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Abstract. This paper extends the basic rough set formalism introduced by
Pawlak [1] to a rule-based knowledge representation language, called Rough Dat-
alog, where rough sets are represented by predicates and described by finite sets
of rules. The rules allow us to express background knowledge involving rough
concepts and to reason in such a knowledge base. The semantics of the new lan-
guage is based on a four-valued logic, where in addition to the usual values TRUE

and FALSE, we also have the values BOUNDARY, representing uncertainty, and
UNKNOWN corresponding to the lack of information. The semantics of our lan-
guage is based on a truth ordering different from the one used in the well-known
Belnap logic [2, 3] and we show why Belnap logic does not properly reflect nat-
ural intuitions related to our approach. The declarative semantics and operational
semantics of the language are described. Finally, the paper outlines a query lan-
guage for reasoning about rough concepts.

1 Introduction

The seminal ideas of Pawlak [1, 4, 5, 6] on the treatment of imprecise and incomplete
data opened a new area of research, where the notion of rough sets is used in theoretical
studies as well as practical applications.

Rough sets are constructed by means of approximations obtained by using elemen-
tary sets which partition a universe of considered objects. The assumption as to parti-
tioning of the universe has been relaxed in many papers (see, e.g., [7,8,9,10,11,12,13,
14, 15]), however the Pawlak’s idea of approximations has remained the same.

This paper extends the basic rough set formalism to a rule-based language, where
rough sets are represented by predicates and are described by finite sets of rules. The
rules allow one to express background knowledge concerning rough concepts and to
reason in such a knowledge base. The new language is different from that proposed
in [14, 15], where the rules described rough sets by combining their regions (lower
approximation, upper approximation and boundary region). In contrast to the language
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described in this paper, the rules expressed in the language presented in [14, 15] refer
explicitly to different regions of a rough set.

Lifting the level of description makes the definitions easier to understand, also for
the people not familiar with the technicalities of rough sets. The semantics of the new
language is based on a four-valued logic, where in addition to the usual values TRUE and
FALSE we have the values BOUNDARY representing uncertain/inconsistent information
and UNKNOWN corresponding to the lack of information. As discussed in Section 3.2,
the well-known four-valued Belnap logic [3, 2] does not properly reflect the natural
intuitions related to our approach. We propose instead a slightly different truth ordering
and use it, together with the standard knowledge ordering, for defining a declarative
semantics of our language.

By using the four-valued logic we propose, we are then able to deal with some
important issues.

First of all, we are able to provide a natural semantics for Datalog-like rules where
negation can be used freely, both in the bodies and in the heads of rules. This, in pre-
vious approaches to various variants of negation, has always been problematic either
due to the high computational complexity of queries or to a nonstandard semantics
of negation, often leading to counterintuitive results (for an overview of different ap-
proaches to negation see, e.g., [16]). Our semantics reflects intuitions of fusing infor-
mation from various independent sources. If all sources claim that a given fact is true
(respectively, false) then we have an agreement and attach TRUE (respectively FALSE)
to that fact. If information sources disagree in judgement of a fact, we attach to it the
value BOUNDARY. If no source provides an information about a given fact, we then
make it UNKNOWN.

Second, we are able to import knowledge systems based on the classical logic with-
out any changes and make them work directly within the rough framework. In such
cases these systems would act as single information sources providing answers TRUE,
FALSE, when queried about facts. Possible conflicting claims of different systems
would then be solved by the same, uniform four-valued approach we propose. This
might be useful in combining low level data sources, like classifiers as well as higher
level expert systems.

Third, one can import rough set-based systems, or systems supporting approximate
reasoning, like for example, those described in [14, 15], or [17, 18]. In the latter three-
valued logics are used (identifying BOUNDARY and UNKNOWN).

The paper is structured as follows. First, in Section 2, we recall basic definitions re-
lated to rough sets and approximations. Next, in Section 3, we discuss our choice of
four-valued logic. In Section 4 we introduce Rough Datalog and provide its semantics.
Section 5 outlines a query language and discusses its implementation in logic program-
ming. Finally, Section 6 concludes the paper.

