
HAL Id: hal-00860490
https://hal.science/hal-00860490

Submitted on 2 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Experimental Comparison between ATNoSFERES
and ACS

Samuel Landau, Olivier Sigaud, Sébastien Picault, Pierre Gérard

To cite this version:
Samuel Landau, Olivier Sigaud, Sébastien Picault, Pierre Gérard. An Experimental Compari-
son between ATNoSFERES and ACS. 6th International Workshop on Learning Classifier Systems
(IWLCS’2003), 2003, Chicago, United States. pp.144-160. �hal-00860490�

https://hal.science/hal-00860490
https://hal.archives-ouvertes.fr
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e{Samuel.Landau,Olivier.Sigaud,Pierre.Gerard}�lip6.frhttp://miriad.lip6.fr/�landauhttp://animatlab.lip6.fr/{Sigaud,Gerard}�� Laboratoire d'Informatique Fondamentale de LilleCité S
ienti�que59 655 Villeneuve d'As
q Cedex, Fran
eSebastien.Pi
ault�lifl.frhttp://www.lifl.fr/�pi
aultAbstra
t. After two papers 
omparing ATNoSFERES with XCSM, aLearning Classi�er System with internal states, this paper is devoted to a
omparison between ATNoSFERES and ACS (an Anti
ipatory LearningClassi�er System). As previously, we fo
us on the way per
eptual aliaz-ing problems en
ountered in non-Markov environments are solved withboth kinds of systems. We shortly present ATNoSFERES, a frameworkbased on an indire
t en
oding Geneti
 Algorithm whi
h builds �nite-state automata 
ontrollers, and we 
ompare it with ACS through twoben
hmark experiments. The 
omparison shows that the di�eren
e inperforman
e between both system depends on the environment. Thisraises a dis
ussion of the adequa
y of both adaptive me
hanisms to par-ti
ular sub
lasses of non-Markov problems. Furthermore, sin
e ACS 
on-verges mu
h faster than ATNoSFERES, we dis
uss the need to introdu
elearning 
apabilities in our model. As a 
on
lusion, we advo
ate for theneed of more experimental 
omparisons between di�erent systems in theLearning Classi�er System 
ommunity.Keywords Evolutionary Algorithms, Per
eptual Aliazing, Augmented Transi-tion Networks.1 Introdu
tionMost Learning Classi�er Systems (LCS) [Hol75℄ are used to 
ontrol agents in-volved in a sensori-motor loop with their environment. Su
h agents per
eivesituations through their sensors as ve
tors of several attributes, ea
h attributerepresenting a per
eived feature of the environment. As pointed out by Lanzi



[Lan00℄, LCS are adaptive ar
hite
tures based on Reinfor
ement Learning (RL)te
hniques [SB98℄, but endowed with generalization 
apabilities. Thanks to aLCS, an agent 
an learn the optimal poli
y � i.e. whi
h a
tion to perform in ev-ery situation, in order to maximize a reward obtained in the environment. Thepoli
y is de�ned by a set of rules � or 
lassi�ers � spe
ifying an a
tion a

