]1) + · · ·+ ([sm]1 − [tm−1]1)− [tm]1

6 m+ [s0]1 + ([t0]1 +∆− [t0]1) + · · · − [tm]1

6 m+ [s0]1 +m∆− [tm]1

6 m+ [s0]1 +m∆

6 (1 + ∆)m+ c · |s0|
d .

Here we use property 1) m-times in the second line. We used property 2) in the third line
and property 3) in the last line.

A question is when a weight gap is admitted. We present two conditions. We start with
a simple version for derivational complexity, and then we adapt it for runtime complexity.

We employ a very restrictive form of TMIs. Every f ∈ F is interpreted by the following
restricted linear function:

fA : (~v1, . . . , ~vn) 7→ 1~v1 + . . .+ 1~vn + ~f .

I.e., the only matrix employed in this interpretation is the unit matrix 1. Such a matrix
interpretation is called strongly linear (SLMI for short).

Lemma 6.6. If R is non-duplicating and A is an SLMI, then R/S and A admit a weight
gap on all terms.

Proof. Let ∆ := max{[r]1 ·− [l]1 | l → r ∈ R}. We show that ∆ gives a weight gap. In proof,
we first show the following equality.

∆ = max{([α]A(r))1 ·− ([α]A(l))1 | l → r ∈ R, α : V → A} . (1)
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Although the proof is not difficult, we give the full account in order to utilise it later.
Observe that for any matrix interpretation A and rule l → r ∈ R, there exist matrices (over
N) L1, . . . , Lk, R1, . . . , Rk and vectors ~l, ~r such that:

[α]A(l) =

k∑

i=1

Li · α(xi) +~l [α]A(r) =

k∑

i=1

Ri · α(xi) + ~r ,

where k denotes the cardinality of Var(l) ⊇ Var(r). Conclusively, we obtain:

[α]A(r) ·− [α]A(l) =

k∑

i=1

(Ri ·− Li)α(xi) + (~r ·−~l) . (2)

Here ·− denotes the natural component-wise extension of the modified minus to vectors.
As A is an SLMI the matrices Li, Ri are obtained by multiplying or adding unit matrices,

where the latter case can only happen if (at least one) of the variables xi occurs multiple
times in l or r. Due to the fact that l → r is non-duplicating, this effect is canceled out.
Thus the right-hand side of (2) is independent on the assignment α and we conclude:

[r]1 ·− [l]1 = ([α]A(r) ·− [α]A(l))1 = (~r ·−~l)1 .

By definition ∆ = max{[r]1 ·− [l]1 | l → r ∈ R} and thus (1) follows.
Let C[�] denote a (possible empty) context such that s = C[lσ] →R C[rσ] = t, where

l → r ∈ R and σ a substitution. We prove the lemma by induction on C.

1) Suppose C[�] = �, that is, s = lσ and t = rσ. There exists an assignment α1 such
that [lσ] = [α1]A(l) and [rσ] = [α1]A(r). By (1) we conclude for the assignment α1:
([α1]A(l))1 +∆ > ([α1]A(r))1. Therefore in sum we obtain [s]1 +∆ > [t]1.

2) Suppose C[�] = f(t1, . . . , ti−1, C
′[�], ti+1, . . . , tn). Hence, we obtain:

[f(t1, . . . , C
′[lσ], . . . , tn)]1 +∆

= [t1]1 + · · ·+ ([C ′[lσ]]1 +∆) + · · ·+ [tn]1 + (~f)1

> [t1]1 + · · ·+ [C ′[rσ]]1 + · · ·+ [tn]1 + (~f)1

= [f(t1, . . . , C
′[rσ], . . . , tn)]1 ,

for some vector ~f ∈ N
d. In the first and last line, we employ the fact that A is

strongly linear. In the second line the induction hypothesis is applied together with
the (trivial) fact that A is strictly monotone on all arguments of f by definition.

Note that the combination of Theorem 6.5 and Lemma 6.6 corresponds to (the corrected
version of) Theorem 24 in [4]. In [4] 1-dimensional SLMIs are called strongly linear inter-
pretations (SLIs for short).

Example 6.7. Consider the TRS R

1: f(s(x)) → f(x− s(0)) 2: x− 0 → x 3: s(x)− s(y) → x− y .
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P := WDP(R) consists of the three pairs

f♯(s(x)) → f♯(x− s(0)) x−♯ 0 → x s(x)−♯ s(y) → x−♯ y ,

and U(P) = {2, 3}. Obviously P is non-duplicating and there exists an SLI A with U(P) ⊆
≻A. Thus, Lemma 6.6 yields a weight gap for P/U(P). By taking the 1-dimensional RMI
B with

sB(x) = x+ 1 −B(x, y) = x fB(x) = f
♯
B(x) = x

0B = 0 −♯
B(x, y) = x+ 1 ,

we obtain P ⊆ ≻B and U(P) ⊆ <B. Therefore, comp(n,T ♯
b ,→P/U(P)) = O(n). Hence,

rcR(n) = comp(n,T ♯
b ,→P∪U(P)) = O(n) is concluded by Theorem 6.5.

The next lemma shows that there is no advantage to consider SLMIs of dimension k > 2.

Lemma 6.8. If S is compatible with some SLMI A then S is compatible with some SLI B.

Proof. Let A be an SLMI of dimension k. Further, let α : V → N denote an arbitrary
assignment. We define α̂ : V → N

k as α̂(x) = (α(x), 0, . . . , 0)⊤ for each variable x. We
define the SLI B by fB(x1, . . . , xn) = x1 + · · · + xn + ~f1. Then,

fB(x1, . . . , xn) =
(
(x1, 0, . . . , 0)

⊤ + · · ·+ (xn, 0, . . . , 0)
⊤ + ~f

)
1

=
(
fA((x1, 0, . . . , 0)

⊤, . . . , (xn, 0, . . . , 0)
⊤))

)
1

Therefore, easy structural induction shows that [α]B(t) = ([α̂]A(t))1 for all terms t. Hence,
S ⊆ ≻B whenever S ⊆ ≻A.