2 Rough Sets

According to Pawlak’s definition (see, e.g., [19]), a rough set S over a universe U is
characterized by two subsets of U :
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Table 1. Test results considered in Example 1

car station safe
a s1 yes
a s2 no
b s2 no
c s1 yes
d s1 yes

– the set S, of all objects which can be certainly classified as belonging to S, called
the lower approximation of S, and

– the set S, of all objects which can be possibly classified as belonging to S, called
the upper approximation of S.

The set difference between the upper approximation and the lower approximation, de-
noted by S, is called the boundary region.

In practice, in order to describe a given reality, one chooses a set of attributes and the
elements of the underlying universe are described by tuples of attribute values. Rough
sets are then defined by decision tables associating membership decisions with attribute
values. The decisions are not exclusive: a given tuple of attribute values may be associ-
ated with the decision “yes”, with the decision “no”, with both or with none, if the tuple
does not appear.

Example 1. Consider a universe consisting of cars. If a car passed a test then it may be
classified as safe (and as not safe, if it failed the test). Tests may be done independently
at two test stations. The upper approximation of the rough set of safe cars would then
include cars which passed at least one test. The lower approximation of the set would
include the cars which passed all tests (and therefore, they did not fail at any test). The
boundary region consists of the cars which passed one test and failed at one test. Notice
that there are two other categories of cars, namely those which were not tested and those
which failed all tests.

As an example consider the situation described in Table 1, where the first column
consists of cars, the second column consists of test stations and the third one contains
test results. Denote by “Safe” the set of safe cars. Then:

– the upper approximation of Safe consists of cars for which there is a decision “yes”,
i.e., Safe = {a, c, d}

– the lower approximation of Safe consists of cars for which all decisions are “yes”,
i.e., Safe = {c, d}

– the boundary region of Safe consists of cars for which there are both decisions
“yes” and “no”, i.e., Safe = {a}. �

A decision table, representing a concept t, may be represented as a finite set of literals
of the form t(y) or ¬t(x), where y ranges over the tuples of attribute values associated
with the decision “yes” and x ranges over the tuples of attribute values associated with
the decision “no”.
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Example 2. For the Example 1 with the universe of cars {a, b, c, d, e} and with two test
stations, we may have the decision table, shown in Table 1, encoded as

{safe(a), ¬safe(a), ¬safe(b),safe(c),safe(d)} .

Notice that the literal safe(a) indicates that car a has passed a safety test in one of the
stations while literal ¬safe(a) states that the same car as failed a safety test in another
test station.

In this case the rough set Safe has the approximations

Safe = {a, c, d} and Safe = {c, d}.

The rough set ¬Safe, describing those cars that have failed some test, has the approxi-
mations ¬Safe = {a, b} and ¬Safe = {b}.

Note that it is totally unknown what is the status of car e. �

We notice that a decision table T of this kind defines two rough sets, T and ¬T , with a
common boundary region which is the intersection of the upper approximations of both
sets, i.e. T ∩ ¬T . As rough sets are usually defined by decision tables, we then adopt
the following definition (used also in [20, 14, 15]).

Definition 1. A rough set S over a universe U is a pair 〈S, ¬S〉 of subsets of U . �

Intuitively, the rough set S describes those elements of U having certain property. The
set S is the upper approximation of S, and consists of the elements of U for which there
is an indication of having the given property. On the other hand, the set ¬S consists of
the elements for which there is an indication of not having the property. In Example 2,
Safe = {a, c, d} and ¬Safe = {a, b}.

Remark 1

1. Observe that Definition 1 differs from the understanding of rough sets as defined
by Pawlak. In fact, the definition of Pawlak requires the underlying elementary sets
used in approximations to be based on equivalence relations, while Definition 1
relaxes this requirement. Such differences are examined and discussed in depth
in [12].

2. Since relations are sets of tuples, we further on also use the term rough relation to
mean a rough set of tuples. �

3 A Four-Valued Logic for Rough Sets

3.1 The Truth Values for Rough Membership

Our objective is to define a logical language for rough set reasoning. The vocabulary
of the language includes predicates to be interpreted as rough relations and constants
to be used for representing attribute values. Consider an atomic formula of the form
p(t1, · · · , tn), where p is a predicate, denoting a rough set P , and t1, . . . , tn (with
n > 0) are constants. We now want to define the truth value represented by an atom
p(t1, · · · , tn). Let v = 〈t1, . . . , tn〉 and “−” denote the set difference operation. Then,
the following cases are possible:
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– v ∈ P − ¬P : intuitively, we only have evidence that the element of the universe
described by the attributes v has property P . Thus, the truth value of p(v) is defined
to be TRUE.

