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Abstract. The majority of market theory is only concerned with centralised mar-
kets. In this paper, we consider a market that is distributed over a network, allow-
ing us to characterise spatially (or temporally) separated markets. The effect of
this modification on the behaviour of a market with a heterogeneous population
of traders, under selection through a genetic algorithm, is examined. It is demon-
strated that better-connected traders are able to make more profit than less con-
nected traders and that this is due to a difference in the number of possible trading
opportunities and not due to informational inequalities. A learning rule that had
previously been demonstrated to profitably exploit network structure for a homo-
geneous population is shown to confer no advantage when selection is applied
to a heterogeneous population of traders. It is also shown that better-connected
traders adopt more aggressive market strategies in order to extract more surplus
from the market.

1 Introduction

Understanding the centralised market has been one of the key aims of economic re-
search for many years. Both the behaviour of the market and the traders within it have
been intensely scrutinised in order to determine how they operate. Analytical studies,
(e.g. [1]), experimental studies, (e.g. [2]) and empirical analysis (e.g. [3]) have all been
employed in this attempt.

In addition to analytical, empirical and experimental results, the use of simulation
and more recently multi-agent simulation[4] has become increasingly important [5—10].
Multi-agent approaches have enabled the relationships between trader micro-behaviour
and market phenomena to be modelled, which is often analytically intractable and ex-
perimentally time consuming. In virtually all of these micro studies, the market is as-
sumed to occupy a single location. All bids and offers are submitted in the same place,
where all others may see and respond to them. Not all markets, however, are like this.
Retail markets, for instance, are spatially embedded and consequently impose costs in
terms of the time and effort that it takes to visit other traders and acquire information. As



a consequence of this, it is usually impossible for a trader to visit all possible partners.
Instead, the trader will probably restrict information gathering to nearest neighbours, or
key operators in the market. In this case the market no longer has a central location to
which information is submitted and, as a result, different traders within the market may
have access to different histories of bids and offers.

It is not only spatially embedded markets that may limit the ubiquity of market
information. Traders in a financial market have ready access to all trading information.
However, in this case the shear quantity of information may segregate the market. The
traders incur very little cost in gathering information, instead the main cost is that of
analysis. Analysing information takes time, meaning that it may be impossible for a
single trader to study and accurately respond to all of the information in the market in
a fast enough manner. Traders are therefore likely to ignore some of the information
available and fail to take it into account when making decisions. In effect the trader will
not be hearing some of the information even though it is available in principle. One
possible consequence of this is to focus the attention of traders on a small subset of
market products, leading to specialisation.

There is, however, an important difference between these cases. Although a market
may be segregated in terms of information flow, trade is not as restricted as it is in the
spatially extended case. In either of these cases, however, assumptions about centralisa-
tion of market processes no longer hold. Different traders within the market have access
to different histories of bids and shouts and, potentially, a propensity to deal with par-
ticular partners rather than others. These problems aren’t necessarily limited to human
traders. It is possible to conceive of markets that are sufficiently large, fast-moving,
and complex that even computer programs would find it inefficient to analyse all in-
formation present, or consider trading with every agent in the market. Recently models
have started to appear that examine these types of problems. For instance [11, 12] both
examine trading scenarios that take place across networks, similarly [13—15], amongst
others, consider the connected problem of trade network formation.

This paper aims to investigate the valuation of information within distributed mar-
kets. As has previously been described, traders in these markets will have access to
different information sources and therefore different pictures of the market state. This
will be particularly apparent if some traders are more connected than others, i.e., they
have more information sources and/or trading partners. These better-connected traders
are, on average, likely to have a better understanding of the market than those traders
who are less well connected.

The effect of this imbalance is important because to some extent the degree to which
a trader is connected can be altered by the trader itself. It is well known that resources
must be expended to gather information and that properly analysing information takes
time. In many situations it is possible for a trader to change the proportion of its re-
sources dedicated to gathering and analysing information, however, it is important to
know under which circumstances to do this.

In previous work [16] we have examined markets where both trade and information
flow are restricted in a manner represented by an explicit, fixed network of possible
agent-agent interactions. The network governed which agents were able to communi-
cate with each other and, therefore, which agents were able to trade with each other.



Importantly, this network was not complete (fully connected), i.e., some traders within
the market could not communicate directly with others.