ordingto some 
onditions 
on
erning the per
eived situation.Standard RL algorithms are generally used in situations where the state of theagent-environment intera
tion is always known without ambiguity. But in realworld environments, it often happens that agents per
eive the same situation inseveral di�erent states, eventually requiring di�erent optimal a
tions, giving riseto the so 
alled �per
eptual aliazing� problem. In su
h a 
ase, the environmentis said non-Markov, and agents 
annot perform optimally if their de
ision at agiven time step only depends on their per
eptions at the same time step.There are several attempts to apply LCSs to non-Markov problems, relyingon di�erent approa
hes to the problem. For instan
e, in XCSM [Lan98℄ added ex-pli
it internal states to the 
lassi
al (
ondition, a
tion) pair of the 
lassi�ers usedin XCS [Wil95℄. From XCS again, [TB00a℄ proposed in CXCS a rule-
hainingme
hanism able to build a bridge over ambiguous situations. ACS, an Anti
ipa-tory LCS (ALCS), uses a similar rule-
haining me
hanism to solve non-Markovproblems.In two re
ent papers [LPSG02a, LPSG02b℄, we have presented a new frame-work, �ATNoSFERES� [LP01℄, also used to automati
ally design the behavior ofagents and able to 
ope with non-Markov environments. ATNoSFERES relies onan evolutionary approa
h instead of 
lassi
al reinfor
ement learning te
hniques,but we have shown in [LPSG02a℄ that the resulting graph-based representationwas semanti
ally very similar to the LCS representation, giving rise to a detailed
omparison between both 
lasses of systems. In parti
ular, we have shown thattwo important advantages of the graph-based representation were its minimal-ity and its readability. As a result, the stru
ture of the 
ontroller gives a lot ofinformation about the stru
ture of the problem fa
ed by the system. In thesepapers, ATNoSFERES was 
ompared with XCSM on the well-known Maze10environment and then on a new environment 
alled 12-Candlesti
ks.In the present paper, we provide a new 
omparison between ATNoSFERESand another LCS, ACS. We rely on a study from [ML02℄ to 
ompare the per-forman
e of both systems on two distin
t environments. Our 
omparison revealsnew features of the intera
tion of LCSs with non-Markov problems.In the next se
tion, we summarize the features and properties of the ATNoS-FERES model, and we highlight the formal similarity between ATNoSFERESand LCS representations. In se
tion 3, we brie�y present the di�erent approa
hesused in LCSs to 
ope with non-Markov problems. Then we a
tually 
ompareATNoSFERES with ACS in se
tion 4. This new study reveals that some prob-lems found di�
ult with ACS appear easier with ATNoSFERES and vi
e versa.We dis
uss this point in se
tion 5. Finally, we draw lessons from the fa
t thatATNoSFERES 
onverges slower than ACS to 
on
lude that we should in
ludeon-line learning me
hanisms in our model, and we highlight the need of more



experimental 
omparisons between 
lasses of Learning Classi�er Systems nowthat the �eld is getting more mature.2 The ATNoSFERES model and Learning Classi�erSystems2.1 Graph-based expression of behaviorsThe ar
hite
ture provided by the ATNoSFERES model [LP01, PL01℄ involvesan ATN1 graph [Woo70℄ whi
h is basi
ally an oriented, labeled graph with aStart (or initial) node and an End (or �nal) node (see �gure 7). Nodes representstates while edges represent transitions of an automaton.Like LCSs, ATNoSFERES binds 
onditions expressed as a set of attributesto a
tions, and is endowed with the ability to generalize 
onditions by ignoringsome attributes. But in ATNoSFERES, the 
onditions and a
tions are used ina graph stru
ture that provides internal states.The graph des
ribing the behaviors is built from a genotype by adding nodesand edges to a basi
 stru
ture 
ontaining only the Start and End nodes. Thegraph-building pro
ess was des
ribed in [LPSG02a, LPSG02b℄ and will not bedetailed here again. For the self-
onsisten
y of the paper, we just have to mentionthat the pro
ess is separated into two steps:1. The bitstring (genotype) is translated into a sequen
e of tokens.2. The tokens are interpreted as instru
tions of a robust programming language,dedi
ated to graph building.Sin
e any sequen
e of tokens is meaningful, the graph-building language ishighly robust to any variations a�e
ting the genotype, thus there is no spe
i�
synta
ti
al nor semanti
al 
onstraint on the geneti
 operators. In addition, thesequen
e of tokens is to some extent order-independent and a given graph 
an beprodu
ed from very di�erent genotypes, whi
h guarantees a degenera
y property.2.2 ATNoSFERES model and Learning Classi�er SystemsAs explained in more details in [LPSG02a℄ and illustrated in �gure 1, an ATNsu
h as those evolved by ATNoSFERES 
an be translated into a list of 
lassi�ers.The nodes of the ATN play the role of internal states and endow ATNoSFERESwith the ability to deal with per
eptual aliazing. The edges of the ATN are
hara
terized by several informations whi
h 
an also be represented in 
lassi�ers:the sour
e and destination nodes of the edge 
orrespond to internal states; the
onditions asso
iated to the edges 
orrespond to the 
onditions of the 
lassi�ersand the a
tions asso
iated to the edges 
orrespond to the a
tions of the 
lassi�ers.1 ATN stands for �Augmented Transition Networks�
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(b) LCSFig. 1. The sensori-motor loop with ATNoSFERES and a standard LCS. The agentper
eives the presen
e/absen
e (resp. 1/0) of blo
ks in ea
h of the eight surrounding
ells and must de
ide towards whi
h of the eight adja
ent 
ells it should move. In AT-NoSFERES, from its 
urrent lo
ation, the agent per
eives [E :NE N :NW :W :SW S:SE℄ (token E is true when the east 
ell is empty). From the 
urrent state (node) of itsgraph, two edges (in bold) are eligible, sin
e the 
ondition parts of their label mat
hthe per
eptions. One is sele
ted either deterministi
ally or not, then its a
tion part(move east) is performed and the 
urrent state is updated. In a LCS 
ase, the agentper
eives [01010111℄ (starting north and rotating 
lo
kwise). Within the list of 
lassi-�ers 
hara
terizing it, the LCS �rst sele
ts those mat
hing the 
urrent situation. Then,it sele
ts one of the mat
hing 
lassi�ers and the 
orresponding a
tion is performed.