– v ∈ ¬P − P : intuitively, we only have evidence that the element of the universe
described by the attributes v does not have property P . Thus, the truth value of p(v)
is defined to be FALSE.

– v ∈ P ∩ ¬P : in this case, we have contradictory evidences, i.e. an evidence that
an element of the universe described by the attributes v has property P and an
evidence that it does not have the property P . This is an uncertain information and
we use the additional truth value BOUNDARY to denote it.

– v �∈ P ∪¬P : in this case, we have no evidence whether the element of the universe
described by the attributes v has property P . We then use another truth value called
UNKNOWN.

3.2 Is Belnap Logic Suitable for Rough Reasoning?

The truth values emerging from our discussion have been studied in the literature out-
side of the rough set context for defining four-valued logic. A standard reference is
the well-known Belnap’s logic [2]. We now recall its basic principles and we discuss
whether it is suitable for rough set reasoning.

The Belnap logic is defined by considering a distributive bilattice of truth values and
introducing logical connectives corresponding to the operations in the bilattice.

Bilattices have been introduced in [21, 22]. They generalize the notion of Kripke
structures (see, e.g., [23]). A bilattice is a structure B = 〈U, ≤t, ≤k〉 such that U is a
non-empty set, ≤t and ≤k are partial orderings each making set U a lattice. Moreover,
there is usually a useful connection between both orderings.

We follow the usual convention that ∧t and ∨t stand respectively for the meet and
join, with respect to ≤t. The symbols ∧k and ∨k stand respectively for the meet and
join, with respect ≤k. Operations ∧t and ∨t are also called the conjunction and dis-
junction, and ∧k and ∨k are often designated as the consensus and accept all operators,
respectively.

The bilattice used in Belnap’s logic is shown in Fig 1. In the knowledge order-
ing, ≤k, UNKNOWN is the least value, reflecting total lack of knowledge. Each of
the values TRUE and FALSE provide more information than UNKNOWN. Finally, the
INCONSISTENT value corresponds to the situation when there is evidence for both
TRUE and FALSE.1 The truth ordering ≤t (see Fig 1) has TRUE as its largest element,
and FALSE as its smallest element.

Example 3. Assume that a family owns two cars: a and e. We want to check if the
family has a safe car. This corresponds to the logical value of the expression

safe(a) ∨t safe(e) . (1)

1 Observe that INCONSISTENT is replaced in our approach by BOUNDARY, which is closer to
intuitions from rough set theory.
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�

� ≤t

≤k

UNKNOWN

INCONSISTENT

FALSE TRUE

Fig. 1. The bilattice corresponding to Belnap’s logic

The truth values of safe(a) and safe(e) are determined by the results of the tests,
as specified in Example 2. Thus safe(a) has the value BOUNDARY and safe(e) has
the value UNKNOWN. If the join operation ∨t is defined by Belnap’s logic, as shown in
Fig 1, then

INCONSISTENT ∨t UNKNOWN = TRUE .

This contradicts our intuitions. We know that the safety of car a is unclear, since the
results of both safety tests are contradictory, and we know nothing about safety of
car e.

Asking instead if all cars of the family are safe,

safe(a) ∧t safe(e) , (2)

would in Belnap’s logic result in the answer FALSE. However, we really do not know
whether both cars are safe because we do not have any information about the safety of
car e. In contrast to the answer obtained in the Belnap’s logic, UNKNOWN seems to be
a more intuitive answer in this case. �

The example above shows that the truth ordering of Fig 1, and consequently Belnap’s
logic are not suitable for rough set-based reasoning. On the other hand, the knowl-
edge ordering of Fig. 1 is adequate for our purposes. Indeed, the values TRUE and
FALSE show that only one kind of evidence, either positive or negative, is known while
the value BOUNDARY indicates existence of contradictory evidence, both positive and
negative.

