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Abstract. This chapter presents an integrative visual data mining approach 
towards biomedical data. This approach and supporting methodology are 
presented at a high level. They combine in a consistent manner a set of 
visualisation and data mining techniques that operate over an integrated data set 
of several diverse components, including medical (clinical) data, patient 
outcome and interview data, corresponding gene expression and SNP data, 
domain ontologies and health management data. The practical application of the 
methodology and the specific data mining techniques engaged are demonstrated 
on two case studies focused on the the biological mechanisms of two different 
types of diseases: Chronic Fatigue Syndrome and Acute Lymphoblastic 
Leukaemia, respectively. The common between the cases is the structure of the 
data sets.  

Introduction 

Molecular and genomic information are becoming an important part of methods for 
diagnosing diseases, based on biological indicators. There is a very large and 
increasing level of effort towards improving the overall methodology for utilising the 
data gathered through gene expression profiling. The efforts are focused on the 
measurement procedures and data collection technology, experiment designs, and 
diverse data analysis and mining methods (Parmigiani et al., 2003). Some of the best 
practices have been discussed in (Piatetsky-Shapiro et al., 2003; Hoffman et al., 
2004).  
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Mining microarray data on it’s own is a challenging task (Piatetsky-Shapiro and 
Tamayo, 2003), due, on the one hand, to the superposition of a number of physical 
processes in the data collection, on the other, to the need to convert extracted patterns 
to biological knowledge. Consequently, there has been an increasing interest towards 
complementary techniques for analysing simultaneously gene expression data and 
other data sources, for example, literature-based information (Glenisson et al., 2003), 
DNA sequence database (Curran et al., 2003) or from several sources (Seifert et al., 
2005). This increasing tendency in extending data mining techniques, for example, 
association rule mining (Georgii et al., 2005; Carmona-Saez et al., 2006), is reflected 
in some of the tools developed recently (Shamir et al., 2005; Dietzsch et al., 2006). 
These “joint” methods, however, have emerged somewhat on an ad-hoc basis. 
Though biologists often focus on data, collected from microarray-based expression 
profiles, other molecular data, including the organisation and function of genes in the 
context of the cell, the physical genome and sequence, the relationships between 
species in terms of this organisation, can provide important insights into the 
phenomenon. Overall, in the biomedical and health sciences, various databases collect 
these diverse data sets, each providing a basis for knowledge discovery within a 
specific area of understanding. This is illustrated in Fig. 1. Biomedical and health data 
and patterns discovered from it often consist of many small interactions contributing 
to the explanation of the phenomenon. Developing a consistent methodology and the 
corresponding combinations of supporting algorithm is the aim of the work, presented 
in this chapter. 
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Fig. 1. Relationship of data source to the biological genotype - phenotype spectrum. 

Fig. 2 shows the broader picture of the data sources that are involved on the 
biomedical side in modern healthcare. There is a growing opinion that the analysis of 
biomedical data requires the integration of various data sources to build up a more 
complete picture of the various levels of biology, clinical understanding and optimal 
patient management. Consequently, there is a need for a consistent methodology that 
enables combined analysis of clinical traits, marker genotypes, comprehensive gene 
expression, SNP data, in order to dissect the biological mechanisms of complex 
disease. Recent research recognises also the necessity in automatic utilisation of 
existing knowledge compiled in various “omic” electronic libraries in order to 
understand and interpret the outcomes of microarray and SNP data in the context of 
existing biological knowledge (Hasegawa et al., 2006).  

A brief overview of the different types of data (data sources), their characteristics 
and issues of integration with the other data are presented in Table 1 - Table 4. We 
consider seven types of data sources, grouped in four categories:  
• Medical and Clinical data sources (including Medical Data, Patient Outcome 

Data and Patient Questionnaire Data) presented in Table 1;  
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• Biological data sources (including Gene Expression Profiles and Single 
Nucleotide Polymorphisms (SNPs)) presented in Table 2; 

• Biological knowledge bases (including Domain Ontologies and other 
Databases) presented in Table 3; 

• Healthcare data sources (including Health Management Data) presented in 
Table 4. 

Ideally, each of these types of data should be present in the integrated data set, 
however, the final selection depends on the available data and the study scenario. 
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Fig. 2. The diverse biomedical and healthcare data sets are the source for knowledge 
discovery within a specific area of understanding associated with the management of 

patients. 

Further in the chapter we present an overview of the general methodology and 
demonstrate its application in two case studies: the identification of biological 
markers underlying Chronic Fatigue Syndrome and to the sadly common childhood 
malignancy Acute Lymphoblastic Leukaemia.  

Table 1. Medical and Clinical data sources  
Data Sources Characteristics of the data Integration Issues 
Medical Data: Prognostic 
indicators are used for the 
empirical diagnosis of disease. 
In the case of ALL patients, 
this is a risk-based directed 
therapy (Felix et al., 2000). 

Patient age, sex, ethnicity, 
white blood cell count, 
cytogenetic analysis, cell 
surface antigens and response 
to initial chemotherapy. 

Data available is often 
derived from patients 
presenting at hospitals and 
treated on specific drug 
trials. Data types are mixed 
but may be available only 
as unstructured text. 

Patient Outcome Data: 
Studies and trials are 
generally designed to compare 
potentially better therapy with 
therapy that is currently 
accepted as standard. 

Treatment protocols list drug 
schedules for patients in 
different risk categories and 
modifications for patients with 
abnormal response to drugs. 

Therapies and outcome data 
are in unstructured text and 
must be encoded into a 
computer representation, 
bearing in mind the 
heterogeneity of response. 

Patient Questionnaire Data: 
Specifically designed 
questionnaires are used in 
studies of diseases with 
psychosocial basis. Analysis 
of such data usually provides 
a starting point for 
classification of cases and 
then for further investigation 
of the existence of a possible 
biological background. 

Questionnaires usually include 
both close- and open-ended 
questions. The close-ended 
questions generate numerical 
attributes. The open-ended 
questions result in an 
unstructured data  

Open ended questions 
generate data which may be 
further mined using 
computation linguistic 
approaches. This may 
require specialist domain 
ontologies such as those 
associated with the UMLS 
(Nelson et al., 2002). 
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Table 2. Biological data sources 
Data Sources Characteristics of the data Integration Issues 
Gene Expression Profiles: 
The mRNA expression profile 
of diseased cells may reflect 
the unique genetic alterations 
present and has been shown to 
be predictive of clinical and 
biological characteristics of 
illness for many diseases. A 
major issue in these data is the 
unreliable variance estimation, 
complicated by the intensity-
dependent technology-specific 
variance (Weng et al., 2006). 

cDNA microarray is the high 
throughput analysis of global 
gene expression within a 
biological specimen. Gene 
expression measurements (e.g. 
relative levels of expression 
between tumour and normal 
cells) are made simultaneously 
for many thousands of genes.  

Comparing gene expression 
measurements between 
different technologies and 
between measurements on 
the same technology at 
different times is a 
challenge handled by 
normalisation techniques. A 
specialised markup 
language for microarray 
data is in (Spellman et al., 
2002). Furthermore, the 
number of replicated 
microarrays is usually small 
because of cost and sample 
availability, resulting in 
unreliable variance 
estimation and thus 
unreliable statistical 
hypothesis tests.  

Single Nucleotide 
Polymorphisms (SNPs): The 
analysis of SNPs within the 
human genome will enhance 
our understanding of 
underlying genetic variations 
that exist in the human 
population. Individual SNPs 
are being associated with 
specific diseases and have 
been correlated to altered drug 
response in pharmacogenomic 
analyses (Aplenc and Lange, 
2004). 

Increasing numbers of 
examples of single base 
pair variations within the 
coding region of genes 
which, whilst not being a 
mutation which leads to a 
defective protein, are 
associated with altered 
activity of the protein 
(Goto et al., 2001). Larger 
blocks of genetic variation, 
called haplotypes, are also 
being assessed in so called 
Haploblock studies. 

There is a need to establish 
statistically significant 
correlations between SNPs 
and disease or outcome of 
treatment through 
association studies. High 
throughput analysis of 
SNPs, with up to 100000 
different variations are now 
achievable. 

 
 

Table 3. Biological knowledge bases 
Data Sources Characteristics of the data Integration Issues 
Domain Ontologies and 
other Databases: GO (The 
Gene Ontology Consortium, 
2000) and other biological 
and medical ontologies and 
databases (e.g PubMed, 
TRASER, Swiss-Prot, etc.) 
are publicly available over 
the Internet. 

GO (The Gene Ontology 
Consortium, 2000) is a main 
public curated vocabulary of 
over 17,000 terms and allows 
association of biological 
‘functionality’ with gene 
products. 

Integration adds context and 
knowledge about genes. 
Issues arise when matching 
records between databases 
as the primary key used to 
index entities often differs 
depending on the owner of 
the database.  
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Table 4. Healthcare data sources 
Data Sources Characteristics of the data Integration Issues 
Health Management Data: 
Retrospective cost-benefit 
assessment of clinical trials 
are often conducted by 
health managers so as to 
improve the broader 
management strategies and 
financial resource allocation 
for Departments. 

Patient visits to inpatient and 
outpatient wards/clinics, total 
cost of medication, efficiency 
of service delivery, 
consultation time and study 
comparison analysis. Quality 
of life measurements. palliation 
vs effective cure. Effect of new 
screening test with regards to 
benefit etc. 

Privacy issues, updating 
costs of drugs over times. 
Comparison of different 
drugs between countries. 
This is performed 
retrospectively with findings 
difficult to implement in 
future trials. 

 

The “Extract-Explain-Generate” Methodology 

We present the general outline of the “Extract-Explain-Generate” methodology, 
motivated by the multifactorial and multilevel nature of biomedical data. A schematic 
of the methodology is shown in Fig. 3.  

 

 
Fig. 3. The “Extract-Explain-Generate” methodology. 

The methodology is centred on our technology-mediated knowledge based 
inductive learning process. It analyses new observations in the context of the available 
domain knowledge. As illustrated in Fig. 3, the observations of a new patient and 
domain knowledge related to the case, possibly including existing biological 
hypotheses, are the inputs to the knowledge based inductive learning process. The 
output of the process includes one or more medical hypotheses. These hypotheses 
assist  
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(i) the clinician to formulate a treatment protocol and understand how a 
patient differs from other previous patients; 

(ii) the biological researcher to identify biological markers (possibly genes or 
other indicators) for future investigation, and;  

(iii) the health manager to understand the costs associated with treatment. 
 
Once validated by these end-users, the hypotheses are used to update the domain 

knowledge. Domain knowledge can be categorised into three classes:  
(i) a case base of previous patients together with outcomes of the treatment 

protocol applied;  
(ii) public knowledge bases of biomedical information (including domain 

ontologies and databases); and  
(iii) health management information. 
 
The knowledge-based inductive learning step facilitates reuse of acquired 

knowledge in the context of prior domain knowledge. Although the processes in the 
knowledge based inductive learning step are different for each of the types of 
hypotheses and for different problems, these processes may be grouped under three 
categories: “extract”, “explain” or “generate hypotheses”. Medical hypotheses 
(together with treatment outcomes) are used to update the database of cases. 
Biological hypotheses eventually lead to updates of the knowledge bases involved in 
the process in Fig. 3.  

In order to position and interpret the results of the analysis of microarray data in 
the context of other existing biological knowledge, we utilize available domain 
ontologies, electronic libraries and other databases (referred in the literature also as 
“omic knowledge” libraries). Currently, the bioinformatics tools that process such 
sources are restricted to deal with one type of “omic knowledge”, e. g. particular gene 
ontology, or interactions. Promising for our approach are the efforts in the 
development of mechanisms and protocols to deal with any type of omic knowledge 
for example the work on Omic Space Markup Language (OSML) (Hasegawa et al., 
2006). 

Overall, the proposed integrative methodology takes into account and incorporates 
biological, clinical and economic aspects of the medical treatment. This is also 
indicated by the explicit presence of the roles of Clinician, Healthcare Manager and 
Molecular Biologists in Fig. 3. As “Extract-Explain-Generate” methodology involves 
in each step one or more data mining and analytics experts, these roles are not 
explicitly shown in the diagram in Fig. 3. It provides a broad framework for 
constructing consistent instances of case study designs, including required data 
mining support for specific cases. We illustrate how these instances are formed on the 
cases of Chronic Fatigue Syndrome and Acute Lymphoblastic Leukaemia. In the first 
case study the focus is on the anatomy of the “Extract” step, when in the second study 
the focus is on the anatomy of the “Explain” step. 
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Case Study 1: Chronic Fatigue Syndrome 

In this section we demonstrate an instance of the application of the “Extract-Explain-
Generate” methodology to a biomedical problem: identification of biological markers 
underlying Chronic Fatigue Syndrome. In the following subsections we describe the 
problem and the goals of our study. Then we construct and apply an instance of our 
methodology to this particular problem and describe the outcomes of the 
investigation. 

Problem 

Chronic Fatigue Syndrome (CFS) (Afari and Buchwald, 2003) is an illness with a 
primary symptom of debilitating fatigue over a six month period. Currently diagnosis 
of CFS is generally made by clinical assessment of symptoms using a number of 
surveys measuring functional impairment, quantifiable measurements of fatigue and 
occurrence, duration and severity of the symptoms (Reeves et al., 2005). A primary 
goal of current research is to derive a definition of the syndrome, which goes beyond 
a clinical assessment of symptoms to an empirical diagnosis founded on an 
established biological lesion. The motivation for this kind of research is to gain a 
clearer understanding of the illness and to find empirical guidelines for its diagnosis. 

The Goals of the Study 

The goal of our study is to investigate whether there is a biological basis to CFS. To 
this end we interrogate an integrated dataset of clinical, blood evaluation and gene 
expression data to identify patterns differentiating patients suffering from fatigued 
(CFS and other fatigued individuals (ISF) with insufficient severity of symptoms to 
be classified as suffering from CFS) to non-fatigued (NF) individuals. 

We use publicly available data for CFS and NF individuals from the Critical 
Assessment of Microarray Data Analysis (CAMDA 2006) competition datasets (CDC 
Chronic Fatigue Syndrome Research Group, 2006). The integrated data set that we 
composed, comprises two clinical data sets, one giving survey results for patients for 
the above mentioned fatigue and symptom questionnaires, the other giving complete 
blood evaluation results for patients. This involved 139 CFS/ISF patients and 73 NF 
individuals. Gene expression data for a subset of the CFS/ISF and NF patients (118 
CFS/ISF and 53 NF) was also available (consisting of around ten thousand genes for 
each sample), together with SNP data and proteomics data. We did not use the SNP or 
proteomics data in our investigation although it can easily be incorporated within our 
methodology. 

These data cover the full biological spectrum from genotype to phenotype (see Fig. 
1). Investigators have developed a stratification of CFS which characterises its 
clinical significance (National Center for Infectious Diseases, 2006). Their initial 
hypothesis stated that gene expression profiling would allow them to establish 
prognostic indicators of the syndrome. We have queried this assumption and asked 
whether there is a biological basis to CFS or does it have a purely psychosocial 
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aetiology? In particular we have focussed on whether we can identify a pathological 
lesion for CFS in peripheral blood. Put more simply, in what way, and to what extent, 
are the SNP, gene expression, proteomic and blood chemistry profiles different 
between non-fatigued (NF) subjects and those with CFS or a fatigue syndrome? These 
questions influenced the outline of the study scenario and the components included in 
the integrated data set.  

The Study Scenario 

A specific instance of the “Extract-Explain-Generate” methodology was applied to 
the problem of identifying a biological basis to CFS. It is thought that CFS is unlikely 
to be caused by a single agent (Afari and Buchwald, 2003). This multifactorial nature 
of the problem domain motivates us to extend the “Extract-Explain-Generate” 
methodology to take a complex systems approach towards the analysis, illustrated in 
the schematic in Fig. 4. We use the labels “global” and “local” patterns to distinguish 
between patterns derived from and valid over the integrated data set and patterns that 
are generated from a subset of attributes. For example, clusters of patients can be 
global patterns, if they are generated out of clinical and gene expression data in the 
integrated data set. Global patterns are aimed at establishing deep linkages between 
the attributes and within and between the components of the integrated data set that 
explain or question assumptions about the phenomenon. Therefore, we label 
approaches and algorithms seeking them as “constructionist”. If we use just a subset 
of attributes, like a list of individual genes, but not all genes, then the patterns derived 
are local. Such reductionist approaches are common in microarray data analysis and 
are used to discover biomarkers for diseases. Local patterns can be viewed as the 
output of a reductionist approach in predictive modeling, where one looks at the 
attributes that allow generating accurate predictive models, without necessary 
providing an explanation about the underlying phenomenon.  
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Fig. 4. An instance of “Extract-Explain-Generate” applied in the Chronic Fatigue 
Syndrome case study. 

PK: the caption has separated from the figure when I view it. 
We posit that such reductionist approaches are less useful for highly dimensional 

datasets and for multifactorial diseases for two reasons. Classification between classes 
of patient in high dimensional datasets is susceptible to the “curse of dimensionality” 
where the biological markers (genes) chosen differentiate training examples but do 
not generalise well to unseen data. This is a result of insufficient patient samples 
compared to data items collected per sample. It is infeasible to collect sufficient data 
items for the extremely high dimensional gene expression data (consisting of 
thousands of attribute values i.e. genes per patient). Secondly, with the predicted 
‘multifactorial’ nature of CFS, it is likely to be multigenic in nature, governed by 
small changes in many genes rather than a simple genetic defect involving a single 
gene. 

Consequently, we take a data driven approach towards the interrogation with the 
aim of getting a better understanding of the phenomena before phrasing a specific 
biological hypothesis. This approach aims to avoid the introduction of unnecessary 
bias. 

“Extract” step 
The data is pre-processed before the “Extract” stage. In particular, some attributes 

of the “illness” dataset, the clinical dataset containing the patient’s answers to the 
illness questionnaires, are omitted because they are  

(i) skewed with almost all individuals having the same attribute value;  
(ii) not deemed useful for the data mining effort; or 
(iii) calculated by the original researchers and would bias our efforts.  
The attributes concerned are “DOB”, “intake classific”, “cluster”, “onset”, “yrs 

ill”, “race” and “ethnic”. The dependent variable “Empiric” is used as the patient class 
and patient subtypes are combined to make three classes CFS, ISF and NF. In the 
other clinical dataset, concerning the complete blood evaluation for patients, we add a 
copy of the “Empiric” attribute. The datasets are linked by the patient identifier 
attribute “ABTID”. The gene expression datasets are combined into a single dataset 
for all individuals and the “Emipric” patient class linked as described above. Each 
gene for each patient in the gene expression dataset consists of four attribute values: 
“Spot Label” with the gene name, and three statistical measures of the gene 
expression value including standard deviation and mean of values within the spot. The 
statistical measures of the gene expression are normalised over all arrays and patients 
by multiplying values with the average value of every gene over all arrays divided by 
the average value of every gene over the individual array. We create integrated 
datasets of pairs and the triplet of the individual pre-processed datasets. 

As discussed above, the “Extract” step in this case takes a complementary 
constructionist and reductionist approach. The constructionist schema combines a 
kernel-based clustering and visualisation method to the integrated data set. This 
method (Shawe-Taylor and Cristianini, 2004) finds a low-dimensional projection of 
the integrated dataset such that the distance between points in the projection is similar 
to the distance in the kernel induced feature space. The linear kernel is used and 
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additional pre-processing is applied to data in the clinical datasets where all attribute 
values are recoded to numeric values, patient class information is omitted from 
calculation of the kernel (to get an unbiased visualisation) and the data is centred and 
normalised. The global patterns identified are clusters of patients in the space of low-
dimensional projection of the original data. 

Efficient calculation of the kernel matrix for the gene expression data requires 
special treatment. Each row of the gene expression dataset represents an individual 
gene measurement for a particular microarray (for each patient). The straightforward 
approach of calculating the linear kernel matrix is to concatenate the rows of the gene 
expression dataset into a matrix consisting of one row for each array with a set of 
attribute values for each spot label (“ARM Dens - Levels”, “MAD - Levels” and “SD 
- Levels”) then to calculate the linear kernel by multiplying the matrix with its 
transpose. Clearly this approach and the corresponding algorithms are impractical in 
our situation because of the large number of genes on each the array. We developed a 
more efficient approach, motivated by computational linguistics, for direct 
computation of the linear kernel matrix from gene expression data. The kernel value 
for two samples (i.e. microarrays) is calculated from sorted lists of genes (spot labels) 
associated with each array. The kernel value is calculated as the sum of the product of 
the attribute values for genes matching in both lists. Computation of the linear kernel 
matrices for the integrated datasets is simply a matter of adding the linear kernel 
matrices for the individual datasets. 

The reductionist schema in this case is based on the Gene Feature Ranking (GFR) 
method, developed by the team. It calculates a rank that measures the separation 
between fatigued (CFS/IFS) and non-fatigued (NF) data points for genes. Each gene 
is assigned a rank corresponding to the Euclidean distance in terms of the normalised 
averaged “ARM Dens – Levels” and “MAD – Levels” values (in the gene expression 
dataset) for the 119 patients classified as fatigued and the corresponding averaged 
values for the 53 non-fatigued patients. Larger ranks correspond to spot labels that 
better discriminate the classes of patient. Similarly, distances are calculated for the 
other gene expression measures (“MAD – Levels” and “SD – Levels”). The ranked 
genes are evaluated through an SMO (Sequential Minimal Optimisation) Support 
Vector Machine (SVM) classifier (Platt, 1998; Keerthi et al., 2001) with test error 
estimated with 10-fold cross-validation again using the linear kernel function. By 
analogy with the Newton family of numerical methods for finding the roots of 
polynomial equations, we developed a strategy with variable step size in order to 
identify the optimum number of genes that result in the best classification. 

“Explain” step 
The global patterns found with the kernel clustering and visualisation and the local 

patterns discovered by the gene feature ranking algorithm are explored in the 
“Explain” stage with decision tree and association analysis (Hastie et al., 2001). In 
this study we focus on the global patterns by applying decision tree analysis 
separately to three subsets of the complete blood evaluation clinical dataset with 
respect to the patient class as defined by the “Empiric” attribute. Association analysis 
examined rules where the patient class is the “consequent” of the rule. The details are 
presented in the Outcomes subsection of this case study.  
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The Outcomes 

We present the outcomes of the case study following the same structure as in the 
Study Scenario section, distinguishing the outcomes related to the “Extract” and 
“Explain” steps respectively.  

“Extract” step 
The “Extract” step of the methodology identifies patterns in the data for further 

explanation. The constructionist approach identifies global patterns in the integrated 
dataset, whilst the reductionist approach, in this problem, looks for patterns in the 
gene expression data set only. 

 

 
 

a. b. 

 
 

c. d. 

Fig. 5. Kernel-based clustering and visualisation in 3 dimensions of (a) illness dataset, 
(b) blood dataset, (c) gene expression dataset and (d) the integrated blood, illness and 
gene expression dataset. Legend: + = NF patient,  = ISF patient,  = CFS patient. 

Fig. 5 shows some of the global patterns found as a result of the constructionist 
part of the “Extract” step. These results are the input to the interactive 3D visual data 
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mining system, which offers various functions for exploring the visual space. The 
global patterns are evident as points in the 3-dimensional space comprising the first 
three principal components of the projection of points into the kernel feature space. 
Results are shown for the individual datasets and the triplet, but not for the pairs of 
datasets.  

The kernel based visualisation of the illness dataset (i.e. the survey information) 
(Fig. 5a) clearly shows that the NF patients cluster together. This is expected because 
medical professionals make the classification of patients into CFS, ISF and NF on the 
basis of information in the survey data. One CFS patient near this region appears to be 
clustered incorrectly. However, medical professionals use two different schemes to 
classify patients and, using the other classification scheme, this patient is categorized 
as ISF. In other words, this patient is a border line case. 

Less structure is evident in the visualization of the blood dataset in Fig. 5b. This 
suggests that there may not be strong biological markers evident in the complete 
blood evaluation of patients. The clustering of the gene expression dataset in Fig. 5c 
shows three clear clusters which do not strongly correspond to the patient classes. 
This also suggests to us that there may not be a clear biological basis in the gene 
expression values. These results reinforce the multifactorial notions of this disease. 

Results from the reductionist (GFR) approach within the “Extract” step are 
illustrated in Fig. 6. This diagram shows the accuracy of SVM classification with 
different numbers of the top gene feature ranking ranked genes/spots.  
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Fig. 6. Accuracy of ranked spots classifiers. Legend: ×  = “ARM Dens – Levels” and 

“SD – Levels”;   = “MAD – Levels” and “SD – Levels”. 
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The leftmost points on the graph use the 500 lowest ranked genes for classification 
to show the magnitude of the difference between classification accuracy at both ends 
of the ranking scale. The graph shows that many spots are required to reach 
acceptable classification accuracy. Reductionist approaches like this assume (most 
likely incorrectly) that factors affecting the outcome of the classification act 
independently. If there is an attribute that is strongly correlated with another attribute, 
the advice (Occam’s razor) is to remove it. Hence, the fewer attributes - the better. 
However, genes may not necessarily fit well in this modeling scheme, due to variety 
of possible interactions. Hence they are most likely not independent. The large 
number of genes necessary to achieve reasonable classification accuracy in Fig. 6 
suggests, again, that there is not a clear biological marker consisting of a small 
number of genes to discriminate between NF and CFS/ISF patients. 

“Explain” step 
The goal of the “Explain” step of the methodology is to provide an explanation or 

background to the patterns found in the “Extract” step. As discussed above, decision 
tree and association analysis was applied to the clinical datasets. 

Interrogation of the complete blood evaluation data with decision tree and 
association analysis indicated few differences at the cellular level between the blood 
samples obtained from CFS vs ISF vs NF patients. There were slight imbalances in a 
range of attributes associated with red blood cells (RBC) and this may be 
characteristic of a fatigued patient. The ‘imbalances’ however, were mostly in the 
normal range for these attributes within the general population and could not 
independently be used to diagnose a fatigue syndrome. For example, the trained 
decision tree found that all CSF patients had a Mean Corpuscle Volume (MCV) ≥ 
81.15 fl (normal range 86±10fl). Similarly, the ISF patients were found to have a 
Mean Corpuscle Haemaglobin (MCH) ≥ 26.45pg, however, the normal range is 
29.5±2.5pg. The biological interpretation of this is that, whilst the RBC attributes are 
not sufficient to characterise a ‘fatigued’ patient as having a form of anaemia, the 
imbalances may point to slight inefficiencies in O2 distribution of CFS and ISF 
patients. The attributes, however, are not sufficient of themselves to be used as a 
diagnostic marker for a fatigue syndrome nor may they reflect the underlying 
biological basis for the syndrome. That said, decision tree analysis identified that the 
NF samples were identified by CO2 ≥ 21.4 units (58 of the 63 patients matching also 
MCH > 33.45 and anion gap ≥ 21.4). However, the CFS patients were identified by 
CO2 ≤ 28.9 units. Given that the normal range is between 20-30 units it appears that, 
for this attribute at least, the difference identified by the decision trees may represent 
different distributions between the test and control patient cohorts, with both cohorts 
having values within a range found to be normal within the wider general population. 
Clearly however, the biological differences between the blood count and chemistry of 
the fatigued and NF patients is minimal and not useful as an independent classifier of 
CFS. The imbalances detected may however, in combination with the other data 
available allow for the construction of a multifactorial or multigenic classifier for 
fatigue syndromes. Indeed, F Test analysis for the MCV and MCH variables indicate 
that sample variances between the CSF and NF populations (excluding the ISF 
samples) were significantly different (p<0.05 or 0.028 and 0.048 respectively). 
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Decision tree and association analysis of the illness (survey) dataset identified rules 
that agreed with those used to empirically classify patients (National Center for 
Infectious Diseases, 2006). For example, NF patients were characterised with General 
Fatigue < 12.5, Reduced Activity < 9.5, no exclusion and no current MDDM. Similar 
rules used by (National Center for Infectious Diseases, 2006) were identified for the 
CFS and ISF patients. 

Case Study 2: Acute Lymphoblastic Leukaemia 

In this section we demonstrate the application of the “Extract-Explain-Generate” 
methodology to another biomedical domain: the treatment of cancer, in particular, the 
sadly common childhood cancer acute lymphoblastic leukaemia (ALL). We follow 
similar presentation structure and in the following subsections we describe the 
problem and the goals of our study. Then we show how to apply an instance of our 
methodology for this particular problem together with the outcomes of the 
investigation. 

Problem 

ALL is the, sadly, most common childhood malignancy. It represents 24% of all new 
cancers occurring in children between 1995 and 1999 (240 ALL/985 Cancer patients) 
in NSW, Australia (Australian Institute of Health and Welfare (AIHW) & 
Australasian Association of Cancer Registries (AACR), 2004). Today, 75-80% of 
children with ALL survive. Current treatments incorporate systemic therapy (eg 
combination chemotherapy) and specific central nervous system (CNS) preventative 
therapy. Successful treatment of childhood ALL requires the control of systemic 
disease in many body systems (bone marrow, spleen, CNS, etc) as well as treatment 
of extramedullary disease, specifically in the CNS to bring about ‘clinical remission’ 
(ie. the disappearance of traces of the disease). Since nearly all children with ALL 
achieve an initial clinical remission, the major obstacle to cure is patient relapse, i.e. 
the recurrence of evident disease. Relapse from remission can occur during therapy or 
after completion of treatment and can occur in various sites. The prognosis for an 
ALL patient with recurrent disease depends on the site of relapse and the duration of 
remission prior to recurrent disease (Henze et al., 1991). 