The next example shows that in Lemma 6.6 SLMIs cannot be simply replaced by RMIs.

Example 6.9. Consider the TRSs Rexp

exp(0) → s(0) d(0) → 0

exp(r(x)) → d(exp(x)) d(s(x)) → s(s(d(x))) .

This TRS formalises the exponentiation function. Setting tn = exp(rn(0)) we obtain
dh(tn,→Rexp) > 2n for each n > 0. Thus the runtime complexity of Rexp is exponential.

In order to show the claim, we split Rexp into two TRSs R = {exp(0) → s(0), exp(r(x)) →
d(exp(x))} and S = {d(0) → 0, d(s(x)) → s(s(d(x)))}. Then it is easy to verify that the
next 1-dimensional RMI A is compatible with S:

0A = 0 dA(x) = 3x sA(x) = x+ 1 .

Moreover an upper-bound of dh(tn,→R/S) can be estimated by using the following 1-
dimensional TMI B:

0B = 0 dB(x) = sB(x) = x expB(x) = rB(x) = x+ 1 .

Since →R ⊆ >B and →∗
S ⊆ >B hold, we have →R/S ⊆ >B. Hence dh(tn,→R/S) 6

[α0]B(tn) = n + 2. But clearly from this we cannot conclude a polynomial bound on the
derivation length of R∪ S = Rexp, as the runtime complexity of Rexp is exponential.
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Furthermore, non-duplication of R is also essential for Lemma 6.6.3

Example 6.10. Consider the following R ∪ S

1: f(s(x), y) → f(x, d(y, y, y)) 2: d(0, 0, x) → x

3: d(s(x), s(y), z) → d(x, y, s(z)) .

Let R = {1} and let S = {2, 3}. The following SLI A is compatible with S:

dA(x, y, z) = x+ y + z + 1 sA(x) = x+ 1 0A = 0 .

Furthermore, the following µR∪S
f -monotone 1-dimensional RMI B orients the rule in R

strictly, while the rules in S are weakly oriented.

fB(x, y) = x dB(x, y, z) = x+ y + z sB(x) = x+ 1 0B = 0 .

Thus, comp(n,Tb,→R/S) = O(n) is obtained. If the restriction that R is non-duplicating
could be dropped from Lemma 6.6, we would conclude rcR∪S(n) = O(n). However, it
is easy to see that rcR∪S is at least exponential. Setting tn := f(sn(0), s(0)), we obtain
dh(tn,→R∪S) > 2n for any n > 1.

We present a weight gap condition for runtime complexity analysis. When considering the
derivation in the beginning of this section (on page 17), every step by a weak dependency
pair only takes place as an outermost step. Exploiting this fact we can relax the restriction
that was imposed in the above examples. To this end, we introduce a generalised notion of
non-duplicating TRSs.

Below max { ([α]A(r))1 ·−([α]A(l))1 | l → r ∈ P and α : V → A} is referred to as ∆(A,P).
We say that a µ-monotone RMI is adequate if all compound symbols are interpreted as µ-
monotone SLMI.

Lemma 6.11. Let P = WDP(R) and let A be an adequate µf
P∪U(P)-monotone RMI. Sup-

pose ∆(A,P) is well-defined on N. Then, P/U (P) and A admit a weight gap on T ♯
b .

Proof. The proof follows the proof of Lemma 6.6. We set ∆ = ∆(A,P). Let s →P t with

s ∈ →P∪U(P)(T
♯
b ). One may write s = C[lσ] and t = C[rσ] with l → r ∈ P, where C

denotes a context. Note that due to s ∈ →P∪U(P)(T
♯
b ) all function symbols above the hole

in C are compound symbols. We perform induction on C.

1) If C = � then [t]1 − [s]1 6 ∆ by the definition of ∆(A,P).

2) For inductive step, C must be of the form c(u1, . . . , ui−1, C
′, ui+1, . . . , un) with i ∈

µ(c). Since A is adequate, cA is a SLMI. The rest of reasoning is same with 2) in the
proof of Lemma 6.6.

3 This example is due to Dieter Hofbauer and Andreas Schnabl.
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Example 6.12 (continued from Example 6.3). Consider the following adequate µ
P∪U(P)
f -

monotone 1-dimensional RMI B:

0B = cB = dB = 0 sB(x) = x+ 2 −B(x, y) = −♯
B(x, y) = ÷♯

B(x, y) = x+ 1

Since ∆(B,P) is well-defined (indeed 1), B admits the weight gap of Lemma 6.11. Moreover,

U(P) is compatible with ≻B. As comp(n,T ♯
b ,→P/U(P)) = O(n) was shown in Example 6.3,

Theorem 6.5 deduces linear runtime complexity for Rdiv.

In Lemma 6.11 ∆(A,P) must be well-defined.

Example 6.13. Consider the following TRS R

1: f([ ]) → [ ] 3 : g([ ], z) → z

2: f(x : y) → x : f(g(y, [ ])) 4: g(x : y, z) → g(y, x : z)

whose optimal innermost runtime complexity is quadratic. The weak innermost dependency
pairs P := WIDP(R) are

5: f♯([ ]) → c 7: g♯([ ], z) → d

6: f♯(x : y) → f♯(g(y, [ ])) 8: g♯(x : y, z) → g♯(y, x : z)

and U(P) = {3, 4}. It is not difficult to show comp(n,T ♯
b ,

i−→P/U(P)) = O(n) with a 1-

dimensional RMI. Moreover, the µ
P∪U(P)
i -monotone 1-dimensional RMI A with

[ ]A = 0 :A(x, y) = y + 1 gA(x, y) = 2x+ y + 1

fA(x) = f
♯
A(x) = x g

♯
A(x, y) = 0 cA = dA = 0

is compatible with U(P). If Lemma 6.11 would be applicable without its well-definedness,
linear innermost runtime complexity of R would be concluded falsely. Note that ∆(A,P)
is not well-defined on N due to pair 6.