In this initial work we wished to gain an understanding of the value of information
in a simple separated market so the market network was fixed. Traders were not per-
mitted to change their connections during the simulation. In future we hope to develop
this system so as to better understand the circumstances in which it is favourable to
change connectivity. The market used for these simulations was very simple, it was not
designed to reflect the intricacies of any particular distributed market. Instead it was
designed to provide general insight into the valuation of information in separated mar-
kets. The results found could be applied to any markets where information cannot flow
freely. This includes retail markets, OTC markets, and many others.

It was found that traders who were more heavily connected had a valuation that
was significantly closer to the theoretical equilibrium price of the market. The better-
connected a trader was, the more information sources it would have and so the more ac-
curate an opinion it could generate. The quality of information a trader possessed was,
therefore, directly related to its connectivity.? In order to exploit this knowledge a sim-
ple modification was made to each trading agent’s learning rule so that they weighted in-
formation according to the difference between the sender’s connectivity and their own.
As a result a trader would place more weight on information it heard from traders more
connected than itself, and less on information from traders less connected. It was shown
that on average a population of traders gained an advantage from using this rule, and
that this advantage was enjoyed mostly by the least connected individuals in the pop-
ulation. In fact, the most connected individuals suffered a slight drop in performance
when adopting this rather crude fixed learning rule.

This experiment assumed a homogeneous population. All traders within the popula-
tion had parameters drawn from the same distribution and so behaved in a very similar
manner. It is not difficult to argue that traders with different connectivities might per-
form better by adopting different strategies in order to exploit their position within the
market network. For instance, we would expect that if the most highly connected in-
dividuals described above had had the choice, they would have chosen not to employ
the learning rule that disadvantaged them, whereas those that were least connected may
have chosen to use the rule more strongly in order to gain more benefit.

In order to allow such a heterogeneous population of traders it is necessary to in-
dividually specify each trader’s parameters. One-way to do this is to hand tune every
trader to find its optimal parameter set. However, the optimal parameter set for a partic-
ular trader is likely to depend on the parameter sets of the other traders within the mar-
ket. In order to solve this problem it was decided to compete trading strategies against
each other. A co-evolutionary genetic algorithm was designed to allow the evolution of
competitive strategy sets.

3 Although in that case information quality was based on a traders connectivity there was no
reason why it could not be decided by other factors in a real-world market, such as a company’s
reputation or size or the previous history of information received.



2 Method

This section will first describe the structure and function of the markets that will be
investigated, before detailing the traders that will populate them. It will then go on to
describe the topological learning rule first introduced in [16] before finally describing
the set-up of the co-evolutionary genetic algorithm.

2.1 Network Generation

Trading networks were constructed in which nodes represented traders and edges repre-
sented bi-directional communication channels. There are many possible network con-
figurations that could be investigated for their effect on market performance, including
lattices, Erd6s-Rényi random graphs, small worlds, and graphs resulting from preferen-
tial attachment. This paper will focus on the latter class of networks since they exhibit
some interesting properties, including the presence of well-connected “hubs”, that have
an intuitive appeal in terms of real-world markets, where it would be expected that cer-
tain major shops or investment banks would be much better-connected than individual
shoppers or investors in their respective markets.

We employ an existing preferential attachment scheme [17]. A network of N un-
connected nodes is gradually populated with Nm bi-directional edges. In random order,
each node is consulted, and allocated an edge linking it to a second node chosen accord-
ing to probabilities calculated as p; = (n; +3)F. Here, P is the exponent of preferential
attachment and remains constant, n is the node’s current degree (number of edges), and
4 is a small constant (0.1 for all results reported here) that ensures unconnected nodes
have a non-zero probability of gaining a neighbour. Self-connections and multiple con-
nections between the same pair of nodes were not allowed. All probabilities, p;, were
updated after every edge was added. After m cycles through the population, the network
was complete. Note that every node will have a minimum of m edges, and a maximum
of N —1.

Markets explored here have a relatively high preferential exponent of P = 1.0 in
order to generate networks that display a wide range of degrees. For all results reported
here, m = 10. Initial tests showed that if m was significantly less than this value, the
market failed to converge as few traders were able to trade with their limited number of
neighbours i.e. it was separated.

2.2 Market Mechanism

The market mechanism operates in discrete time. Each time period, one active agent
(one who is still able to trade) is selected at random to make an offer or a bid. The
other agents in the market may only respond to that shout during that time period either
to make a trade or ignore it. Once that time period has elapsed the shout is removed.
Second, we limit an agent’s ability to trade such that they are only able to make offers
to, or accept bids from, their network neighbours. Each market was simulated for a fixed
number of time steps.



