Skip to main content

Deciding Effectively Propositional Logic Using DPLL and Substitution Sets

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5195))

Abstract

We introduce a DPLL calculus that is a decision procedure for the Bernays-Schönfinkel class, also known as EPR. Our calculus allows combining techniques for efficient propositional search with data-structures, such as Binary Decision Diagrams, that can efficiently and succinctly encode finite sets of substitutions and operations on these. In the calculus, clauses comprise of a sequence of literals together with a finite set of substitutions; truth assignments are also represented using substitution sets. The calculus works directly at the level of sets, and admits performing simultaneous constraint propagation and decisions, resulting in potentially exponential speedups over existing approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21, 317–353 (1980)

    Article  MATH  Google Scholar 

  2. Pérez, J.A.N., Voronkov, A.: Encodings of Bounded LTL Model Checking in Effectively Propositional Logic. In: [18], pp. 346–361.

    Google Scholar 

  3. Dershowitz, N., Hanna, Z., Katz, J.: Bounded Model Checking with QBF. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 408–414. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers C-35, 677–691 (1986)

    Article  Google Scholar 

  5. Voronkov, A.: Merging relational database technology with constraint technology. In: Bjorner, D., Broy, M., Pottosin, I.V. (eds.) PSI 1996. LNCS, vol. 1181, pp. 409–419. Springer, Heidelberg (1996)

    Google Scholar 

  6. Tammet, T., Kadarpik, V.: Combining an inference engine with database: A rule server. In: Schröder, M., Wagner, G. (eds.) RuleML 2003. LNCS, vol. 2876, pp. 136–149. Springer, Heidelberg (2003)

    Google Scholar 

  7. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog with binary decision diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 97–118. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53, 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  9. Krstic, S., Goel, A.: Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 1–27. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL method. Artif. Intell. 172, 591–632 (2008)

    Article  MathSciNet  Google Scholar 

  11. Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 572–586. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Baumgartner, P.: Logical engineering with instance-based methods. In: [18], pp. 404–409.

    Google Scholar 

  13. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: LICS, pp. 55–64. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  14. Gallo, G., Rago, G.: The satisfiability problem for the Schönfinkel-Bernays fragment: partial instantiation and hypergraph algorithms. Technical Report 4/94, Dip. Informatica, Universit‘a di Pisa (1994)

    Google Scholar 

  15. Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1791–1849. Elsevier and MIT Press (2001)

    Google Scholar 

  16. Pérez, J.A.N., Voronkov, A.: Proof systems for effectively propositional logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008 (2008)

    Google Scholar 

  17. de Nivelle, H., Meng, J.: Geometric resolution: A proof procedure based on finite model search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 303–317. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Pfenning, F. (ed.): CADE 2007. LNCS (LNAI), vol. 4603. Springer, Heidelberg (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alessandro Armando Peter Baumgartner Gilles Dowek

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Moura, L., Bjørner, N. (2008). Deciding Effectively Propositional Logic Using DPLL and Substitution Sets. In: Armando, A., Baumgartner, P., Dowek, G. (eds) Automated Reasoning. IJCAR 2008. Lecture Notes in Computer Science(), vol 5195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71070-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71070-7_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71069-1

  • Online ISBN: 978-3-540-71070-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics