
Visualization of Permission Checks in Java using
Static Analysis

Yoonkyung Kim and Byeong-Mo Chang

Department of Computer Science, Sookmyung Women’s University
Yongsan-ku, Seoul 140-742, Korea
{ykkim79,chang}@sookmyung.ac.kr

Abstract. The security manager in Java 2 is a runtime access control
mechanism. Whenever an access permission to critical resources is re-
quested, the security manager inspects a call stack to examine whether
the program has appropriate access permissions or not. This run-time
permission check called stack inspection enforces access-control policies
that associate access rights with the class that initiates the access. In
this paper, we develop a visualization tool which helps programmers en-
force security policy effectively into programs. It is based on the static
permission check analysis which approximates permission checks stati-
cally which must succeed or fail at each method. Using the visualization
system, programmers can modify programs and policy files if necessary,
as they examine how permission checks and their stack inspection are
performed. This process can be repeated until the security policy is en-
forced correctly.
Keywords: Java, stack inspection, security, static analysis.

1 Introduction

Java was designed to support construction of applications that import and exe-
cute untrusted code from across a network. The language and run-time system
enforce security guarantees for downloading a Java applet from one host and ex-
ecuting it safely on another. Bytecode verification is the basic building block of
Java security, which statically analyzes the bytecode to check whether it satisfies
some safety properties at load-time [8, 18].

While the bytecode verifier is mainly concerned with verification of the safety
properties at load-time, the security manager in Java 2 is a runtime access con-
trol mechanism which more directly addresses the problem of protecting critical
resources from leakage and tampering threats. Whenever an access permission
to critical resources is requested, the security manager inspects a call stack to
examine whether the program has appropriate access permissions or not. This
run-time permission check called stack inspection enforces access-control policies
that associate access rights with the class that initiates the access. A permis-
sion check passes stack inspection, if the permission is granted by the protection
domains of all the frames in the call stack.

In Java 2, programmers implement a security policy of an application by writ-
ing its security policy file and checking whether an access request to resource
should be granted or denied, before performing a possibly unsafe or sensitive op-
eration. Programmers should examine whether the security policy is kept well in
the program as expected. This examination usually requires a lot of effort, when
programs are large and different permissions are needed for different classes. So,
we need a tool to support this permission check examination to develop secure
programs in Java 2 effectively.

In this paper, we develop a visualization tool which helps programmers en-
force security policy effectively into programs. It is based on the static permission
check analysis proposed in [6], which approximates permission checks statically
which must succeed or fail at each method. We first implement the static per-
mission check analysis. Based on the static analysis information, we implement
a visualization system, which shows how permission checks and their stack in-
spection are performed.

Using the visualization system, programmers can modify programs and pol-
icy files if necessary, as they examine how permission checks and their stack
inspection are performed.

This paper is organized as follows. The next section reviews Java 2’s stack
inspection. Section 3 describes two proposed static analyses. Section 4 describes
implementation of the static analysis and its visualization. Section 5 discusses
related works. Section 6 concludes this paper with some remarks.

2 Stack inspection

Java 2’s access-control policy is based on policy files which defines the access-
control policy for applications. A policy file associates permissions with protec-
tion domains. The policy file is read when the JVM starts.

The checkPermission method in Java determines whether the access request
indicated by a specified permission should be granted or denied. For example,
checkPermission in the below will determine whether or not to grant "read"

access to the file named "testFile" in the "/temp" directory.

FilePermission perm = new FilePermission("/temp/testFile","read");

AccessController.checkPermission(perm);

If a requested access is allowed, checkPermission returns quietly. If denied, an
AccessControlException is thrown. Whenever the method checkPermission

is invoked, the security policy is enforced by stack inspection, which examines
the chain of method invocations backward. Each method belongs to a class,
which in turn belongs to a protection domain.

When checkPermission(p) is invoked, the call stack is traversed from top to
bottom (i.e. starting with the frame for the method containing that invocation)

until the entire stack is traversed. In the traversal, the stack frames encountered
are checked to make sure their associated protection domains imply the permis-
sion. If some frame doesn’t, a security exception is thrown. That is, a permission
for resource access is granted if and only if all protection domains in the chain
have the required permission.

Privilege amplification is supported by doPrivileged construct in Java. By
invoking AccessController.doPrivileged(A), a method M performs a privi-
leged action A; this involves invoking method A.run() with all the permissions
of M enabled. This can be seen as marking the method frame of M as privileged:
stack inspection will then stop as soon as a privileged frame (starting from the
top) is found [2].

In Java, the normal use of the “privileged” feature is as follows [18] :

somemethod() {

...normal code here...

AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

// privileged code goes here, for example:

System.loadLibrary("awt");

return null; // nothing to return

}

});

...normal code here...

}

This type of normal privileged call is assumed for simple presentation in this
paper.

When inspecting stack, the checkPermission method stops checking if it
reaches a caller that was marked as “privileged” via a doPrivileged call. If
that caller’s domain has the specified permission, no further checking is done
and checkPermission returns quietly, indicating that the requested access is
allowed. If that domain does not have the specified permission, an exception is
thrown, as usual.

In summary, stack inspection checks the chains of method invocations back-
ward until either the entire stack is traversed or an invocation is found within
the scope of a doPrivileged call.

Java’s stack inspection policy can also handles dynamic creation of threads.
When a new thread T is created, T is given a copy of the existing run-time
call stack to extend. The success of subsequently evaluating checkPermission

in thread T thus involves permissions associated with the call stack when T is
created.

3 Static Permission Check Analysis

The static permission check analysis is done based on simple call graph which
can be defined as follows.

Definition 1. A call graph CG = (N,E) is a directed graph, where N is the
set of nodes which represent methods, and E ⊆ N ×N is the set of edges, which
represents method calls.

There are two kinds of edges in the call graph. A normal edge n → n′ repre-
sents a normal method call from n to n′. Thread start is also considered as a
normal method call to its run method. A privileged edge n � n′ represents a
doPrivileged call from n to n′. This represents doPrivileged call to a priv-
ileged action n′, which is usually a method A.run(), with all the permissions
of n enabled. The soundness of call graph is shown in many literature [15, 10].
This call graph is unlike the call graph in [1], in that it doesn’t contain any
intra-procedural control flow.

In the following, we abbreviate checkPermission(p) by check(p). We denote
by check(p) ∈ m if check(p) occurs in a method m. The set of all permission
checks in a program is denoted by Check. The set of permissions associated with
a method m is denoted by Permissions(m), which is determined by a policy file
which associates permissions with protection domains, to which methods belong.

We can say that a permission check check(p) in a method m succeeds at
a method n, if the permission p is granted by all the stack frames from the
method m to the method n by stack inspection. If a permission check succeeds
at a method m, the stack inspection can go further across m.

We will approximate all checks that may succeed at each method by static
analysis. Then we can compute all checks in a simple way which must fail.

Definition 2. A permission check check(p) in a method m may succeed at
the entry to a method n, if there exists a path from the method n to the method
m in the call graph, along which the permission p is granted by all the methods
in the path.

Based on the simple call graph, we first define a backward static analysis
called May-Succeed Check Analysis, which gives a safe approximation of permis-
sion checks which may succeed at each method. The May-Succeed Check Analysis
will determine:

for each node(method), which permission checks may succeed at the entry to
the node.

The May-Succeed Check Analysis is defined by the flow equation in Figure 1,
where May − SCentry(n) includes check(p)’s in the method n or in May −

May − SCexit(n) =

{ ∅ if n is final⋃{May − SCentry(m)|n → m ∈ E} otherwise

May−SCentry(n) = {check(p) ∈ May−SCexit(n)|p ∈ Permissions(n)}∪genMay−SC(n)

where genMay−SC(n) = {check(p)|check(p) ∈ n, p ∈ Permissions(n)}

Fig. 1. Flow equation for May-Succeed Check Analysis

SCexit(n) such that the permission p is granted by the method n. Note that only
normal calls denoted by n → m are considered in the equation May−SCexit(n).

The flow equation in Figure 1 defines a transfer function FMay−SC : L → L,
where the property space L is a complete lattice Lentry × Lexit where Lentry

and Lexit are total function spaces from N to 2Check. We can compute the least
solution (may − scentry,may − scexit) ∈ L of the flow equation in Figure 1 by
lfp(FMay−SC) in finite time, because the finite property space L satisfies the
ascending chain condition and the transfer function is monotonic. See [6] for
details.

We prove the soundness of the analysis in the following theorem. In the theo-
rem, we only consider actual normal call chains which don’t contain a privileged
call, because stack inspection cannot go further across a privileged call. See [6]
for details.

Theorem 1. For every actual normal call chain from a method n to a
method m which contains check(p), if the permission p is granted by all the
methods in the call chain, then check(p) is in may − scentry(n).

As an example, we consider a client-part of small e-commerce example in
[2]. As described in [2], the user agent runs a Java-enabled Web browser, which
has the rights to access the local file system and to open a socket connection.
Shop and Robber are client-tier components implemented as Java applets. The
Browser class provides the applets with some methods to manage the user pref-
erences: the getPref() method tries to retrieve the preferences from a local file
if the applet has the rights to do so. Otherwise, it opens a socket connection
with the remote server. The changePrefs() method first looks for the old pref-
erences (either in the local disk or on the remote server); then it asks for the
new preferences, which are thereafter saved on the local disk (if the applet has
the rights to do so) or sent to the remote server.

Its call graph and the security policies are shown in Figure 2. Unlikely to
[1, 2], our static analysis is based on simple call graph. The May-Succeed Check
Analysis computes checks which may succeed at the entry of each method, which
are shown in Figure 3. Note that check(Pread) and check(Pwrite) may succeed
at Shop.start(), and check(Pconnect) may succeed at Robber.start().

Fig. 2. Call graph and security policy for e-commerce application (client-side)

A permission check must fail at the entry to a method n, if it is not a may-
succeed check at n. If a permission check check(p) in a method m must fail at
the entry to a method n, it implies that there is no path from n to m, which
can grant the permission p. If a starting method(or a privileged action method)
is started, its must-fail checks will certainly fail stack inspection when they are
executed.

Once may-succeed checks may − scentry(n) at a method n have been com-
puted, then must-fail checks must − fcentry(n) at the method n can be simply
computed as:

must − fcentry(n) = rc(n) − may − scentry(n)

where rc(n) is the set of all reachable permission checks to a node(method) n

without considering permissions. rc : N → 2Check is the least solution of the
following equation:

RC(n) =
{{check(p)|check(p) ∈ n} if n is final⋃{RC(m)|n → m ∈ E} ∪ {check(p)|check(p) ∈ n} otherwise

Method may-succeed checks

Shop.start() {check(Pread), check(Pwrite)}
Robber.start() {check(Pconnect)}
Brower.chagePrefs() {check(Pread), check(Pwrite), check(Pconnect)}
Browser.getPrefs() {check(Pread), check(Pconnect)}
FileOutputStream() {check(Pwrite)}
FileInputStream() {check(Pread)}
Socket() {check(Pconnect)}

Fig. 3. May-succeed checks

Note that only normal calls denoted by n → m are considered when comput-
ing reachable checks. A privileged call n � n′ is not considered, since stack
inspection cannot go further across a privileged call.

In the example, all the three checks are reachable to the Shop.start() and
Robber.start() methods. So check(Pconnect) must fail at Shop.start(), and
check(Pread) and check(Pwrite) must fail at Robber.start(). Therefore if
the applet starts from Shop.start(), then check(Pconnect) must fail, and if
the applet starts from Robber.start(), then check(Pread) and check(Pwrite)
must fail.

Once a starting method(or a privileged action method) is executed, then its
must-fail checks certainly fail stack inspection and throw AccessControlException

when they are executed. This is because there is no backward path from the
check to the starting method(or the privileged action method) such that stack
inspection can succeed.

Our second analysis is called Must-Succeed Check Analysis, which gives a safe
approximation of permission checks which must pass stack inspection.

Definition 3. A check(p) in a method m must succeed at the entry to a
method n, if, for every path from the method n to the method m in the call
graph, the permission p is granted by all the methods in the path.

The Must-Succeed Check Analysis will determine:

for each node(method), which permission checks must succeed at the entry to
the node.

Once a starting method(or a privileged action method) is started, then its must-
succeed checks must pass stack inspection when they are executed. This is be-
cause the permission p is granted for every (backward) path from the checks to
the starting method(or the privileged action method).

If a reachable check is not a must-succeed check at a node, then it may
fail through some path from the check to the node. We first define May-Fail
Check Analysis and then compute the must-succeed checks for each node n by

computing the complement of may-fail checks with respect to reachable checks.
The May-Fail Check Analysis will determine:

for each node, which permission checks may fail through a backward path from
the checks to the node.

The May-Fail Check Analysis is defined by the flow equations in Figure 4, where
May−FCentry(n) includes all the may-fail checks in May−FCexit(n) and new
may-fail check(p)’s in rc(n) such that the permission p is not granted by the
method n. Note that if check(p) occurs in n, then it is simply included in rc(n).
If a permission check may fail at the entry to a node n, it means that there exists
a path from n to the check, which doesn’t satisfy the permission.

May − FCexit(n) =

{ ∅ if n is final⋃{May − FCentry(m)|n → m ∈ E} otherwise

May − FCentry(n) = May − FCexit(n) ∪ genMay−FC(n)

where genMay−FC(n) = {check(p) ∈ rc(n)|p /∈ Permission(n)}

Fig. 4. Flow equation of May-Fail Check Analysis

The flow equation in Figure 4 defines a transfer function FMay−FC : L → L.
The least solution (may − fcentry,may − fcexit) ∈ L of the flow equation can
be computed by lfp(FFC) in finite time. See [6] for details.

A permission check check(p) in the least solution may − fcentry(n) means
there exists a path from n to the check, which doesn’t satisfy the permission.
We can prove the soundness of the May-Fail Check Analysis. See [6] for details.

Theorem 2. For every actual normal call chain from a method n to a
method m which contains check(p), if the permission p is not granted by some
method in the call chain, then check(p) is in may − fcentry(n).

In the example, check(Pconnect) is a may-fail check at the entry to Shop.start()
and check(Pread) and check(Pwrite) are may-fail checks at the entry to Robber.start().

Once the least fixpoint may − fcentry has been computed, the must-succeed
checks must − scentry at each node n can be computed by must − scentry(n) =
rc(n) − may − fcentry(n) for each node n. If a starting method(or a privileged
action method) n is started, its permission checks in must − scentry(n) must
pass stack inspection when they are executed, because all paths from n to the
checks satisfy the permission.

For example, check(Pconnect) is a must-succeed check at Robber.start()

and check(Pread) and check(Pwrite) are must-succeed checks at Shop.start().

So, if the applet starts from Robber.start(), then check(Pconnect) must pass
stack inspection.

The fixpoint can be computed by worklist algorithm [12]. Basic operations
in the worklist algorithm are set operations like union and membership. The
worklist algorithm needs at most O(|E|·|Check|) basic operations where |Check|
is the number of checks and the height of the lattice 2Check [12].

4 Implementation

We implement the visualization system for permission checks and Java stack
inspection based on the static permission check analysis information.

We first implement the permission check analysis in Java based on Barat,
which is a front-end for Java compiler. Barat builds an abstract syntax tree for
an input Java program and enriches it with type and name analysis information.
We can traverse AST nodes and do some actions or operations at visiting each
node using a visitor, which is a tree traverse routine based on design patterns.

Fig. 5. System architecture

As in Figure 5, the permission check visualization system consists of five
parts.

1. Policy file analysis collects, from input policy file, granted permission set for
protection domain, which each method belongs to. This information is used
to determine whether each permission check succeeds or fails.

2. Call graph construction constructs a call graph, where each method’s callers
are represented.

3. Permission check analysis computes permission checks which must succeed
or fail at each method, based on policy file and call graph information.

4. Permission check path construction collects reverse call chains of permission
checks from the call graph to trace stack inspection.

5. Visualization of permission check analysis visualizes permission checks and
their stack inspection based on the static analysis information.

We extend Jipe, which is an open source IDE for Java to include the visual-
ization system for permission check. Figure 6 shows the window executing Jipe
and we can start the visualization system by selecting PermissionCheck browser
menu item of Tools.

Fig. 6. Jipe and a menu for the Permission Check Visualization System

Figure 7 is a window, which shows permission checks visually based on static
analysis information. The window shows a program CountMain, which creates
SecurityManager class object, set it on system and counts characters in two
files. Each numbered part is as follows:

In the part 1, users can select a display option. Information about permission
check can be displayed in terms of methods or permission checks. The part 2
lists classes, methods and permission checks within a selected package. Users can
select a method or a permission check of interest, depending on the option in
the part 1. The part 3 displays contents of a selected policy file.

As in Figure 7, if a method is selected in the part 2, the part 4 displays all
permission checks, which must fail, must succeed, or just may reach at the se-
lected method. In the part 5, users can trace stack inspection procedure visually
by following a calling chain from the selected method to a permission check. If
a permission check must succeed at a method, it is displayed as green color. If a
permission check must fail at a method, it is displayed as red color. Otherwise,
it is displayed as yellow color.

Fig. 7. Visualization of Permission Check Analysis: Method

As in Figure 8, if a permission check is selected in the part 2, the part 4 dis-
plays all reachable methods with analysis information that it must succeed, or
must fail at each method. In the part 5, users can trace stack inspection proce-
dure visually by following a calling chain backward from the selected permission
check.

After examining permission check and stack inspection, programmers can
modify policy files and programs if necessary. This process can be repeated until
the security policy is enforced correctly.

Fig. 8. Visualization of Permission Check Analysis: Permission Check

We experiment the system with five Java packages. The first program is
CountMain. The second program BankSystem access to file which has client
and account information, read and write new information. The third program
StringSearch counts number of times which ”string” appears in ten files. The
fourth program getProps reads system information which are about system
user, operating system, and file system. The last Client-Server is a client-server
program, where server and client create socket, server sends the message which
server reads from the local file and then client saves the received message from
the server.

Table 1 shows the experimental results. The results can change according to
the policy file. It shows the number of all checks within package, the number of
permission checks which may reach to the main method, the number of must-
fail or must-succeed checks at the main method. In case of CountMain, 1 check
must fail and two checks must succeed at the main. There are no must-succeed or
must-fail checks in BankSystem. In case of StringSearch, 5 checks must succeed
and 5 checks must fail at the main. In getProps, 2 checks out of 9 must fail.

5 Related Works

There are some works on stack inspection such as semantics, type system, static
analysis and implementation.

Package All checks Must-fail checks Must-succeed checks Reachable checks

CountMain 5 1 2 3

BankSystem 6 0 0 4

StringSearch 10 5 5 10

getProps 9 2 0 7

Server-Client 3 1 0 1

Table 1. Experimental result

Wallach et al. [16] present a new semantics for stack inspection based on a be-
lief logic and its implementation using the calculus of security-passing style which
addresses the concerns of traditional stack inspection. With security-passing
style, the security context can be efficiently represented for any method acti-
vation, and a prototype implementation is built by rewriting the Java bytecodes
before they are loaded by the system.

Pottier et al. [14] address static security-aware type systems which can stati-
cally guarantee the success of permission checks. They use the general framework,
and construct several constraint- and unification-based type systems. They offer
significant improvements on a previous type system for JDK access control, both
in terms of expressiveness and in terms of readability of inferred type specifica-
tions.

Erlingson [7] describes how IRMs(Inlined Reference Monitor) can provide
an alternative to enforcing access control on runtime platforms, like the JVM,
without requiring changes to the platform. Two IRM implementations of stack
inspection are discussed. One is a reformulation of security passing style proposed
in [16]; the other is new and exhibits performance competitive with existing
commercial JVM-resident implementations.

Walker [17] uses security automata to express security policies. Security au-
tomata can specify an expressive collection of security policies including access
control and resource bounds. They describe how to instrument well-typed pro-
grams with security checks and typing annotations. The resulting programs obey
the policies specified by security automata and can be mechanically checked for
safety. This work provides a foundation for the process of automatically gener-
ating certified code for expressive security policies.

There are several static analysis techniques for permission checks [4, 5, 1, 2,
11].

Bartolleti et al. proposed two control flow analyses for the Java bytecode
[1]. They safely approximate the set of permissions granted/denied to code at
run-time. This static information helps optimizing the implementation of the
stack inspection algorithm. They also developed a technique to perform program
transformation in the presence of stack inspection [2]. This technique relies on
the trace permission analysis, which is a control flow analysis and compute a safe

approximation to the set of permissions that are always granted to bytecode at
run time.