Corollary 6.14. Let R be a TRS, P the set of weak (innermost) dependency pairs, and µ
be the (innermost) usable replacement map. Suppose B is a RMI such that (<B,≻B) forms
a µ-complexity pair with U(P) ⊆ <B and P ⊆ ≻B. Further, suppose A is an adequate
µ-monotone RMI such that ∆(A,P) is well-defined on N and P is compatible with U(P).

Then the (innermost) runtime complexity function rc
(i)
R with respect to R is polynomial.

Here the degree of the polynomial is given by the maximum of the degrees of the used RMIs.

Let A be an RMI as in the corollary. In order to verify that ∆(A,P) is well-defined,
we use the following simple trick in the implementation. Let l → r ∈ P and let k denotes
the cardinality of Var(l) ⊇ Var(r). Recall the existence of matrices (over N) L1, . . . , Lk,
R1, . . . , Rk and vectors ~l, ~r such that [α]A(l) ·− [α]A(r) =

∑k
i=1(Ri ·−Li)α(xi)+(~r ·−~l). Then

∆(A,P) is well-defined if (Ri ·− Li) 6 0.
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7 Weak Dependency Graphs

In this section we extend the above refinements by revisiting dependency graphs in the
context of complexity analysis. Let P = WDP(Rdiv) and recall the derivation over P ∪U(P)
on page 17. Looking more closely at this derivation we observe that we do not make use of
all weak dependency pairs in P, but we only employ the pairs 7 and 8:

4÷♯ 2 →{8}/U(P) 2÷♯ 2 →{8}/U(P) 0÷♯ 2 →{7}/U(P) c .

Therefore it is a natural idea to modularise our complexity analysis and apply the previ-
ously obtained techniques only to those pairs that are relevant. Dependencies among weak
dependency pairs are formulated by the notion of weak dependency graphs, which is an easy
variant of dependency graphs [6].

Definition 7.1. LetR be a TRS over a signature F and let P be the set of weak, weak inner-
most, or (standard) dependency pairs. The nodes of the weak dependency graph WDG(R),
weak innermost dependency graph WIDG(R), or dependency graph DG(R) are the elements
of P and there is an arrow from s → t to u → v if and only if there exist a context C
and substitutions σ, τ : V → T (F ,V) such that tσ →∗ C[uτ ], where → denotes →R or i−→R

depending on whether P = WDP(R), P = DP(R), or P = WIDP(R), respectively.

Example 7.2 (continued from Example 5.3). The weak dependency graph WDG(Rdiv) has
the following form.

6 5 8 7

Since weak dependency graphs represent call graphs of functions, grouping mutual parts
helps analysis. A graph is called strongly connected if any node is connected with every
other node by a (possibly empty) path. A strongly connected component (SCC for short) is
a maximal strongly connected subgraph.4

Definition 7.3. Let G be a graph, let ≡ denote the equivalence relation induced by SCCs,
and let P be a SCC in G. Consider the congruence graph G≡ induced by the equivalence
relation ≡. The set of all source nodes in G≡ is denoted by Src(G≡). Let K ∈ G≡ and let C
denote the SCC represented by K. Then we write l → r ∈ K if l → r ∈ C. For nodes K and
L in G≡ we write K  L, if K and L are connected by an edge. The reflexive (transitive,
reflexive-transitive) closure of  is denoted as  = ( +,  ∗).

Example 7.4 (continued from Example 7.2). Let G denote WDG(Rdiv). There are 4 SCCs
in G: {5}, {6}, {7}, and {8}. Thus the congruence graph G≡ has the following form:

6 5 8 7

Here Src(G≡) = {{6}, {8}}.

4 We use SCCs in the standard graph theoretic sense, while in the literature SCCs are sometimes defined
as maximal cycles (e.g. [24, 25, 11]). This alternative definition is of limited use in our context.
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Example 7.5. Consider the TRS Rgcd which computes the greatest common divisor.5

1: 0 6 y → true 6: gcd(0, y) → y

2: s(x) 6 0 → false 7: gcd(s(x), 0) → s(x)

3: s(x) 6 s(y) → x 6 y 8: gcd(s(x), s(y)) → ifgcd(y 6 x, s(x), s(y))

4: x− 0 → x 9: ifgcd(true, s(x), s(y)) → gcd(x− y, s(y))

5: s(x)− s(y) → x− y 10: ifgcd(false, s(x), s(y)) → gcd(y − x, s(x)) .

The set WDP(Rgcd) consists of the next ten weak dependency pairs:

11: 0 6♯ y → c1 16: gcd♯(0, y) → y

12: s(x) 6♯ 0 → c2 17: gcd♯(s(x), 0) → x

13: s(x) 6♯ s(y) → x 6♯ y 18: gcd♯(s(x), s(y)) → ifgcd
♯(y 6 x, s(x), s(y))

14: s(x)−♯ 0 → x 19: ifgcd
♯(true, s(x), s(y)) → gcd♯(x− y, s(y))

15: s(x)−♯ s(y) → x−♯ y 20: ifgcd
♯(false, s(x), s(y)) → gcd♯(y − x, s(x)) .

The congruence graph G≡ of G := WDG(Rgcd) has the following form:

11 13 12 15 14 {18,19,20} 16 17

Here Src(G≡) = {{13}, {15}, {17}, {18, 19, 20}}.

The main result in this section is stated as follows: Let R be a TRS, P = WDP(R),
G = WDG(R), and furthermore

L(t) := max{dh(t,
(i)
−→Q∪U(Q)) | (P1, . . . ,Pk) is a path in G≡ and P1 ∈ Src(G≡)} ,

where Q =
⋃k

i=1 Pi. Then, dh(t,→R) = O(L(t)) holds for all basic term t. This means that
one may decompose P ∪ U(P) into several smaller fragments and analyse these fragments
separately.