3.3 A Four-Valued Logic for Rough Set Reasoning

We now define a four-valued logic suitable for rough set-based reasoning by modify-
ing the bilattice of Fig.1. As discussed in Section 3.2, only the truth ordering is to be
changed. We will use the new truth ordering to define conjunction (∧t) as the great-
est lower bound in this ordering. The ordering should preserve the usual meaning of
conjunction for the truth values TRUE and FALSE. Intuitively, the value UNKNOWN

represents the lack of information. Thus, the result of its conjunction with any other
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truth value is accepted here to be UNKNOWN. A new information may arrive, replac-
ing UNKNOWN by either TRUE, or FALSE, or BOUNDARY, providing in each case
a different result. On the other hand, BOUNDARY represents existence of contradictory
information. Its conjunction with TRUE would not remove this contradiction. Thus, we
define the result of such a conjunction to be BOUNDARY. It also seems natural, that the
conjunction of FALSE with TRUE or BOUNDARY gives FALSE. Consequently the truth
ordering, ≤t, is redefined in our framework as

UNKNOWN ≤t FALSE ≤t BOUNDARY ≤t TRUE . (3)

The new structure R = 〈U, ≤t, ≤k〉, where U is the universe of objects of interest, ≤t

is the truth ordering defined in (3), and ≤k is the knowledge ordering as in the Belnap’s
logic, gives the meaning of the logical connectives and is used in our approach.

Example 4. Referring to Example 3, we then compute the logical values associated
with the queries (1) and (2) by considering the new truth ordering above.

The first query, (1) of Example 3,

BOUNDARY ∨t UNKNOWN ,

returns the logical BOUNDARY which better corresponds to the intuitions.
For the second query, (2) of Example 3, we have that

BOUNDARY ∧t UNKNOWN = UNKNOWN .

In contrast to Belnap’s logic, it is not excluded that some cars of the family of Example 3
are safe, but to be sure we need to obtain some information about the safety of car e.
So, the answer UNKNOWN adequately reflects our intuitions. �

The proposition below shows that there is a connection between the knowledge ordering
and the truth ordering. In this sense, the structure R can then be seen as a bilattice.

Proposition 1. Consider the bilattice R = 〈U, ≤t, ≤k〉 and that x, y ∈ U . The oper-
ation ∧t is monotonic with respect to ≤k on both arguments, i.e. if x ≤k y then, for
every z ∈ U , we have (z ∧t x) ≤k (z ∧t y) and (x ∧t z) ≤k (y ∧t z).

Proof. Table 2 shows the result. Operation ∧t is obviously commutative. �

We now define formally the logic underlying our work, called Rough Logic.

Definition 2. Consider the following negation operation ¬.

¬TRUE
def= FALSE, ¬FALSE

def= TRUE,

¬BOUNDARY
def= BOUNDARY, ¬UNKNOWN

def= UNKNOWN.

The propositional four-valued logic defined by the bilattice R together with negation ¬
is called the Rough Logic. �
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Table 2. The table considered in the proof of Proposition 1