The inspiration for this market mechanism came from the work of Gode and Sunder
[5] and Cliff and Bruten [7]. Both of these cases investigated the effects of the continu-
ous double auction mechanism on market behaviour. * The aim of this paper is to gain
a similar understanding of the effect of the trade network. It is hoped that a relatively
simple trade mechanism such as this will allow the effect of the network to be more
easily identified and isolated.

2.3 Trading Agents

Here, the ZIP trading algorithm is used to govern trader behaviour. ZIP, or Zero In-
telligence Plus, traders were created by Cliff and Bruten [7] in response to work by
Gode and Sunder [5], who created the ‘“Zero Intelligence” trading algorithm in some
of the first agent-based market simulations. The Zero Intelligence algorithm was de-
signed to be the simplest possible algorithm that would allow trade to occur in a market.
Two types of Zero Intelligence trader were introduced. The first, unconstrained traders
(Z1-U), choose shout prices at random from a uniform distribution across the whole
range of possible prices permitted, disregarding any limit prices. It was found that mar-
kets populated by these traders exhibited none of the normal properties associated with
markets, such as convergence to the equilibrium price. The second type of zero intel-
ligence traders (ZI-C) were constrained in the range of prices that could be shouted.
Shout prices were again drawn at random from a uniform distribution, however, this
distribution was now constrained by a trader’s limit price. In the case of sellers, shouts
were constrained to be greater than the limit price, while in the case of buyers, shouts
had to be less than the specified limit price. Importantly, markets populated by traders
using this algorithm were shown to behave analogously to real markets in that they
converged to the theoretical equilibrium price [5]. This was interpreted as indicating
that the market mechanism itself was the most significant factor in market behaviour,
and that the design of the trading algorithm was not as important. Cliff and Bruten [7],
however, showed this to be incorrect, demonstrating that the convergence observed dur-
ing each trading period was an artifact of the supply and demand schedules used by
Gode and Sunder. They demonstrated that, for a certain type of supply and demand
schedule that was close to symmetric, the probability distribution of likely ZI-C bids
and offers would result in convergence to the mean price. They then performed sim-
ulations to verify these results with a broader range of supply and demand schedules.
For non-symmetric schedules, markets populated by ZI-C traders failed to converge, or
converged to a non-market-equilibrium value.

The ZIP trader differs from the ZI-C trader in that it learns from the market. Each
ZIP trader has a profit margin associated with its limit price. In the case of buyers, the
profit margin is the amount by which they wish to undercut their limit price to make
a trade, and in the case of sellers, it is the amount by which they wish to exceed their
limit price. When a ZIP trader shouts, the price is constrained by its limit price and profit
margin. The trader uses the market’s response to its activity (and the observable activity
of others) to update its profit margin. For instance, buyers observe the bids made on the

*In our case the distributed nature of the market and the impossibility to maintain a single
market price has meant that we can no longer describe the mechanism as a double auction.



market and whether or not they are accepted and adjust their profit margin accordingly.
The ZIP algorithm employs the Widrow-Hoff learning rule with momentum [18] to
adapt these profit margins throughout each trader’s lifetime, maximising for each trader
the possibility of making a profitable trade (for full details of this algorithm, see [7]).
This learning rule allows the traders to rapidly converge on the optimal price, while the
momentum term allows blips in the market to be ignored. Unlike ZI-C, ZIP traders are
capable of finding the market equilibrium under a wide range of supply and demand
schedules.

Here each ZIP trader was initialised with a random profit margin drawn from a
uniform distribution [41, A; + Az]. Each trader was also initialised with a random
learning rate drawn from a uniform distribution [B 1, B1+ Bg] and random momentum
value drawn from a uniform distribution [C, C1 +C5]. The target price for the Widrow-
Huff learning rule was calculated from 7' = F'g + G where ¢ is the shouted price and
F is a value drawn from a uniform distribution [1.0, 1.0 + D] for buyers and [1.0 —
Dp, 1.0] for sellers. G is a random variable drawn from a uniform distribution [0.0, D 4]
for buyers and [—D 4, 0.0] for sellers. Thus, F’ provides a small relative perturbation to
the target price and G provides a small absolute perturbation.