Reconsider the derivation on page 23. The only dependency pairs are from the set {7, 8}.
Observe that the order these pairs are applied is representable by the path ({8}, {7}) in the
congruence graph. This observation is cast into the following definition.

Definition 7.6. Let P be the set of weak (innermost) dependency pairs and let G denote
the weak (innermost) dependency graph. Suppose A : s

(i)
−→∗

P/U(P) t denote a derivation,

such that s ∈ T ♯
b . If A can be written in the following form:

s
(i)
−→∗

P1/U(P) · · ·
(i)
−→∗

Pk/U(P) t ,

then A is based on the sequence of nodes (P1, . . . ,Pk) (in G≡).

The next lemma is an easy generalisation of the above example.

5 This is Example 3.6a in Arts and Giesl’s collection of TRSs [14].
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Lemma 7.7. Let R be a TRS, let P be the set of weak (innermost) dependency pairs and
let G denote the weak (innermost) dependency graph. Suppose that all compound symbols

are nullary. Then any derivation A : s
(i)
−→∗

P/U(P) t such that s ∈ T ♯
b is based on a path

in G≡.

From Lemma 7.7 we see that the above mentioned modularity result easily follows as
long as the arity of the compound symbols is restricted. We lift the assumption that all
compound symbols are nullary. Perhaps surprisingly this generalisation complicates the
matter. As exemplified by the next example, Lemma 7.7 fails if there exist non-nullary
compound symbols.

Example 7.8. Consider the TRSR = {f(0) → a, f(s(x)) → b(f(x), f(x))}. The setWDP(R)
consists of the two weak dependency pairs: 1 : f♯(0) → c and 2: f♯(s(x)) → d(f♯(x), f♯(x)).
The corresponding congruence graph only contains the single edge from {2} to {1}. Writing
tn for f♯(sn(0)), we have the sequence

t2 →
2
{2} d(d(t0, t0), t1) →{1} d(d(c, t0), t1)

→{2} d(c(c, t0), d(t0, t0)) →
3
{1} d(d(c, c), d(c, c)) .

whereas ({2}, {1}, {2}, {1}) is not a path in the graph.

Note that the derivation in Example 7.8 can be reordered (without affecting its length)
such that the derivation becomes based on the path ({2}, {1}). More generally, we observe
that a weak (innermost) dependency pair containing an m-ary (m > 1) compound symbol
can induce m independent derivations. This allows us to reorder (sub-)derivations. We
show this via the following sequence of lemmas.

Let R be a TRS, let P denote the set of weak (innermost) dependency pairs, and let G

denote the weak (innermost) dependency graph. The set T ♯
c is inductively defined as follows

(i) T ♯∪T ⊆ T ♯
c , where T

♯ = {t♯ | t ∈ T } and (ii) c(t1, . . . , tn) ∈ T ♯
c , whenever t1, . . . , tn ∈ T ♯

c

and c a compound symbol. The next lemma formalises an easy observation.

Lemma 7.9. Let C be a set of nodes in G and let A : t = t0
(i)
−→∗

C/U(P) tn denote a derivation

based on C with t ∈ T ♯
c . Then A has the following form: t = t0

(i)
−→C/U(P) t1

(i)
−→C/U(P)

· · ·
(i)
−→C/U(P) tn where each ti ∈ T ♯

c .

A key is that consecutive two weak dependency pairs may be swappable.

Lemma 7.10. Let K and L denote two different nodes in G≡ such that there is no edge
from K to L. Let s ∈ T ♯

c and suppose the existence of a derivation A of the following form:

s
(i)
−→K/U(P) ·

(i)
−→L/U(P) t .

Then there exists a derivation B

s
(i)
−→L/U(P) ·

(i)
−→K/U(P) t ,

such that |A| = |B|.
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Proof. We only show the full rewriting case since the innermost case is analogous. Ac-
cording to Lemma 7.9 an arbitrary terms u reachable from s belongs to T ♯

c . Writing
C〈u1, . . . , ui, . . . , um〉F∪F♯ for u, the m-hole context C consists of compound symbols and
variables, u1, . . . , um ∈ T ∪ T ♯. Therefore, A can be written in the following form:

s →n1

U(P) C〈u1, . . . , ui, . . . , um〉F∪F♯ =: u

→L C[u1, . . . , u
′
i, . . . , um]

→n2

U(P) C[v1, . . . , vi, . . . , vj , . . . , vm]

→K C[v1, . . . , vi, . . . , v
′
j , . . . , vm] →n3

U(P) t ,

with u′i →
k
U(P) vi. Here i 6= j holds, because i = j induces L  K. Easy induction on n2

shows

s →n1

U(P) u = C[u1, . . . , ui, . . . , uj , . . . , um]

→n2−k
U(P) C[v1, . . . , ui, . . . , vj , . . . , vm]

→K C[v1, . . . , ui, . . . , v
′
j , . . . , vm]

→L C[v1, . . . , u
′
i, . . . , v

′
j , . . . , vm]

→k
U(P) C[v1, . . . , vi, . . . , v

′
j , . . . , vm] →n3

U(P) t ,

which is the desired derivation B.

The next lemma states that reordering is partly possible.

Lemma 7.11. Let s ∈ T ♯
c , and let A : s

(i)
−→∗

P/U(P) t be a derivation based on a sequence

of nodes (P1, . . . ,Pk) such that P1 ∈ Src(G≡), and let (Q1, . . . ,Qℓ) be a path in G≡ with
{P1, . . . ,Pk} = {Q1, . . . ,Qℓ}. Then there exists a derivation B : s

(i)
−→∗

P/U(P) t based on

(Q1, . . . ,Qℓ) such that |A| = |B| and P1 = Q1.