z x y z ∧t x z ∧t y

BOUNDARY UNKNOWN TRUE UNKNOWN BOUNDARY

BOUNDARY UNKNOWN FALSE UNKNOWN FALSE

BOUNDARY FALSE BOUNDARY FALSE BOUNDARY

BOUNDARY TRUE BOUNDARY BOUNDARY BOUNDARY

BOUNDARY UNKNOWN BOUNDARY UNKNOWN BOUNDARY

z x y z ∧t x z ∧t y

FALSE UNKNOWN TRUE UNKNOWN FALSE

FALSE UNKNOWN FALSE UNKNOWN FALSE

FALSE FALSE BOUNDARY FALSE FALSE

FALSE TRUE BOUNDARY FALSE FALSE

FALSE UNKNOWN BOUNDARY UNKNOWN FALSE

z x y z ∧t x z ∧t y

TRUE UNKNOWN TRUE UNKNOWN TRUE

TRUE UNKNOWN FALSE UNKNOWN FALSE

TRUE FALSE BOUNDARY FALSE BOUNDARY

TRUE TRUE BOUNDARY TRUE BOUNDARY

TRUE UNKNOWN BOUNDARY UNKNOWN BOUNDARY

z x y z ∧t x z ∧t y

UNKNOWN UNKNOWN TRUE UNKNOWN UNKNOWN

UNKNOWN UNKNOWN FALSE UNKNOWN UNKNOWN

UNKNOWN FALSE BOUNDARY UNKNOWN UNKNOWN

UNKNOWN TRUE BOUNDARY UNKNOWN UNKNOWN

UNKNOWN UNKNOWN BOUNDARY UNKNOWN UNKNOWN

4 Rough Datalog Language

We now define a rule language, called Rough Datalog, such that its semantics is based
on the Rough Logic. Intuitively, Rough Datalog corresponds to the usual logic pro-
gramming language Datalog. While predicates in the latter denote crisp relations, in
Rough Datalog a predicate p denotes a rough relation P . Thus, Rough Datalog caters
for uncertainty in the knowledge.

A rough literal is any expression of the form p(t1, . . . , tn) or ¬p(t1, . . . , tn). In
Rough Datalog, knowledge is represented in the form of rough clauses,

H:- B1, . . . , Bn.

where H and every Bi (0 ≤ i ≤ n) is a rough literal. A rough clause with the empty
body (i.e. n = 0) is called a rough fact. A rough program P is a finite set of rough
clauses.

Rough clauses are used to specify rough relations as explained next. Intuitively,
a rough clause is to be understood as the knowledge inequality ≤k stating that the
truth value of the body is less than or equal to the truth value of the head. The comma
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symbol “,” is interpreted as the meet in the truth ordering ≤t. Notice that the arguments
of ≤k are the truth values UNKNOWN, BOUNDARY, TRUE, or FALSE but the logical
value associated with a rough clause is either TRUE or FALSE. Information obtained
from different rough clauses with heads referring to the same rough relation P (i.e. p or
¬p occurs in the head) is combined using the knowledge join operation ∨k .

Example 5. The following rough clauses belong to an exemplary rough program P .

(1) ¬useful(a) :- red(a), squared(a).
“Object a is not useful if it is red and squared.”

(2) squared(a) :- useful(a). —“Object a is squared if it is useful.”
(3) ¬squared(a). —“Object a is not squared.” �

4.1 Semantics of Rough Datalog Programs

We now define notions of four-valued interpretation and model, extend the knowledge
ordering to interpretations and show that each rough program has the least model in this
ordering.

Let P be a rough program and L be the set of all constant symbols occurring in P .
Then, the Herbrand base HP is the set of all literals whose predicate symbols occur in
P and whose arguments belong to L.

A four-valued interpretation I of a rough program P associates with each atom a
occurring in P a logical value

I(a) ∈ {UNKNOWN, TRUE, FALSE, BOUNDARY}

and ¬I(a) = I(¬a).
The notion of interpretation extends naturally to conjunction (disjunction) of literals.

Let l1, . . . , ln, with n > 0, be rough literals.

I(l1 ∧t · · · ∧t ln) = I(l1) ∧t · · · ∧t I(ln) .

Definition 3. An interpretation I of a rough program P is any subset of the Herbrand
base HP . Moreover, the rough relation I(p) is defined as

I(p) = 〈I(p), ¬I(p)〉 = 〈{t | p(t) ∈ I}, {t | ¬p(t) ∈ I}〉 . �

Intuitively, an interpretation associates each predicate p occurring in a program P with
a rough set. Notice that ¬I(p) = I(¬p). Moreover, we have that

– I(p(t)) = UNKNOWN, if t �∈ I(p) ∪ ¬I(p).
– I(p(t)) = FALSE, if t ∈ ¬I(p).
– I(p(t)) = TRUE, if t ∈ I(p).

– I(p(t)) = BOUNDARY, if t ∈ I(p).

Notice that we only consider variable-free rough programs. However, the results pre-
sented below can be also extended to rough programs with variables.
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An interpretation I of a rough program P satisfies a rough clause H:- B. ∈ P if
I(B) ≤k I(H). A model M of P is any interpretation that satisfies every rough clause
belonging to P .

Notice also that the Herbrand base HP is a model of any rough program P . In this
model the truth value of every literal is BOUNDARY. However, usually a program has
more models. For comparing them we introduce a partial order on interpretations based
on the knowledge ordering relation, ≤k.