2.4 Topological Learning Rule

The standard ZIP learning rule makes no distinction between the information it receives
from different individuals. It was demonstrated [16], however, that there is a relationship
between trader connectivity and accuracy of valuation. The following modification to
the standard ZIP Learning rule was devised to take this imbalance into account.

The Widrow-Hoff rule currently includes a fixed learning rate which influences how
quickly a trader is able to learn. In order for the traders to take account of informa-
tion quality, the learning rate was modified so that instead of being fixed, the value
would be calculated for each piece of information received. This alteration results in
ZIP traders placing more weight on information obtained from well-connected individ-
uals than from less well-connected individuals.

The function f(s,r) was defined, where s and r are the sender and recipient of a
piece of information (a shout).
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The function, F, gives the number of neighbours (degree) of a trader, and R, is
the largest ratio of edges between two adjacent traders within the market. M is the mid-
point of the function and () controls the range of values that it can take. This enhanced
learning rule weights information according to relative connectivity within the market,
i.e., the ratio of the sender’s connectivity to the recipient’s connectivity determines the
learning rate. When the sender is more highly connected than the receiver the informa-
tion received is more likely to be accurate and so more adaptation occurs. When the
receiver is more connected, the receiver’s current picture of the market state is likely



to be more accurate than the senders and so less adaptation occurs. The value is nor-
malised by the maximum ratio present in the market to prevent unnatural learning rates.
Connectivity ratios are log-scaled to ensure that learning rate adaptation is sensitive to
the small differences in connectivity that characterise most sender-recipient pairs in a
network generated by a preferential attachment process (where there will be only a few
very well-connected individuals).

The Widrow-Hoff “delta” learning rule was modified by removing the learning rate
and replacing it with the function G(s, r):

G(s,m) =af(s,r)+ (1 —a)L

Where L was the original Widrow-Hoff learning rate. This function allowed simple
control of how much importance the trading strategy placed on the enhanced rule.

2.5 Genetic Algorithm

In this experiment it was desirable for different trading strategies to compete against
each other in order to examine the selection of trading strategies. A co-evolutionary
system was designed in order to do this. As was noted by CIliff [19] the behaviour
of a ZIP trader is governed by eight real valued parameters that may be expressed
as a vector V: V. = [A;, Ay, By, By,C1,C2, DR, D4]. In the case of enhanced
ZIP traders it was necessary to introduce three new parameters that controlled the
function of the topological learning rule, therefore, the vector used was W: W =
[A1, A2, By, B2,C1,C2, DR, Da, M, Q, o] These parameters were used to form a real
valued genotype in which each parameter was bounded to lie between zero and one.

From previous results [16] we know that a traders connectivity affects its profitabil-
ity within the market. As a consequence a traders connectivity may also affect its op-
timal strategy, therefore, it was desirable for traders with different connectivities to be
able to evolve their own strategies independently. In order to do this it was necessary
to maintain multiple populations of genotypes. One method of doing this would be
to have one population of traders for each possible connectivity, i.e. a population for
traders with 99 connections, a population for traders with 98 connections etc. There
is a problem with this system, although there are many examples of traders with few
connections in the networks there are relatively few examples of traders with large num-
bers of connections. It would have required a prohibitively large number of trials in each
generation to evaluate each strategy’s fitness accurately. In order to avoid this problem
each market was broken up into a fixed number of groups, G (20 in all experiments
reported here), sorted by connectivity. The N/G y most connected individuals formed
one group, the next N/G n most connected individuals formed the second group and
so on. Previous results [16] showed that traders with similar connectivities tended to
achieve similar results and so could possibly employ the same strategy. This justified
the formation of a set number of populations that would each contribute the same num-
ber of traders to each experiment.

To populate the groups G, populations were formed each of size S}, (in all exper-
iments reported here S, = 25), each population corresponded to a particular group.
In each trial N/G y members of each population were chosen at random to form each



group. The members of these groups were then added to the network in the appropriate
places. Every member of each population participated in 77, trials each generation (in
all experiments reported here 73, = 40). Due to the randomness present in the mar-
ket and allocation of limit prices it was necessary to assess the traders fitness multiple
times in order to attain a meaningful estimation. Strategy fitness was the average profit
extracted by a strategy over all trials in that generation. The average profitability has
an intuitive appeal, as in the real-world profitable strategies are more likely to survive
and be copied. Standard roulette wheel selection with fitness proportionate weighting
was used to select individuals for entry into the next generation. Mutation occurred at
every locus of a selected genotype with probability P, (P,, = 0.05 in all experiments
presented here). Mutation consisted of a perturbation of the locus by a value drawn
from a uniform distribution (—0.05, 0.05). If the mutated value was greater than one or
less than zero then the mutation was discarded and the original value used. In accor-
dance with the method employed by [19], single point crossover was performed with
probability P, (P, = 0.3 in all experiments presented here).