The Goals of the Study 

This investigation focuses on finding genes in the massive gene expression datasets 
most associated with the high risk ALL patients and then trying to understand how 
these genes are alike. For this study we interrogate clinical and gene expression data 
from the Children’s Hospital at Westmead (CHW). The focus of this study is more on 
the gene expression data rather than integrated data sets. High risk (compared to 
normal risk) ALL patients are indicated by an attribute in the clinical dataset. The 
patient data includes cDNA microarray and clinical data for 9 patients. Usually 
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between 2 and 10 repeat experiments of the same data (ie. patient) are made and for 
each patient, there are around 9000 genes with between 2 and 10 log ratios (ie. 
experiment repeats) for each gene. Clinical data describes a patient in detail, as well 
as the effect of different treatment protocols. Of the nine patients, 4 are labelled as 
high risk. In this study we are interested only in the physician-based indicator of risk 
stratification and cDNA microarray values. 

The Study Scenario 

There is a shift in paradigm from classification and prediction of cancer and treatment 
outcome, respectively, to utilizing data mining technologies for getting a deeper 
understanding of the mechanisms that govern the cancer, in particular, understanding 
the molecular basis of histologic grade to improve prognosis and treatment (Sotiriou 
et al., 2006). The instance of the “Extract-Explain-Generate” methodology 
specifically created for this case study is shown Fig. 7. 

 

  
Fig. 7. An instance of “Extract-Explain-Generate” methodology applied in the ALL 

case study. 

“Extract” step 
For this problem we apply data winnowing techniques to extract local patterns in 

the data. We use matrix decompositions to identify genes indicative of high risk ALL 
patients. In particular, a combination of techniques based on singular value 
decompositions (SVD) and semi-discrete decompositions (SDD) are used to winnow 
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the thousands of genes tested for each patient to dozens of genes most indicative of 
ALL. See (Skillicorn et al., 2004) for the details of the winnowing techniques. 

“Explain” step 
Whilst the list of genes that is the outcome of the data winnowing techniques is 

interesting from a statistical point of view, it is difficult for biological interpretation. 
The list of genes can be characterised as “data rich” but “knowledge poor” in that the 
raw list of genes does not contain much domain specific knowledge. In the “Explain” 
step we enrich the list of genes with domain specific knowledge, specifically the 
associated terms from the Gene Ontology (The Gene Ontology Consortium, 2000). 
This large publicly available collaborative domain ontology contains over 16,000 
terms from three hierarchies (biological processes, cellular components and molecular 
functions) and associations to genes. Gene products are described in terms of their 
effect and known place in the cell. Terms in the hierarchies are related by “is-a” and 
“part-of” parent-child relationships and we use these relationships to define a 
similarity function for use in cluster analysis (Kennedy and Simoff, 2003; Kennedy et 
al., 2004). Using a similarity function defined over the ontology allows us to cluster 
genes in groups with similar functionality defined in terms of the interrelationships 
between terms in the ontology. Finally, descriptions of each cluster are found by 
examining Gene Ontology terms that are representative of the cluster. 

The “Generate” step searches for other genes that would have fallen into the same 
clusters the biologist is interested in. This is done through the Gene Ontology 
associations. 

The Outcomes 

“Extract” step 
Results from the winnowing techniques applied to the gene expression data in the 
“Extract” step are shown in Fig. 8. Each point in the diagram represents a gene with 
distances between genes dependent on their correlation. The symbols reflect results 
from the semi-discrete decomposition. The details of the algorithms are presented in 
(Skillicorn et al., 2004). The genes of interest are those grouped together far from the 
origin. The topmost genes of interest were selected for analysis in the “Explain” step 
with the cluster analysis. 

“Explain” step 
Terms from the Gene Ontology are associated with the genes selected from the 

“Extract” step and cluster analysis is carried out with the MBSAS algorithm 
(Theodoridis and Koutroumbas, 1999) using the similarity function described in 
(Kennedy and Simoff, 2003). Gene clusters found are listed in Table 5.  

The subset of terms associated with the clustered genes on a graph are shown in 
Fig. 9. The clusters are represented by the five large boxes. Nodes inside the clusters 
are the GO terms associated with genes in that cluster. More general terms are on the 
right hand side of the diagram. Edges between nodes represent the links in the 
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ontology. Each node is shown in only one box, but links between the boxes show 
where GO terms are shared by genes in the different clusters. The colour (level of 
grey) of the link represents the cluster that link is in. The darker colours (shades) 
represent GO terms and links that were in the original dataset whilst the lighter colors 
(shades) show relationships that are inferred from traversing the ontology. The details 
of the clusters are presented in Table 6. 

 
 

 
Fig. 8. Genes clustered according to the matrix decomposition methods. Axes are the 

first three principal components. 