Definition 4. Let I1 ⊆ HP and I2 ⊆ HP be two interpretations. Then, I1 ≤k I2, if
and only if I1(l) ≤k I2(l), for every literal l ∈ HP . �

It can be checked that the knowledge ordering on interpretations corresponds to set
inclusion.

Proposition 2. I1 ≤k I2 if and only if I1 ⊆ I2. �

We show now that there is the least model for every rough program.

Proposition 3. Let P be a rough program. Then, P has the least model with respect
to ≤k.

Proof. To prove that P has a least model with respect to ≤k, we show that the intersec-
tion of all models of P is also a model of P .

Let M =
⋂n

i Mi, where {M1, . . . , Mn} (n ≥ 1) is the set of all models of P . Notice
that, by Proposition 2, M ≤k Mi, with Mi ∈ {M1, . . . , Mn}. We prove that M is
a model of P . For this we have to show that, for any clause H :- B. ∈ P , we have
M(H) ≥k M(B). We prove this by cases, considering possible truth values of the
body of a clause.

(a) If M(B) = UNKNOWN then M satisfies the rough clause, since UNKNOWN is the
least element in the knowledge ordering.

(b) If M(B) = TRUE then W (B) ≥t BOUNDARY, for every model W of P . Hence,
W (H) ≥k TRUE, for every model W of P . Consequently, M(H) ≥k TRUE

because the literal occurring in the head belongs to every model W . We conclude
then that M satisfies the rough clause.

(c) If M(B) = FALSE then B includes a literal l that is FALSE in some model of P
and l is either FALSE or BOUNDARY in the other models. Obviously, no literal
occurring in B can be UNKNOWN in any model. Consequently, M(H) ≥k FALSE

because ¬H belongs to every model W . We conclude then that M satisfies the
rough clause.

(d) If M(B) = BOUNDARY then W (B) = BOUNDARY, for every model W of P .
Notice that if I(B) = BOUNDARY, for some interpretation I of P , then we have
that either I(l) = TRUE or I(l) = BOUNDARY, for every literal l in the body B.
Hence, W (H) = BOUNDARY, for every model W of P . Consequently, M(H) =
BOUNDARY because {H, ¬H} ⊆ W , for every model W . We conclude then that
M satisfies the rough clause. �

The semantics of a rough program P is captured by its least model, with respect
to ≤k.
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Example 6. Consider again the rough program of Example 5. Its least model is M =
{¬squared(a)}. Hence, useful(a) and red(a) are UNKNOWN, while squared(a)
is FALSE. �

4.2 A Fixpoint Characterization of the Least Model

We now give a fixpoint characterization of the least model which makes it possible to
compute the semantics of a program. We define an operator on interpretations, con-
sidered as sets of literals. We show that the operator is monotonic with respect to set
inclusion. Thus, it has the least fixpoint (with respect to set inclusion) which can be
obtained by iterations of the operator starting with the empty interpretation. We also
show that the least fixpoint is a model. Taking into account Proposition 2, we can then
conclude that the least fixpoint is also the least model of the program with respect to
knowledge ordering. In the following definition if l is a negative literal of the form ¬a,
then ¬l denotes a.

Definition 5. Let P be a rough program. A total function TP mapping interpretations
into interpretations is defined as follows:

TP(I) = {l | l:- B. ∈ P and I(B) = TRUE} ∪
{¬l | l:- B. ∈ P and I(B) = FALSE} ∪
{l, ¬l | l:- B. ∈ P and I(B) = BOUNDARY} . �

Thus, the set TP(I) consists of the heads of the rough clauses whose bodies are TRUE

or BOUNDARY in I and, the negated heads of the rules whose bodies are FALSE or
BOUNDARY in I. Such a way to gather heads of rules corresponds to defining the result
by the disjunction of heads w.r.t. knowledge ordering ≤k.

Proposition 4. Given a rough program P , the operator TP is monotonic with respect
to set inclusion.