3 Results

Evolution occurred over 1000 generations. Each market was populated by 100 ZIP
traders. Each trader was randomly allocated a limit price in the range [1.00, 2.00], and
either the ability to buy one unit or sell one unit of an unnamed indivisible commodity.
Each market simulation lasted for 400 time steps. Markets were constrained by net-
works, constructed as described above, with P = 1.0 and m = 10, and all markets
operated through the market mechanism described above. At the start of the experi-
ment genotypes were initialised with parameters randomly chosen from the uniform
distribution[0, 1].

Figure 1 shows the average fitness of individuals within five different populations
averaged over 24 experimental runs. The left figure shows the result of evolving stan-
dard ZIP traders, the right figure shows the result of evolving the enhanced ZIP traders.
In both cases, strong trading strategies are quickly found by all populations (within
approximately the first 40 generations). From this point onwards, however, the fitness
levels of the populations remain approximately constant.

It should be noted that although the absolute fitness does not change after the first 40
generations this might not mean that the strategies are not continuing to adapt. Fitness
is measured by the average amount of profit a trader makes. In these markets, however,
the amount of profit available is fixed (though there is some small variation depending
on the random distribution of limit prices). In order for one population of traders to
increase its fitness it is necessary for it to become more profitable relative to another
population. This is difficult to do as other population are simultaneously attempting to
adapt their strategies to do the same. As in many co-evolutionary settings the trading
strategies are continually adapting against each other and cancelling out each other’s
advantages. So although the fitness’s may appear constant, the strategies may still be
moving and changing in the strategy space [20].

In both experiments, corresponding populations attain similar fitness’s. This indi-
cates that some populations may have inherent advantages within the market and that
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Fig. 1. Absolute fitness averaged over twenty four experiments for five of twenty populations
ranked in decreasing order of connectivity for (left) standard ZIP traders, and (right) enhanced
ZIP traders using a learning rule adapted to exploit market topology information.

the traders are not able compensate for these differences. It appears that the more heav-
ily connected populations (low numbered) are able to exploit their connectivity advan-
tage and extract the same amount of profit from the market in both cases.

Figure 2 deals with the deviation of the traders valuations over the length of a mar-
ket experiment. These results were obtained by performing 10,000 market experiments
using the final populations from each of the twenty-four genetic experiments. At each
time-step the deviation from the equilibrium price of each trader’s valuation was mea-
sured (traders that had already traded were not included in this measure). In previous
work it was demonstrated that traders who were more heavily connected had valuations
that were closer to the equilibrium price than those who were weakly connected. In this
case, however, all traders quickly converge to equally good approximations of the equi-
librium price. The addition of the topological learning rule does not appear to have any
effect on the ability of traders to identify the equilibrium price. The convergence occurs
at the same speed, and to the same level, both with and without the topological learning
rule. (Note, this measure will never converge to zero as some traders have limit prices
beyond the equilibrium price which bounds their valuation away from it).

Figure 3 shows the average learning rate for each of the final populations. In the case
of the standard ZIP traders the learning rate is inversely proportional to the connectivity
(r value < 0.01), i.e. more connected individuals have a lower learning rate than the
less connected individuals. In the case of the enhanced ZIP traders the learning rate
appears to remain approximately constant across the populations. The enhanced ZIP
traders have on average a higher learning rate than the standard ZIP traders.

Figure 3 shows the average initial profit margin for each of the populations. The
range indicated on the graph is the range from which each trader’s initial profit margin
is drawn. This value is then adapted throughout the course of the experiment as shouts
are heard. In both cases there is a positive correlation with connectivity (r value < 0.01).
i.e. the more connected a trader the higher the initial profit margin. The value of the
initial profit margin does not appear to depend on the use of the topological learning
rule.