Koved et al. [11] presents a technique for computing the access rights re-
quirements by using a context sensitive, flow sensitive, interprocedural data flow
analysis. This analysis computes at each program point the set of access rights
required by the code. They implemented the algorithms and present the results
of the analysis on a set of programs. This access rights analysis is also imple-
mented into SWORD4J, which is a collection of tools for Java static analysis,
and is available for the popular Eclipse IDE.

Besson et al applied constraint-based static analysis techniques to the veri-
fication of global security properties [5]. They introduces a formalism based on
a linear-time temporal logic for specifying global security properties pertaining
to the control flow of the program.

Most static analyses approximate stack inspection in terms of permissions
[4, 5, 1, 2, 11]. Our proposed analysis is unique in that it compute success or fail
information in terms of permission checks. This static analysis can approximate
information about stack inspection for permission check. We also implemented
visualization of stack inspection based on the static analysis information, which
can help programmers examine stack inspection easily.

6 Conclusions

We have developed a visualization tool which helps programmers enforce security
policy effectively into programs, based on the static permission check analysis.
Using the visualization system, programmers can modify programs and policy
files if necessary, as they examine how permission checks and their stack inspec-
tion are performed. This process can be repeated until the security policy is
enforced correctly.

The static analysis information can also be applied to optimizing redundant
permission checks. For example, stack inspection of a permission check can be
skipped if it must succeed.

References

1. M. Bartoletti, P. Degano, and G. L. Ferrari. Static Analysis for Stack Inspection.
Electr. Notes Theor. Comput. Sci. 54, 2001.

2. M. Bartoletti, P. Degano, G. L. Ferrari. Stack inspection and secure program trans-
formations. Int. Journal of Information Security, Vol.2, pp. 187-217, 2004.

3. F. Besson, T. Blanc, C. Fournet, A. D. Gordon. From Stack Inspection to Access
Control: A Security Analysis for Libraries. CSFW 2004.

4. F. Besson, T. de Grenier de Latour, and T. Jensen. Secure calling contexts for
stack inspsection. In Proc. 4th Conference on Principles and Practice of Declarative
Programming. ACM Press, New York, 2002.

5. F. Besson, T. Jensen, D. Le Metayer, and T. Thorn. Model checking security
properties of control flow graphs. Journal of Computer Security 9, pp. 217-250.
2001.

6. B.-M. Chang, Static Check Analysis for Java Stack Inspection, ACM SIGPLAN
Notices Vol. 41 No. 2, Feburary 2006.

7. U. Erlingsson and Fred B. Schneider. IRM Enforcement of Java Stack Inspection.
2000 IEEE Symposium on Security and Privacy, pp. 246-255.

8. C. Fournet and A. D. Gordon. Stack inspection: Theory and variants. ACM Trans.
Program. Lang. & Syst. 25(3): 360-399 (2003)

9. J. Gosling, Joy, Steele, The Java Language Specification Second Edition, Addison-
Wesley, 2002

10. D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call Graph Construction in
Object-Oriented Languages. ACM OOPSLA 1997, pp. 108-124.

11. L. Koved, M. Pistoia, A. Kershenbaum. Access rights analysis for Java. ACM
OOPSLA 2002, pp. 359-372

12. F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis, Springer-
Verlag, 1999.

13. N. Nitta, Y. Takata, H. Seki. An efficient security verification method for programs
with stack inspection. 2001 ACM Conference on Computer and Communications
Security, pp. 68-77.

14. F. Pottier, C. Skalka, S. F. Smith. A systematic approach to static access control.
ACM Trans. Program. Lang. & Syst. 27(2), pp. 344-382, 2005.

15. Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction
algorithms. ACM OOPSLA 2000, pp 281-293.

16. Dan S. Wallach, Andrew W. Appel, Edward W. Felten. SAFKASI: a security
mechanism for language-based systems. ACM Trans. Softw. Eng. Methodol. 9(4),
pp. 341-378, 2000.

17. Lujo Bauer, Jay Ligatti and David Walker. Composing Security Policies in Poly-
mer. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. June 2005.

18. http://java.sun.com/j2se/1.5.0/docs/api.