3 Ba
kground: LCSs and non-Markov problemsDealing with simple Condition-A
tion 
lassi�ers does not endow an agent withthe ability to behave optimally in per
eptually aliazed problems. In su
h prob-lems, it may happen that the 
urrent per
eption does not provide enough in-formation to always 
hoose the optimal a
tion: as soon as the agent per
eivesthe same situation in di�erent states, it will 
hoose the same a
tion even if thisa
tion is inappropriate in some of these states.For su
h problems, it is ne
essary to provide the system with more than just
urrent per
eptions. In the general reinfor
ement learning framework, severalkinds of solutions have been tested.� The �rst one 
onsists in adding expli
it internal states to the per
eptionsinvolved in the de
isions of the system. This approa
h was used by Hollandin his early LCSs thanks to an internal message list [HR78℄. But both [RR88℄and [Smi94℄ reported unsatisfa
tory performan
e of Holland's system on non-Markov problems. In the 
ontext of more re
ent LCS resear
h, the expli
itinternal state solution was adopted by [CR94℄ in ZCSM and by [LW00℄ inXCSM and XCSMH.� The se
ond one, memory window management, is a spe
ial 
ase of expli
itinternal state management where the internal state 
onsists in an immediatememory of the past of length k. Some systems use a �xed size window (see[LM92℄ for a review) while others use a variable size window (e.g. [M
C95℄).The next solution, rule-
haining, 
an be seen as an alternative view of thevariable size window me
hanism.� The third one 
onsists in 
haining the de
isions, making one de
ision dependon the de
isions previously taken, so as to use a memory of what was donepreviously to disambiguate the 
urrent situation. Among LCSs, this solutionwas used in ZCCS [TB00b℄, CXCS [TB00a℄ and ACS [Sto99℄.� The fourth one 
onsists in splitting a non-Markov problem into severalMarkov problems, making sure that aliased states are s
attered among dif-ferent sub-problems. This solution has been investigated �rst by [WS97℄,and then improved by [SS00℄. To our knowledge, no LCS a
tually uses thissolution, despite its very interesting properties.� The last solution 
onsists in building a �nite state automaton 
orrespondingto the stru
ture of the problem, as [MPKK99℄ or [Han98℄ do, in a 
ontextwhere the stru
ture of the problem is known in advan
e. This is the solution
hosen in ATNoSFERES, using a Pittsburg style evolutionary algorithm,but in a 
ontext where the agents do not know anything about the stru
tureof the problem before starting.4 Experimental Comparison with ACS4.1 ACSIn previous papers, we have 
ompared ATNoSFERES with XCSM on two non-Markov problems. In order to go deeper into the 
omparison between the abilities



of ATNoSFERES and LCSs to 
ope with the per
eptual aliazing problem, wepresent in this se
tion a 
omparison with another system, ACS.The Anti
ipatory Classi�er System has been developed by Stolzmann [Sto98℄.It di�ers from 
lassi
al Learning Classi�er Systems by adding to the per
eption-a
tion rules an �e�e
t part� that represents a per
eptual anti
ipation of the
onsequen
es of the a
tion upon the environment. ACS relies on an Anti
ipa-tory Learning Pro
ess (ALP) [Sto98℄ and has been su