Proof. The bodies of the program clauses are conjunctions of atoms. By Proposition 1
the conjunction is monotonic with respect to knowledge ordering. Hence by Proposi-
tion 2, it is also monotonic with respect to set inclusion of the interpretations. Thus,
I ⊆ TP(I), for every interpretation I. �

The proposition above guarantees that TP has a least fixpoint (with respect to set inclu-
sion), denoted as LFP(TP).

Proposition 5. Given a rough program P , the LFP(TP) coincides with the least model
of P .

Proof. It is easy to see that the interpretation I = LFP(TP) is a model of P . Assume
the contrary. Then, there exists a clause H :- B. such that I(H) <k I(B). The possible
cases are as follows.

– I(B) = TRUE and I(H) ≤k FALSE.
– I(B) = FALSE and I(H) ≤k TRUE.
– I(B) = BOUNDARY and I(H) <k BOUNDARY.
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In the first two cases, we immediately obtain the contradiction with the assumption
I = LFP(TP), since TP(I) would then include, respectively, the literal H ( ¬H).
A similar contradiction is obtained for the third case, since I(B) = BOUNDARY means
that TP(I) would then include both literals H and ¬H . In any case, we conclude that
I is not a fixpoint of TP .

It remains to prove that the model LFP(TP) is the least model in the knowledge
ordering. This follows directly from Proposition 2. �

Proposition 5 shows that the least model of a program P can be computed by apply-
ing iteratively operator TP , starting from the empty interpretation until the fixpoint is
reached. Notice that in the empty interpretation, all literals of the Herbrand base have
the truth value UNKNOWN.

We show below a simple example of a rough program, based on a classical exam-
ple from logic programming, and it illustrates the use of TP for computation of its
semantics.

Example 7. Consider the rough program consisting of the following rough clauses.
(1) fly(tweety) :- bird(tweety).
(2) bird(tweety) :- penguin(tweety).
(3) ¬fly(tweety) :- penguin(tweety).
(4) ¬dangerous(tweety) :- red(tweety), fly(tweety).
(5) penguin(tweety).
(6) red(tweety).

Application of TP to the empty interpretation gives

I1 = penguin(tweety), red(tweety).

Further iterations of TP give

I2 = I1 ∪ {bird(tweety), ¬fly(tweety)} ,
I3 = I2 ∪ {fly(tweety)} ,
I4 = I1 ∪ {dangerous(tweety), ¬dangerous(tweety)} ,
I5 = I4 .

Thus, we conclude that tweety belongs to the lower approximations of the rough
relations Bird, Penguin and Red and it belongs to the boundary region of rough relations
Fly and Dangerous. �

5 A Query Language and Its Implementation

In this section we describe a query language for rough programs. We start by defin-
ing the notions of rough query and answer. Then, we briefly describe how the query
language can be implemented in a logic programming as queries to a definite logic pro-
gram. Existing systems like Prolog [24], XSB [25], or SModels [26, 27] can then be
used to compute the answers. We assume that the reader is familiar with the basics of
logic programming [28].
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Definition 6. A rough query is a pair 〈:- l1, . . . , ln , P〉, with n ≥ 1, where P is
a rough program and each li is a (variable-free) rough literal. �

We need now to define the notion of answer to a rough query.

Definition 7. Let 〈:- l1, . . . , ln , P〉 be a rough query. The answer to the rough query
is defined as the logical value of LFP(TP)(l1 ∧t · · · ∧t ln). �

Example 8. Consider the rough program of Example 7. The answer to the rough query

〈:- bird(tweety), P〉

is TRUE, while the answer to the rough query

〈:- fly(tweety),penguin(tweety) , P〉

is BOUNDARY. �

Rough programs can be compiled to definite logic programs as described below. A def-
inite logic program is a non-empty set of clauses H :- A1, · · · , An., where each Ai is an
atom, (0 ≤ i ≤ n). Clauses can informally be understood as implications: if every atom
Ai is true then H must also be true. Therefore, the comma symbol “,” is interpreted as
conjunction. Notice that predicates in a logic program denote crisp relations and each
atom is either TRUE or FALSE.