Fig. 2. Absolute deviation from optimum price averaged over 10000 runs for the final populations
of each of 24 experiments. Traders ranked in decreasing order of connectivity for (left) standard
ZIP traders, and (right) enhanced ZIP traders using a learning rule adapted to exploit market
topology information.
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Fig. 3. Learning Rate for all members of the final populations of twenty four experiments, sorted
in decreasing order of connectivity. (Left) Standard ZIP traders, and (right) enhanced ZIP traders
using a learning rule adapted to exploit market topology information.

Figure 5 shows the average weighting factor for the topological learning rule for
each of the populations. The graph shows that this remains approximately constant
across populations. No population exploits the rule more than any other. It should be
noted that the midpoint (M) and range (@) of the rule remain approximately constant
over all populations at 0.35 and 0.45.

In both sets of experiments the remaining parameters were approximately constant
across populations. The momentum parameters B; = 0.35 and By = 0.70 and the
perturbation parameters C'4 = 0.35 and Cr = 0.3.

4 Discussion

This paper aimed to investigating effects of diverse trading strategies on trading be-
haviour in a structured market. Previous work had examined markets with a homoge-
neous population of traders [16]. In this paper this limitation was removed in order to



20 0 5 10
Connectivity

0
Connectivity

Fig. 4. Initial profit margin for all members of the final populations of twenty four experiments,
sorted in decreasing order of connectivity. (Left) Standard ZIP traders, and (right) enhanced ZIP
traders using a learning rule adapted to exploit market topology information.

0 20
Connectivity

Fig. 5. Weighting factor for the topological learning rule adapted to exploit market topology in-
formation for the final populations of twenty four experiments, sorted in decreasing order of
connectivity.

allow a more realistic representation of a market where individual traders may develop
their own strategies based on their circumstances and environment.

The first finding of this paper was that, traders who are better-connected on aver-
age start with higher initial profit margins. By having a higher initial profit margin the
more connected traders are adopting more aggressive market strategies. A higher profit
margin means the well-connected traders demand more from their trading partners and
as a result will probably take a larger cut of the profit from the trade. They are effec-
tively able to charge their trading partner a premium for the right to trade with them.
How are they able to do this? There is no advantage for the partner in trading with the
well-connected individual, the unit of goods bought or sold has the same value and no
reputation is gained through trading with the well-connected individuals.

It is the market position that is exploited by the well-connected traders in order to
increase their profits. A better-connected individual has many potential partners but it
will only trade with one of them. Once it has traded all other traders are left with one
less potential partner. If a trader is quick and agrees to the disadvantageous terms it is
able to reliably make a trade and extract some (small) profit. If, however, it does not



then it takes a chance on finding another partner who is more generous, or not finding
any partner and so making no profit. The extent to which a well-connected individual
may do this is governed by its connectivity, the better-connected an individual, the more
likely it is that another trader will take the unreasonable terms and trade. Therefore, the
better-connected an individual is the higher it can set its initial price and still expect to
make a trade.

This paper demonstrated that the way in which traders learn is affected by their
connectivity. In the case of standard ZIP traders the results (3, left), clearly show that
learning rate is inversely proportional to connectivity. The less well connected a trader
is the more it learns from each piece of information. This seems to be intuitively correct,
if a trader receives a large amount of information it is possible to average over them all
and place less weight on any individual piece. If information is relatively sparse then
the trader must place more importance on each piece heard.

Figure 3 (right) shows the learning rates of the enhanced ZIP traders. It would ap-
pear from this graph that the enhanced ZIP traders do not follow the same trend, as
there is virtually no slope present. When the effect of the topological learning rule is
included, however, a slope appears. Figure 5 shows that the weighting of the learning
rule remains approximately constant across all populations, in addition, the midpoint
and range of the function also remains constant. The effect of this rule, however, is not
the same for all populations. Traders in the more connected populations are more likely
to hear information from a traders who is less connected than they are, i.e. those from
a lower numbered population, and vice versa for those in less connected populations.
This effect becomes larger towards extremes. When the effect of the topological learn-
ing rule is added to the fixed learning rate, a similar pattern is observed to that seen
in the standard ZIP traders. Although the learning rule does not improve the trader’s
performance, it is used as an easy way to correctly shape the learning function.

The results also show that, in a market populated by standard ZIP traders, those
traders who possess more connections are able to make more profit than those who
have less connections, as demonstrated by their higher fitness (figure 1 left). The fitness
remains almost unchanged with the addition of the topological learning rule (figure 1,
right).