essfully applied to bothMarkov and non-Markov environments.The main feature of ACS with respe
t to XCS-like LCSs relies in the fa
tthat their use of anti
ipation make it possible to design some e�
ient heuris-ti
s that are believed to make the system 
onverge faster, though no expli
itperforman
e 
omparison has been published yet. Gérard and Sigaud have pro-posed two ALCSs similar to ACS, namely YACS [GSS01℄ and MACS [GMS03℄,that have been shown to be faster than ACS, but are limited to Markov anddeterministi
 environments.In ACS, in order to deal with non-Markov environments, it was 
hosen to usea rule-
haining me
hanism like in CXCS [TB00a℄. In that 
ase, the e�e
t partof a 
lassi�er 
onsisting in a behavioral sequen
e is intended to represent theper
eptual 
onsequen
e of the sequen
e of a
tions. As it is the 
ase with CXCS,this feature makes ACS able to deal e�
iently with non-Markov environments[Sto99℄.In order to build su
h a behavioral sequen
e, a new parameter was added toACS, namely �BSmax�. BSmax represents the maximal length of the behavioralsequen
es that ACS may build. Its value must be de
ided before starting anyrun.4.2 Experimental setupWe tried to reprodu
e an experimental setup as 
lose as possible to that usedin [Lan98℄ with the Maze10 environment and ACS in E1 and E2 environments,taking into a

ount the spe
i�
ities of our model. This setup has been appliedto all the experiments presented in this paper.Per
eption/A
tion abilities and Tokens. The agents used for the experimentsare able to per
eive the presen
e/absen
e of walls or the presen
e of food in theeight adja
ent 
ells of the grid, these three per
eptions being mutually ex
lusive.They 
an move in adja
ent 
ells (the move will be e�e
tive if the 
ell is emptyor 
ontains food). Thus, the geneti
 
ode in
ludes 24 
ondition tokens, 8 a
tiontokens, 7 sta
k manipulation tokens and 4 node 
reation/
onne
tion tokens. Weused 7 bits en
oding to de�ne the tokens (27 = 128 tokens, whi
h means thatsome tokens are en
oded twi
e or more).In [LPSG02b℄, we demonstrated that the performan
es of ATNoSFERES
ould be in
reased by using a new token, selfConne
t, endowing our model withthe ability to build easily self-
onne
ting edges from a node to itself. This newtoken has been used in all the experiments presented below.



Course of Experiments. Ea
h experiment involves the following steps:1. Initialize the population with N = 300 agents with random bitstrings.2. For ea
h generation, build the graph of ea
h agent and evaluate it in theenvironment.3. Sele
t the 20 % best individuals of the population and produ
e new onesby 
rossing over the parents. The system performs probabilisti
 mutations(with a 1% rate) and insertions or deletions of 
odons (with a 0.5% rate) onthe bitstring of the o�spring.4. Iterate the pro
ess in 2 with the new generation.Fitness fun
tion. Ea
h individual is evaluated by putting it into the environ-ment, starting on a blank 
ell in the grid, and letting it try to �nd the food withina limited amount of time (the limit is 20 time steps in all experiments des
ribedbelow). The agent 
an per
eive the food, and it 
an perform only one a
tion pertime step; when this a
tion is in
ompatible with the environment (e.g. go westwhen the west 
ell 
ontains an obsta
le), it is simply dis
arded (the agent losesone time step and stays on the same 
ell).The �tness of the agent for ea
h run is the remaining time if the food hasbeen found within the time limit. Thus, the sele
tion pressure en
ourages shortpaths to food. For one generation, ea
h agent is evaluated one time startingon ea
h empty 
ell, then its total �tness for this generation is the sum of the�tnesses 
omputed for ea
h run. Ea
h agent is reevaluated at ea
h generationin order to average its �tness over generations. This is ne
essary be
ause of thenon-deterministi
 aspe
ts of the automata.Indeed, there are several potential sour
es of non-determinism in our au-tomata. The �rst one is due to the fa
t that several ar
s might be eligible fromthe 
urrent node in the 
urrent situation. In that 
ase, we 
an either 
hooseone ar
 randomly, giving rise to a non-deterministi
 behavior, or assign �xedpriorities (by order of 
reation, for instan
e) to ar
s, so as to keep the automatadeterministi
. In all the experiments presented here, we have 
hosen the deter-ministi
 stan
e, after having 
he
ked that we obtain better performan
e withsu
h a 
hoi
e.But there are still two sour
es of non-determinism in our automata. In asituation where no ar
 is eligible, or when an edge to 
ross does not 
arry anya
tion label, one a
tion is 
hosen randomly. Thus an automaton will be fullydeterministi
 only in the 
ase where one ar
 