Proof. According to Lemma 7.9, for any derivation A

s
(i)
−→∗

P1/U(P) · · ·
(i)
−→∗

Pn/U(P) t ,

if Pi  Pi+1 does not hold, there is a derivation B

s
(i)
−→∗

P1/U(P) · · ·
(i)
−→∗

Pi+1/U(P) ·
(i)
−→∗

Pi/U(P) · · ·
(i)
−→∗

Pn/U(P) t ,

with |A| = |B|. By assumption (Q1, . . . ,Qℓ) is a path, whence we obtain Q1  · · ·  Qℓ.
By performing bubble sort with respect to  +, A is transformed into the derivation B:

s
(i)
−→∗

Q1/U(P) · · ·
(i)
−→∗

Qm/U(P) t ,

such that |A| = |B|.

The next example shows that there is a derivation that cannot be transformed into a
derivation based on a path.
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Example 7.12. Consider the TRS R = {f → b(g, h), g → a, h → a}. Thus WDP(R)
consists of three dependency pairs: 1 : f♯ → c(g♯, h♯), 2 : g♯ → d, and 3: h♯ → e. Let
P := WDP(R) and let G := WDG(R). Note that G≡ are identical to G. We witness that
the derivation

f♯ →P c(g♯, h♯) →P c(d, h♯) →P c(d, e) ,

is based neither on the path ({1}, {2}), nor on the path ({1}, {3}).

Lemma 7.11 shows that we can reorder a given derivation A that is based on a sequence
of nodes that would in principle form a path in the congruence graph G≡. The next lemma
shows that we can guarantee that any derivation is based on sequence of different paths.

Lemma 7.13. Let s ∈ T ♯
c and let A : s

(i)
−→∗

P/U(P) t be a derivation based on (P1, . . . ,Pk,Q1, . . . ,Qℓ),

such that (P1, . . . ,Pk) and (Q1, . . . ,Qℓ) form two disjoint paths in G. Then there exists a
derivation B : s

(i)
−→∗

P/U(P) t based on the sequence of nodes (Q1, . . . ,Qℓ,P1, . . . ,Pk) such

that |A| = |B|.

Proof. The lemma follows by an adaptation of the technique in the proof of Lemma 7.11.

Lemma 7.13 shows that the maximal length of any derivation only differs from the max-
imal length of any derivation based on a path by a linear factor, depending on the size of
the congruence graph G≡. We arrive at the main result of this section. Recall the definition
of L(·) on page 24.

Theorem 7.14. Let R be a TRS and P the set of weak (innermost) dependency pairs.

Then, dh(t,
(i)
−→R) = O(L(t)) holds for all t ∈ T ♯

b .

Proof. Let a denotes the maximum arity of compound symbols and K denotes the number
of SCCs in the weak (innermost) dependency graph G. We show dh(s,

(i)
−→R) 6 aK · L(s)

holds for all s ∈ T ♯
b . Theorem 5.12 yields that dh(s,

(i)
−→R) = dh(s,→), where → either

denotes →P∪U(P) or
i−→P∪U(P).

Let A : s →∗ t be a derivation over P ∪ U(P) such that s ∈ T ♯
b . Then A is based on

a sequence of nodes in the congruence graph G≡ such that there exists a maximal (with
respect to subset inclusion) components of G≡ that includes all these nodes. Let T denote
this maximal component. T forms a directed acyclic graph. In order to (over-)estimate the
number of nodes in this graph we can assume without loss of generality that T is a tree with
root in Src(G≡). Note that K bounds the height of this tree. Thus the number of nodes in
the component T is less than

aK − 1

a− 1
6 aK .

Due to Lemma 7.13 the derivation A is conceivable as a sequence of subderivations based
on paths in G≡. As the number of nodes in T is bounded from above by aK , there exist at
most be aK different paths through T .

Hence in order to estimate |A|, it suffices to estimate the length of any subderivation B of
A, based on a specific path. Let (P1, . . . ,Pk) be a path in P≡ such that P1 ∈ Src(G≡) and
let B : u →n v, denote a derivation based on this path. Let Q :=

⋃k
i=1 Pi. By Definition 7.6

and the definition of usable rules, the derivation B can be written as:

u = u0
(i)
−→P1/U(Q) un1

(i)
−→P2/U(Q) · · ·

(i)
−→Pk/U(Q) un = v ,
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where u ∈ T ♯
b each ui ∈ T ♯

c . Hence B is contained in u
(i)
−→∗

Q∪U(Q) v and thus |B| 6 L(u) by
definition.

As the length of a derivation B based on a specific path can be estimated by L(s), we
obtain that the length of an arbitrary derivation is less than aK · L(s). This completes the
proof of the theorem.

Corollary 7.15. Let R be a TRS and let G denote the weak (innermost) dependency graph.
For every path P̄ := (P1, . . . ,Pk) in G≡ such that P1 ∈ Src(G≡), we set Q :=

⋃k
i=1Pi and

suppose

1) there exist a µ
Q∪U(Q)
f -monotone (µ

Q∪U(Q)
i -monotone) and adequate RMI AP̄ that ad-

mits the weight gap ∆(AP̄ ,Q) on T ♯
b and AP̄ is compatible with the usable rules U(Q),

2) there exists a µ
Q∪U(Q)
f -monotone (µ

Q∪U(Q)
i -monotone) RMI BP̄ such that (<BP̄

,≻BP̄
)

forms a complexity pair for Pk/P1 ∪ · · · ∪ Pk−1 ∪ U(Q), and

Then the (innermost) runtime complexity of a TRS R is polynomial. Here the degree of the
polynomial is given by the maximum of the degrees of the used RMIs.

Proof. We restrict our attention to weak dependency pairs and full rewriting. First observe
that the assumptions imply that any basic term t ∈ Tb is terminating with respect to
R. Let P be the set of weak dependency pairs. (Note that P ⊇ Q.) By Lemma 5.11 any
infinite derivation with respect to R starting in t can be translated into an infinite derivation
with respect to U(P) ∪ P. Moreover, as the number of paths in G≡ is finite, there exist
a path (P1, . . . ,Pk) in G≡ and an infinite rewrite sequence based on this path. This is a
contradiction. Hence we can employ Theorem 6.5 in the following.