This is a very surprising result. Previous experiments [16] had suggested that the
addition of the topological learning rule allowed less well connected traders to reduce
the informational advantage of better-connected traders. As a result the performances
gap between the best and least well-connected individuals could be narrowed. Accord-
ingly it was expected that with the addition of the topological learning rule the less
well-connected populations would gain a higher fitness and the better-connected popu-
lations a lower fitness than before. In appears, however, that this was not the case. The
topological learning rule had no effect on the ability of traders to extract surplus from
the market.

Figure 2 shows parameter sets are evolved such that after a small number of time
steps, all traders, on average, have a valuation that is equally close to the equilibrium
price. In previous experiments, using markets populated by homogeneous traders, those
with more connections had a valuation significantly closer to the equilibrium price than



those with fewer connections. The enhanced ZIP traders produce an almost identical
result. They converge to a similar level in a similar amount of time.

The significance of this result should not be understated. It demonstrates that a very
simple trading strategy, ZIP, is able to evolve to perform well in a structured market with
limited information. Previously, in a homogeneous population, it was demonstrated
that simple traders could use information quality in order to increase the accuracy of
their valuations. In this case, a heterogeneous adaptive population was able to adapt a
few simple parameters such that the deviation from the equilibrium price of the shouts
was approximately equal across all individuals (figure 2). As a result information in-
equalities were no longer visible in the shouts and so could no longer be exploited. By
adapting their parameters the ZIP traders were able to remove the effect of information
inequalities from the market, all that remained was the effect of the market structure
itself.

This fact has important consequences. If the structure of the market (the number
of possible partners a trader has) is the only remaining factor that is unequal between
traders then it must be this that causes inequalities in profits. Since this factor cannot be
affected by the trading strategy then the design of more sophisticated trading algorithms
may not be able to mitigate this effect. In this paper it was shown that the addition of an
topological learning rule, that was previously demonstrated to be effective in structured
markets such as this, had no effect on the fitness or valuation deviations. In other words
the standard ZIP strategy was sufficiently advanced that it could find the competitive
market equilibrium in these separated markets and that the addition of a more complex
strategy could not improve on the result found for any group.

This leads to two possible hypotheses. First, in this simple trading scenario more
sophisticated trading algorithms may not be able to significantly outperform the stan-
dard ZIP algorithm. Second, that no population of competitive traders (those that do not
voluntarily give up possible profit) will be able significantly improve the performance
of one population relative to another. In order to test these hypotheses more experiments
must be performed. In particular experiments that pit the standard ZIP algorithm and
the enhanced algorithm against each other and against other trading systems in the same
market.

5 Conclusion

This paper has demonstrated that it is possible to evolve simple trading strategies to
function well in structured markets. It has demonstrated that by tuning a few simple
parameters it is possible for the traders to quickly remove any informational imbalances
present within the market. Any differences in profits that remain are then solely due to
differences in the number of possible trading partners that each trader has. It was also
demonstrated that the addition of a more complex trading strategy that had proved to be
effective in structured markets populated by homogeneous traders, had no effect on the
distribution of profit within the market. The more advanced trading strategy was not able
to mitigate the imbalances due to the market structure. The inherent imbalances were
shown to be exploited by the better-connected traders, allowing more aggressive trading



strategies to be employed successfully. This was primarily due to a larger number of
potential trading partners.

These results also have important consequences for real markets. The fact that sim-
ple trading strategies may be tuned to remove informational imbalances indicates that
this may also be true in real markets. The markets used in this experiment were simple,
however, they do capture important features of real commodity markets i.e. there are
shouts and trades that specify prices for goods of a known quality and volume. Some
real markets, such as financial markets, are not entirely dissimilar from this, though it
is accepted that real markets posses more commodities and more information sources.
This work suggests that in heterogeneous populations of self-interested adaptive traders,
such as those found in the real-world, it is possible to ignore informational advantages
as a result of market connectivity. After a short amount of time, barring the effect of
private knowledge, all traders should have an equally good valuation of the commod-
ity. Given that maintaining trading connections probably has some cost, what then is
the advantage of having multiple connections? The advantage comes from having more
possible trading partners. The more trading partners a trader has the more aggressive it
can be in its trading strategy and as a result the more profit it can make. So even though
all traders may know the fundamental value of a commodity the structure of the trade
network itself allows some traders to extract a higher price for that good than should
theoretically be possible. In other words traders can exploit their market position to
extract more surplus from a market than theory suggests they should.
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