an be ele
ted in any en
ounteredsituation, and if all su
h ar
s bear an a
tion to perform. This explains the needto average the performan
e over several runs.4.3 Experimental environmentsThe experiments des
ribed below take pla
e in two non-Markov environments(E1 and E2, see �gure 2) that have been used in [ML02℄ to study how ACSdeals with non-Markov problems. E1 presents 20 aliazed situations (among the
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eption is limited(an omnis
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4.4 Comparison with ACSBefore 
omparing, we have to emphasize a major di�eren
e between the wayACS and ATNoSFERES deal with these environments. This di�eren
e regardsthe impli
it sele
tion of possible movements. In ACS experiments, as they aredes
ribed in [ML02, � 4.1 and 4.2℄, the only movements tested in ea
h free posi-tion are transitions towards surrounding free 
ells (for example, if the 
ell to thenorth 
ontains an obsta
le, the move to the north is not 
onsidered as a possiblemove, thus it is not tested). This 
onstitutes a kind of prior domain-dependentknowledge about 
onsistent per
eptions-a
tions bindings, whi
h signi�
antly bi-ases the learning pro
ess by redu
ing the number of 
lassi�ers to test. In [SG99℄,we have shown that prohibiting the use of this bias 
an severely impair somelearning algorithms. For instan
e, M
Callum's U-Tree algorithm [M
C95℄ whi
hworks well in non-Markov mazes su
h as those studied here if the agent is pre-vented from bumping into walls, might grow an in�nitely deep tree if it keepsbumping into the same wall in an aliased situation.In ATNoSFERES, on the 
ontrary, any move token 
an be used as an a
tionlabel. When the 
orresponding movement is impossible, the agent stays whereit is and loses a time step (it is penalized only in an indire
t way, through the�tness fun
tion).The experiments reported here were 
arried out on various initial genotypesizes. In E1, the genotypes that have been tested are between 40 and 150 tokenslong (with step 10), as in E2. Using these di�erent sizes was ne
essary be
ausewe do not know in advan
e the minimum size required to produ
e an e�
ientautomaton.The original population genotype sizes may drift during an evolution, sin
esome geneti
 operators insert or delete parts of the genotype randomly. Ea
hexperiment is stopped after 10,000 generations, and 10 experiments have beenperformed in ea
h experimental situation.4.5 ResultsFigure 4 gives the respe
tive �tness values obtained by the best automata inE1 and E2 experiments, depending on initial lengths of the genotypes. Ea
h
ross in the �gures represent the performan
e of the best automaton obtainedafter 10,000 generations in one run. Thus there are ten 
rosses for ea
h initiallength. From �gure 4 (a), it 
an be seen that in E1, ATNoSFERES easily rea
hesthe performan
e of ACS in the 
ase where BSmax = 1, but hardly rea
hesthe performan
e of ACS with BSmax = 2, whi
h is very 
lose to the optimalperforman
e.In E2, the performan
e obtained with ATNoSFERES is signi�
antly betterthan the one obtained with ACS with BSmax = 2 and BSmax = 3. Indeed,ATNoSFERES is about twi
e 
loser to the optimum performan
e.In order to 
he
k whether ATNoSFERES 
ould rea
h an even higher per-forman
e in E1, we took the best run on �gure 4 (a) and ran it up to 100,000
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kness of the 
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e was slightly improved again, rea
hing 3.2 (itwas 3.3 after 10,000 runs).Figure 5 gives the evolution of the best �tnesses, respe
tively in E1 andE2 environments. It appears 
learly that gradual improvements o

ur in bothenvironments.4.6 Representative solutions
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E1 environment We present on �gure 8 the best automaton obtained in E1experiments after 100,000 generations, on �gure 7 the best automaton obtainedafter 10,000 generations, and on �gure 6 a more representative automaton ob-tained after 10,000 generations. From these �gures it is 
lear that the most
ommon solutions found are nearly rea
tive. The graph of the more 
ommon au-tomata 
ontains a single node (in addition to the Start and End node that alwaysexist in ATNoSFERES graphs), whi
h means that a rea
tive behavior alreadyperforms well in E1. The results show that this kind of behavior is produ
edin most 
ases and gets high �tness values, more easily than solutions involvinginternal states.However, the automaton depi
ted on �gure 7 shows that adding one node
an already improve signi�
antly the global performan
e.The main di�eren
e between the best automaton obtained after 10,000 gener-ations and the one obtained after 100,000 generations is that the latter 
ontainsseveral additional ar
s. In parti
ular, the agent will more often take into a