Let (P1, . . . ,Pk) be an arbitrary, but fixed path in the congruence graph G≡, let Q =⋃k
i=1 Pi, and let d denote the maximum of the degrees of the used RMIs. Due to Theorem 6.5

there exists c ∈ N such that:

dh(t♯,→Q∪U(Q)) 6 (1 + ∆(AP̄ ,Q)) · dh(t♯,→Q/U(Q)) + c · |t|d .

Due to Theorem 7.14 it suffices to consider a derivation A based on the path (P1, . . . ,Pk).
Suppose A : s →n

Q/U(Q) t. Then A can be represented as follows:

s = s0 →
n1

P1/U(P1)
sn1 →

n2

P2/U(P1)∪U(P2)
· · · →nk

Pk/U(P1)∪···∪U(Pk)
sn = t ,

such that n =
∑k

i=1 ni. It is sufficient to bound each ni from the above. Fix i ∈ {1, . . . , k}.
Consider the subderivation

A′ : s = s0 →
n1

P1/U(P1)
sn1 · · · →

ni

Pk/U(P1)∪···∪U(Pi)
sni

.

Then A′ is contained in A′′ : s →∗
P1∪···∪Pi−1∪U(P1)∪··· U(Pi)

· →ni

Pk/U(P1)∪···∪U(Pi)
sni

. Let

P̂i := (P1, . . . ,Pi). By assumption there exists a µ-monotone complexity pair (<B
P̂i
,≻B

P̂i
)

such that P1 ∪ · · · ∪ Pi−1 ∪ U(P1 ∪ · · · ∪ Pi) ⊆ <B
P̂i

and Pi ⊆ ≻B
P̂i
. Hence, we obtain

ni 6 ([α0]B
P̂i
(s))1 and in sum n 6 k · |s|d. Finally, defining the polynomial p as follows:

p(x) := (1 + ∆(AP̄ ,Q)) · k · xd + c · xd ,
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we conclude dh(t♯,→Q∪U(Q)) 6 p(|t|). Note that the polynomial p depends only on the
algebras AP̄ and BP̂1

, . . . , BP̄k
.

As the path (P1, . . . ,Pk) was chosen arbitrarily, there exists a polynomial q, depending
only on the employed RMIs such that L(t) 6 q(|t|). Thus the corollary follows due to
Theorem 7.14.

Let t be an arbitrary term. By definition the set in L(t) may consider 2O(n)-many paths,
where n denotes the number of nodes in G≡. However, it suffices to restrict the definition
on page 24 to maximal paths. For this refinement L(t) contains at most n2 paths. This fact
we employ in implementing the WDG method.

Example 7.16 (continued from Example 7.5). For WDG(Rgcd)≡ the above set consists of
8 paths: ({13}), ({13}, {11}), ({13}, {12}), ({15}), ({15}, {14}), ({17}), ({18, 19, 20}), and
({18, 19, 20}, {16}). In the following we only consider the last three paths, since all other
paths are similarly handled.

• Consider ({17}). Note U({17}) = ∅. By taking an arbitrary SLI A and the linear

restricted interpretation B with gcd
♯
B(x, y) = x and sB(x) = x+ 1, we have ∅ ⊆ >A,

∅ ⊆ >B, and {17} ⊆ >B.

• Consider ({18, 19, 20}). Note U({18, 19, 20}) = {1, . . . , 5}. The following RMI A is

adequate for ({18, 19, 20}) and strictly monotone on µ
P∪U(P)
f . The presentation of A

is succinct as only the signature of the usable rules {1, . . . , 5} is of interest.

trueA = falseA = 0A = ~0 sA(~x) =

(
1 1
0 1

)
~x+

(
3
1

)

6A(~x, ~y) =

(
0 1
0 0

)
~y +

(
1
3

)
−A(~x, ~y) = ~x+

(
2
3

)
.

Further, consider the RMI B giving rise to the complexity pair (<B,≻B).

0B = trueB = falseB = 6B(~x, ~y) = ~0

sB(~x) =

(
1 3
0 0

)
~x+

(
3
0

)
−B(~x, ~y) =

(
1 0
2 2

)
~x+

(
0 0
1 0

)

ifgcd
♯
B(x, y, z) =

(
3 0
0 0

)
~y +

(
3 0
0 0

)
~z

gcd
♯
B(x, y) =

(
3 0
0 0

)
~x+

(
3 0
0 0

)
~y +

(
2
0

)
.

We obtain {1, . . . , 5} ⊆ ≻A, {1, . . . , 5} ⊆ <B, and {18, 19, 20} ⊆ ≻B.

• Consider ({18, 19, 20}, {16}). Note U({16}) = ∅. By taking the same A and also B
as above, we have {1, . . . , 5} ⊆ ≻A, {1, . . . , 5, 18, 19, 20} ⊆ <B, and {16} ⊆ ≻B.

Thus, all path constraints are handled by suitably defined RMIs of dimension 2. Hence,
the runtime complexity function of Rgcd is at most quadratic, which is unfortunately not
optimal, as rcRgcd

is linear.
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Corollary 7.15 is more powerful than Corollary 6.14. We illustrate it with a small example.

Example 7.17. Consider the TRS R

f(a, s(x), y) → f(a, x, s(y)) f(b, x, s(y)) → f(b, s(x), y) .

Its weak dependency pairs WDP(R) are

1: f♯(a, s(x), y) → f♯(a, x, s(y)) 2: f♯(b, x, s(y)) → f♯(b, s(x), y) .

The corresponding congruence graph consists of the two isolated nodes {1} and {2}. It is
not difficult to find suitable 1-dimensional RMIs for the nodes, and therefore rcR(n) = O(n)
is concluded. On the other hand, it can be verified that the linear runtime complexity
cannot be obtained by Corollary 6.14 with a 1-dimensional RMI.