Any fact (a clause of the form H :- .) remains unchanged.
Let C ≡ H :- l1, · · · , ln., where n ≥ 1, be a rough clause and ϕ be a function

transforming C into a non-empty set of clauses such that ϕ(C) = {C} ∪ φ(C), where

φ(C) = {¬H :- l′1, · · · , l′n. | (∀1 ≤ i ≤ n : l′i ∈ {li, ¬li}) and
H :- l′1, · · · , l′n. �≡ C} .

(4)

Hence, a rough program is compiled to a definite logic program by applying function
ϕ to each rough clause, i.e. ϕ(P) =

⋃
C∈P ϕ(C). We assume that, in the compiled

programs, ¬p is treated as a new predicate symbol and ¬¬p is replaced with p, for any
symbol p.

Informally, the main idea underlying the compilation of rough programs is that the
body of a rough clause is associated with TRUE, if all literals occurring in it are TRUE.
The body of a rough clause is associated with FALSE, if ¬l is TRUE, for at least one
literal l occurring in the body, and all other literals in the body are provable. The body
of a rough clause is associated with BOUNDARY, if we can prove that it is TRUE and
FALSE. If for some literal l in the body, it is neither possible to prove l nor ¬l then the
body of a rough clause is associated with UNKNOWN. It can be easily seen that the least
model of P coincides with the least model of the definite logic program ϕ(P).

Remark 2. The transformation expressed by formula (4) results in the exponential blow
up of the number of clauses. Namely, if a body of a rule consists of n literals then
we have 2n resulting clauses. However, in practice n is rather small. Moreover, the
transformation we have provided is the simplest one and we only intend to show that
the required compilation can be done. �
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Definite logic programs can also be queried. A query for a definite logic program has
the same syntax as a rough query. However in logic programming, queries are answered
YES or NO depending whether the query is provable or not. A rough query 〈Q, P〉 can
be compiled to several queries to ϕ(P). Thus,

– If the query 〈Q, ϕ(P)〉 is answered YES and all queries 〈Q′, ϕ(P)〉 are answered
NO, with Q′ ∈ φ(Q), then the answer to the rough query 〈Q, P〉 is TRUE.

– If the query 〈Q, ϕ(P)〉 is answered NO and some query 〈Q′, ϕ(P)〉 is answered
YES, with Q′ ∈ φ(Q), then the answer to the rough query 〈Q, P〉 is FALSE.

– If the query 〈Q, ϕ(P)〉 is answered YES and some query 〈Q′, ϕ(P)〉 is also an-
swered YES, with Q′ ∈ φ(Q), then the answer to the rough query 〈Q, P〉 is
BOUNDARY.

– Otherwise, the answer to the rough query 〈Q, P〉 is UNKNOWN.

6 Conclusions

In the paper we have presented a four-valued logic which we found adequate for ap-
proximate reasoning based on Pawlak’s ideas of approximations. The four-valued ap-
proach reflects intuitions of fusing information from various, possibly independent data
sources.

We have proposed a database language involving approximate concepts and pro-
vided its formal semantics. Lifting the level of description from approximations to
sets/relations themselves facilitates the use of the language as well as the import of
rules from other databases, including those based on two-valued and three-valued log-
ics. A corresponding query language and its implementation have also been discussed.

As noticed in Remark 2, the transformation defined by formula (4) is rather ineffi-
cient. We plan to address its improvement in our future work.
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20. Vitória, A., Damásio, C., Małuszyński, J.: Query answering for rough knowledge bases. In

Wang, G., Liu, Q., Yao, Y., Skowron, A., eds.: Proceedings of 9th Internatinal Conference
on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. Volume 2639 of LNCS.,
Springer-Verlag (2003) 197–204

21. Ginsberg, M.: Multi-valued logics. In: Proceedings of AAAI-86, Fifth National Conference
on Artificial Intelligence. (1986) 243–247

22. Ginsberg, M.: Multivalued logics: a uniform approach to reasoning in ai. Computational
Intelligence 4 (1988) 256–316

23. Fitting, M.: Bilattices are nice things. In: Proc. PhiLog Conference on Self-Reference,
Copenhagen, The Danish Network for Philosophical Logic and Its Applications (2002)

24. Deransart, P., Ed-Bali, A., Cervoni, L.: Prolog: The Standard Reference Manual. Springer-
Verlag (1996)

25. : XSB system. (Available at http://xsb.sourceforge.net/)
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