ountthe presen
e of food (label f on the edges) in its immediate surrounding to rea
hit immediately.
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(b) E2 environmentFig. 9. Best poli
y found with ATNoSFERES in E1 (resp. E2) in 10,000 generations,represented by the number of steps needed to rea
h food from ea
h Start 
ell (see�gure 3 for optimal poli
y).Indeed, we 
an see on �gure 9 (a) that in several situations where the foodis visible the agent needs more than one step to rea
h it, though a more e�
ientbehavior is obvious. ATNoSFERES has a lot of di�
ulties in �nding these re-



a
tive rules that a reinfor
ement learning algorithm 
ombining exploration andexploitation would �nd immediately.However, even if these additional ar
s 
ould improve the performan
e a bitmore, this would not be enough to rea
h the true optimal performan
e. A 
are-fully hand-
rafted optimal automaton needs mu
h more internal states than theones shown in this se
tion.
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Fig. 10. The best automaton found with ATNoSFERES in E2 experiment. Its averagenumber of steps to food is about 3.8E2 environment Figure 10 gives the best automaton found in E2 environment.From this �gure it is immediately 
lear that a good automaton in E2 needs morenodes than it is the 
ase in E1. This seems to imply that rea
tive and nearlyrea
tive behaviors perform mu
h worse in E2 than in E1. This fa
t, in additionto the fa
t that ATNoSFERES 
learly outperforms ACS on E2 while it is lessthe 
ase in E1, will be at the heart of the dis
ussion that follows.5 Dis
ussionThe experimental study presented in the previous se
tion reveals that di�erentsub
lasses of non-Markov problems should be distinguished more a

urately.Indeed, some problems, like E1, are a
tually non-Markov, but in su
h a waythat rea
tive behaviors 
an still perform well on su
h problems.In E1, our study has shown that through an evolutionary pro
ess, it is easyto gradually grow a set of ad ho
 rules (whi
h are to some extent independentfrom ea
h other), even more if the agent is tested from ea
h 
ell: thus, an agent




an start with a few rules that are e�
ient for a few 
ells, and evolve fromone generation to another rules that are useful for additional 
ells. From su
ha rea
tive solution, built by the a

umulation of small 
hanges, it is unlikelyto develop internal states to deal with a few parti
ular 
ases, sin
e it requiresat the same time additional nodes, linked with 
onsistent edges, 
onditions anda
tions. We meet again the stru
tural 
ost mentioned in [LPSG02a℄: �simple�,in
remental good solutions are preferred to stru
turally 
omplex optima.On the 
ontrary, other problems, like E2, should be said �highly non-Markov�,sin
e rea
tive poli
ies perform very poorly on su
h problems. In E2, there is nohope that a rea
tive behavior 
ould lead to the food in a reasonable amount oftime, due to the lo
ation and the nature of aliazed situations.Our 
omparative study has revealed that ACS performs very well on the�rst sub
lass of problems and more poorly on the se
ond, while ATNoSFERESperforms 
onsistently on both sub
lasses.Now we should ask ourselves why this is so. On �rst thoughts, one might
onsider that the maximal length of sequen
es in ACS plays a major role in thephenomenon. One 
ould expe
t that setting BSmax to more than 3 in E2 should�x the problem. A 
loser examination, however, reveals that this is not so.In [ML02℄, the authors show that setting BSmax to 3 is enough to let ACSbuild a 
ompletely reliable model of E2, under the form of (situation, a
tion,next situation) 
lassi�ers. This explains why they did not try BSmax = 4 ormore.But the performan
e 
on
ern and the model reliability 
on
ern are not stri
tly
orrelated. Regarding the 
onvergen
e to stable reward performan
e, [ML02℄ em-phasize that in
reasing the maximum length of the behavioral sequen
e �doesnot improve the `steps to food' performan
es�, i.e. a �good� behavioral solu-tion 
an be exploited without having built an exhaustive representation of theenvironment.One reason explaining that building longer a
tion sequen
es would not im-prove the performan
e 
omes from the fa
t that these sequen
es spe
ify a blindseries of a
tions to perform without interruption and without 
he
king betweenits beginning and its end the situation per
eived in the environment by the agent.These sequen
es 
an improve the performan
e of the agent when they let it jumpover ambiguous situations, but they have two main drawba
ks:� �rst, they do not help the agent when it is starting from an ambiguoussituation, sin
e at the �rst time step the agent bene�ts from no memory tohelp disambiguating its situation;� se
ond, on
e a sequen
e is ele
ted, the agent will at least perform the numberof a
tions spe
i�ed in the sequen
e.Sin
e the number of steps to the food given by the optimal poli
y in E1 and E2 isgenerally less than 4, it is very unlikely that letting the agent perform sequen
esof 4 a
tions or more will help rea
hing the optimal performan
e.Even worse, if an agent starts from an ambiguous situation and then followsa long sequen
e of a
tions, this sequen
e will delay the time at whi
h the agent
an dis
over its a
tual lo
ation and then follow an optimal path to the food.