We conclude this section with a brief comparison of the path analysis developed here
and the use of the dependency graph refinement in termination analysis. First we recall a
theorem on the dependency graph refinement in conjunction with usable rules and innermost
rewriting (see [24], but also [25]). Similar results hold in the context of full rewriting,
see [21, 22].

Theorem 7.18 ([24]). A TRS R is innermost terminating if for every maximal cycle C in
the dependency graph DG(R) there exists a reduction pair (&,≻) such that U(C) ⊆ & and
C ⊆ ≻.

The following example shows that in the context of complexity analysis it is not sufficient
to consider each cycle individually.

Example 7.19 (continued from Example 6.9). Consider the TRS Rexp introduced in Ex-
ample 6.9.

exp(0) → s(0) d(0) → 0

exp(r(x)) → d(exp(x)) d(s(x)) → s(s(d(x))) .

Recall that the (innermost) runtime complexity of Rexp is exponential. Let P denote
the (standard) dependency pairs with respect to Rexp. Then P consists of three pairs:
1 : exp♯(r(x)) → d♯(exp(x)), 2 : exp♯(r(x)) → exp♯(x), and 3: d♯(s(x)) → d♯(x). Hence the
dependency graph DG(Rexp) contains two maximal cycles: {2} and {3}.

We define two reduction pairs (<A,≻A) and (<B,≻B) such that the conditions of the

theorem are fulfilled. Let A and B be SLIs such that exp
♯
A(x) = x, rA(x) = x + 1 and

d
♯
B(x) = x, sA(x) = x + 1. Hence for any term t ∈ Tb, we have that the derivation

heights dh(t♯, i−→{2}/U(P)) and dh(t♯, i−→{3}/U(P)) are linear in |t|, while dh(t, i−→R) is (at least)
exponential in |t|.

Observe that the problem exemplified by Example 7.19 cannot be circumvented by replac-
ing the dependency graph employed in Theorem 7.18 with weak (innermost) dependency
graphs. The exponential derivation height of terms tn in Example 7.19 is not controlled by
the cycles {2} or {3}, but achieved through the non-cyclic pair 1 and its usable rules.
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Example 7.19 shows an exponential speed-up between the maximal number of dependency
pair steps within a cycle in the dependency graph and the runtime complexity of the initial
TRS. In the context of derivational complexity this speed-up may even increase to a primitive
recursive function, cf. [23].

While Example 7.19 shows that the usable rules need to be taken into account fully for
any complexity analysis, it is perhaps tempting to think that it should suffice to demand
that at least one weak (innermost) dependency pair in each cycle decreases strictly. However
this intuition is deceiving as shown by the next example.

Example 7.20. Consider the TRS R of f(s(x), 0) → f(x, s(0)) and f(x, s(y)) → f(x, y).
WDP(R) consists of 1: f♯(s(x), 0) → f♯(x, s(x)) and 2: f♯(x, s(y)) → f♯(x, y), and the weak
dependency graph WDG(R) contains two cycles {1, 2} and {2}. There are two linear re-
stricted interpretations A and B such that {1, 2} ⊆ >A ∪ >A, {1} ⊆ >A, and {2} ⊆ >B.
Here, however, we must not conclude linear runtime complexity, because the runtime com-
plexity of R is at least quadratic.

8 Experiments

All described techniques have been incorporated into the Tyrolean Complexity Tool TCT, an
open source complexity analyser6. The testbed is based on version 8.0.2 of the Termination
Problems Database (TPDB for short). We consider TRSs without theory annotation, where
the runtime complexity analysis is non-trivial, that is the set of basic terms is infinite.
This testbed comprises 1695 TRSs. All experiments were conducted on a machine that is
identical to the official competition server (8 AMD Opteron R© 885 dual-core processors with
2.8GHz, 8x8 GB memory). As timeout we use 60 seconds. The complete experimental data
can be found at http://cl-informatik.uibk.ac.at/software/tct/experiments, where
also the testbed employed is detailed.

Table 1 summarises the experimental results of the here presented techniques for full
runtime complexity analysis in a restricted setting. The tests are based on the use of one-
and two-dimensional RMIs with coefficients over {0, 1, . . . , 7} as direct technique (compare
Theorem 3.9) as well as in combination with the WDP method (compare Corollaries 5.13
and 6.14) and the WDG method (compare Corollary 7.15). Weak dependency graphs are
estimated by the TCAP-based technique ([20]). The tests indicate the power of the trans-
formation techniques introduced. Note that for linear and quadratic runtime complexity
the latter techniques are more powerful than the direct approach. Furthermore note that
the WDG method provides overall better bounds than the WDP method.

However if we consider RMIs upto dimension 3 the picture becomes less clear, cf. Table 2.
Again we compare the direct approach, the WDP and WDG method and restrict to coeffi-
cients over {0, 1, . . . , 7}. Consider for example the test results for cubic runtime complexity
with respect to full rewriting. While the transformation techniques are still more powerful
than the direct approach, the difference is less significant than in Table 1. On one hand this
is due to the fact that RMIs employing matrices of dimension k may have a degree strictly
smaller than k, compare Theorem 3.9 and on the other hand note the increase in timeouts
for the more advanced techniques.