 

Table 5. Discovered clusters with Gene Ontology clustering in the “Explain” step. 

Cluster Genes (GenBank accession codes) 
0 AA040427 AA406485 AA434408   AA487466 AA609609 

AA609759 
1 AA046690 AA644679 
2 AA055946 AA398011 AA458965   AA487426 AA490846 

AA504272 
3 AA112660 AA397823 AA443547 AA447618 AA455300 AA478436 

AA608514 AA669758 AA683085 
4 AA126911 AA133577 AA400973 AA464034 AA464743 AA486531 

AA488346 AA488626 AA497029 AA629641 AA629719 AA629808 
AA664241 AA664284 AA668301 AA669359 AA683050 AA700005 

AA700688 AA775874 
 
Though clustering methods have been adapted and applied to microarray data, their 

mathematical techniques do not show biologically relevant information on the 
clustering results. Cluster analysis with a domain ontology permits the automatic 
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induction of cluster description from the most general terms associated only with each 
cluster (Kennedy and Simoff, 2003; Kennedy et al., 2004). This novel methodology 
for biological interpretation of gene clusters utilizes the hierarchical nature of GO 
terms to select possible biological interpretation of the gene clusters. Similar to our 
approach has been proposed in (Lee et al., 2004). The BayGO developers (Vêncio et 
al., 2006) also went in a similar direction. They used Bayesian models to separate the 
the genes from a given category that are not observable in the are observable in the 
microarray data due to low intensity signal, quality filters, genes that were not spotted 
and so on. 

 
 

  
Fig. 9. Diagram showing parts of the GO hierarchy associated with genes being 

clustered. More general terms are at the right of the diagram. See text for description 
of graph. 
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Table 6. Principal cluster descriptions for genes. 

GO ID GO Term and number of associated genes  
Cluster 0 - 6 genes 

20 GO terms but each associated with only one gene 
Cluster 1 - 2 genes 

GO:0008092 cytoskeletal protein binding activity 2 
GO:0007028 cytoplasm organization and biogenesis 2 
GO:0003774 motor activity 2 
GO:0005875 microtubule associated complex 2 

5 GO terms but each associated with only one gene 
Cluster 2 - 6 genes 

GO:0004871 signal transducer activity 4 
GO:0007154 cell communication 4 
GO:0005887 integral to plasma membrane 3 
GO:0005886 plasma membrane 3 
GO:0005194 cell adhesion molecule activity 2 

11 GO terms but each associated with only one gene 
Cluster 3 --- 9 genes 

GO:0030528 transcription regulator activity 4 
GO:0008134 transcription factor binding activity 3 
GO:0006366 transcription from Pol II promoter 3 
GO:0003700 transcription factor activity 3 
GO:0006357 regulation of transcription from Pol II promoter 3 

5 GO terms but each associated with only two genes each 
13 GO terms but each associated with only one gene 

Cluster 4 --- 20 genes 
GO:0003723 RNA binding activity 10 
GO:0030529 ribonucleoprotein complex 9 
GO:0009059 macromolecule biosynthesis 9 
GO:0006412 protein biosynthesis 9 
GO:0005829 Cytosol 9 
GO:0003735 structural constituent of ribosome 8 

2 GO terms but each associated with only four genes each 
5 GO terms but each associated with only three genes each 

1 GO term associated with only two genes 
33 GO terms but each associated with only one gene 

 

Discussion and Conclusions 

We have presented a methodology for the analysis of biomedical data with emphases 
on its use by clinicians for diagnosis of patients and by biological researchers for 
facilitating biological understanding of diseases. The methodology places emphasis 
on the human-centered “Extract-Explain-Generate” cycle which extracts patterns 
from the associated data sets, explains the data by supplementing it with additional 
domain knowledge or with other techniques and then generates hypotheses for future 
testing by clinicians and biologists.  



20    Simeon J. Simoff, Michael Böhlen and Arturas Mazeika  

The methodology supports the multilevel multifactorial nature of biomedical data 
and data sources and we described some of the kinds of data sources used in 
biomedical data mining and the sorts of issues inherent in the integration of this data. 

We demonstrated the use of instances of the methodology in two complex 
biomedical case studies: investigation of the biological basis underlying chronic 
fatigue syndrome and investigation of genes indicative of paediatric acute 
lymphoblastic leukaemia. The first of these case studies, in particular, illustrated the 
use of the methodology in dealing with the multilevel, multifactorial nature of the 
biomedical domain by adaptation of the “Extract” step of the methodology to look for 
both global patterns spanning the integrated data and local patterns examining 
subgroups of attributes in the data. 

The methodology has been developed by researchers from the the Children’s 
Hospital at Westmead (Sydney, Australia), the University of Technology, Sydney, 
Queen’s University, Kingston, and Silicon Graphics. Currently, the team has focused 
on the refinement of the “Generate” step of the methodology and completion of the 
“clinical assistant” – a computer based system that utilizes the described approach in 
order to provide timely expertise to clinicians and biologists working in the area of 
childhood cancer. 
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