Indeed, our experien
e with ATNoSFERES in small environments like E1and E2 is that the main issue for the agent 
onsists in dis
overing as fast aspossible where it is from an initially ambiguous situation and then follow theshortest path to the goal. Maybe the situation about the use of sequen
es wouldbe di�erent in mu
h bigger environments, but we will not treat this issue here.Finally, we must 
ompare the number of elementary runs ne
essary to rea
h agood performan
e with ACS and ATNoSFERES. In the experiments reported in[ML02℄, ACS needs about 60,000 steps (resp. 120,000 steps) to build an exhaus-tive internal model of E1 (resp. E2) given a 
onvenient length of the behavioralsequen
e used as a
tion part in ACS. With ATNoSFERES, about 1500 gener-ations of 300 individuals are ne
essary to obtain a performan
e similar to thatof ACS with BSmax = 1 in E1 and BSmax = 2 or 3 in E2, whi
h makes about450,000 runs of 6 to 15 steps on average. Thus it is 
lear that ATNoSFERESstill needs several orders of magnitude more steps than ACS to 
onverge.This 
an be easily explained by the fa
t that ATNoSFERES evolves automatathanks to a blind GA pro
ess while ACS relies on a reinfor
ement learning algo-rithm whi
h extra
ts information about the environment from its experien
es.From this 
omparison, it is 
lear that an area for a major improvement of AT-NoSFERES 
onsists in endowing it with reinfor
ement learning 
apabilities. Thisis our immediate agenda for future work.A sour
e of inspiration in that dire
tion 
omes from the Samuel system[Gre91℄. Like ATNoSFERES, Samuel is a Pittsburg style system based on asingle 
hromosome GA, but it also in
ludes lamar
kian operators that endow itwith basi
 learning 
apabilities. As a result, as 
laimed by the author, �Samuelrepresents an integration of the major geneti
 approa
hes to ma
hine learning,the Mi
higan approa
h and the Pittsburg approa
h�. Most of the operators usedin Samuel 
an be transposed in ATNoSFERES, the main di�eren
e being thatATNoSFERES does not provide a high level symboli
 representation and thatSamuel does not in
lude any me
hanism to solve per
eptual aliasing problems.6 Con
lusion and Future WorkIn this paper, we have applied ATNoSFERES to non-Markov environments thathave been investigated with ACS. Our experiments 
on�rm that ATNoSFERESen
ounters more di�
ulties in produ
ing an optimal behavior in some environ-ments where rea
tive solutions are highly valuable than in environments thatare more di�
ult for ACS.Su
h a result suggests that the di�
ulties of di�erent non-Markov problemswith di�erent hidden-state stru
ture su
h as E1 and E2 should be distinguishedin more details than is usually done. Along that line, we believe that, thanks tothe information ATNoSFERES provides on the stru
ture of di�erent problems,it 
an be seen as a tool that may help understanding whi
h kind of system willperform best in whi
h kind of environment and why.Finally, we would like to highlight the fa
t that the 
omparative studieswe provided with ATNoSFERES both in this paper and in [LPSG02a℄ and



[LPSG02b℄ should be generalized in the LCS 
ommunity. Previously, we have
ompared ATNoSFERES with XCSM on some environments qualitatively, with-out 
omparing both systems performan
es. Here we have 
ompared ATNoS-FERES with ACS quantitatively on other environments, relying on the exper-iments presented on the available literature. Sin
e XCSM and ACS have notbeen tested on the same environments, a pre
ise 
omparison of their respe
-tive performan
e has never been published yet. A lot of work deserves to bedone to provide more global 
omparisons between several systems and 
lasses ofsystems. We strongly believe that su
h 
omparisons would greatly enhan
e theunderstanding of the 
urrent state of the art in the LCS resear
h 
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