6 Available at http://cl-informatik.uibk.ac.at/software/tct.
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full
result direct (1) direct (2) WDP (1) WDP (2) WDG (1) WDG (2)

O(1) 16 18 0 0 10 10
O(n) 106 113 123 70 130 67
O(n2) 106 148 123 157 130 158

timeout (60s) 20 88 55 127 103 261

Table 1: Experiment results I (one- and two-dimensional RMIs separated)

Moreover note the seemingly strange behaviour of the WDG method for innermost rewrit-
ing: already for quadratic runtime the WDP method performs better, if we only consider
the number of yes-instances. This seems to contradict the fact that the WDG method is
in theory more powerful than the WDP method. However, the explanation is simple: first
the sets of yes-instances are incomparable and second the more advanced technique requires
more computation power. If we would use (much) longer timeout the set of yes-instances
for WDP would become a proper subset of the set of yes-instances for WDG. For example
the WDG method can prove cubic runtime complexity of the TRS AProVE 04/Liveness

6.2 from the TPDB, while the WDP method fails to give its bound.

full innermost

result direct WDP WDG direct WDP WDG

O(1) 18 0 10 20 0 10
O(n) 135 141 140 135 142 145
O(n2) 161 163 162 173 181 172
O(n3) 163 167 169 179 185 178

timeout (60s) 310 459 715 311 458 718

Table 2: Experiment results II (1–3-dimensional RMIs combined)

In order to assess the advances of this paper in contrast to the conference versions (see [4,
7]), we present in Table 3 a comparison between RMIs with/without the use of usable argu-
ments and a comparison of the WDP or WDG method with/without the use of the extended
weight gap principle. Again we restrict our attention to full rewriting, as the case for inner-
most rewriting provides a similar picture (see http://cl-informatik.uibk.ac.at/software/tct/experiments
for the full data).

Finally, in Table 4 we present the overall power obtained for the automated runtime
complexity analysis. Here we test the version of TCT that run for the international annual
termination competition (TERMCOMP)7 in 2010 in comparison to the most recent version
of TCT incorporating all techniques developed in this paper. In addition we compare with
a recent version of CaT.8

7 http://termcomp.uibk.ac.at/termcomp/.
8 http://cl-informatik.uibk.ac.at/software/cat/ .
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full

result direct (−) direct (+) WDP (−) WDP (+) WDG(−) WDG (+)

O(1) 4 18 5 0 10 10
O(n) 105 135 102 141 105 140
O(n2) 127 161 118 163 119 162
O(n3) 130 163 120 167 122 169

timeout (60s) 306 310 505 459 655 715

Table 3: Experiment results III (1–3-dimensional RMIs combined)

full innermost

result TCT (old) TCT (new) CaT TCT (old) TCT (new) CaT

O(1) 10 3 0 10 3 0
O(n) 393 486 439 401 488 439
O(n2) 394 493 452 403 502 452
O(n3) 397 495 453 407 505 453
O(n4) 397 495 454 407 505 454

Table 4: Experiment results IV (1–3-dimensional RMIs combined)

The results in Table 4 clearly show the increase in power in TCT, which is due to the fact
that the techniques developed in this paper have been incorporated.

9 Conclusion

In this article we are concerned with automated complexity analysis of TRSs. More precisely,
we establish new and powerful results that allow the assessment of polynomial runtime
complexity of TRSs fully automatically. We established the following results: Adapting
techniques from context-sensitive rewriting, we introduced usable replacement maps that
allow to increase the applicability of direct methods. Furthermore we established the weak
dependency pair method as a suitable analog of the dependency pair method in the context
of (runtime) complexity analysis. Refinements of this method have been presented by the
use of the weight gap principle and weak dependency graphs. In the experiments of Section 8
we assessed the viability of these techniques. It is perhaps worthy of note to mention that
our motivating examples (Examples 3.2, 5.15, and 7.5) could not be handled by any known
technique prior to our results.

To conclude, we briefly mention related work. Based on earlier work by Arai and the
second author (see [26]) Avanzini and the second author introduced POP∗ a restriction
of the recursive path order (RPO) that induces polynomial innermost runtime complexity
(see [27, 15]). With respect to derivational complexity, Zankl and Korp generalised a simple
variant of our weight gap principle to achieve a modular derivational complexity analysis
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(see [28, 29]). Neurauter et al. refined in [16] matrix interpretations in the context of
derivational complexity derivational complexity (see also [30]). Furthermore, Waldmann
studied in [17] the use of weighted automata in this setting. Based on [4, 7] Noschinski et
al. incorporated a variant of weak dependency pairs (not yet published) into the termination
prover AProVE.9 Currently this method is restricted to innermost runtime complexity, but
allows for a complexity analysis in the spirit of the dependency pair framework. Preliminary
evidence suggests that this technique is orthogonal to the methods presented here. While
all mentioned results are concerned with polynomial upper bounds on the derivational or
runtime complexity of a rewrite system, Schnabl and the second author provided in [31,
23, 32] an analysis of the dependency pair method and its framework from a complexity
point of view. The upshot of this work is that the dependency pair framework may induce
multiple recursive derivational complexity, even if only simple processors are considered.

Investigations into the complexity of TRSs are strongly influenced by research in the
field of ICC, which contributed the use of restricted forms of polynomial interpretations to
estimate the complexity, cf. [18]. Related results have also been provided in the study of term
rewriting characterisations of complexity classes (compare [33]). Inspired by Bellantoni and
Cook’s recursion theoretic characterisation of the class of all polynomial time computable
functions in [34], Marion [35] defined LMPO, a variant of RPO whose compatibility with a
TRS implies that the functions computed by the TRS is polytime computable (compare [3]).
A remarkable milestone on this line is the quasi-interpretation method by Bonfante et
al. [36]. The method makes use of standard termination methods in conjunction with special
polynomial interpretation to characterise the class of polytime computable functions. In
conjunction with sup-interpretations this method is even capable of making use of standard
dependency pairs (see [37]).

In principle we cannot directly compare our result on polynomial runtime complexity of
TRSs with the results provided in the setting of ICC: the notion of complexity studied is
different. However, due to a recent result by Avanzini and the second author (see [38],
but compare also [39, 40]) we know that the runtime complexity of a TRS is an invariant
cost model. Whenever we have polynomial runtime complexity of a TRS R, the functions
computed by this R can be implemented on a Turing machine that runs in polynomial time.
In this context, our results provide automated techniques that can be (almost directly)
employed in the context of ICC. The qualification only refers to the fact that our results
are presented for an abstract form of programs, viz. rewrite systems.
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