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Abstract. After two papers comparing ATNoSFERES with XCSM, a
Learning Classifier System with internal states, this paper is devoted to a
comparison between ATNoSFERES and ACS (an Anticipatory Learning
Classifier System). As previously, we focus on the way perceptual aliaz-
ing problems encountered in non-Markov environments are solved with
both kinds of systems. We shortly present ATNoSFERES, a framework
based on an indirect encoding Genetic Algorithm which builds finite-
state automata controllers, and we compare it with ACS through two
benchmark experiments. The comparison shows that the difference in
performance between both system depends on the environment. This
raises a discussion of the adequacy of both adaptive mechanisms to par-
ticular subclasses of non-Markov problems. Furthermore, since ACS con-
verges much faster than ATNoSFERES, we discuss the need to introduce
learning capabilities in our model. As a conclusion, we advocate for the
need of more experimental comparisons between different systems in the
Learning Classifier System community.

Keywords Evolutionary Algorithms, Perceptual Aliazing, Augmented Transi-
tion Networks.

1 Introduction

Most Learning Classifier Systems (LCS) [Hol75] are used to control agents in-
volved in a sensori-motor loop with their environment. Such agents perceive
situations through their sensors as vectors of several attributes, each attribute
representing a perceived feature of the environment. As pointed out by Lanzi



[Lan00], LCS are adaptive architectures based on Reinforcement Learning (RL)
techniques [SB98|, but endowed with generalization capabilities. Thanks to a
LCS, an agent can learn the optimal policy i.e. which action to perform in ev-
ery situation, in order to maximize a reward obtained in the environment. The
policy is defined by a set of rules — or classifiers — specifying an action according
to some conditions concerning the perceived situation.

Standard RL algorithms are generally used in situations where the state of the
agent-environment, interaction is always known without ambiguity. But in real
world environments, it often happens that agents perceive the same situation in
several different states, eventually requiring different optimal actions, giving rise
to the so called “perceptual aliazing’ problem. In such a case, the environment
is said non-Markov, and agents cannot perform optimally if their decision at a
given time step only depends on their perceptions at the same time step.

There are several attempts to apply LCSs to non-Markov problems, relying
on different approaches to the problem. For instance, in XCSM [Lan98] added ex-
plicit internal states to the classical (condition, action) pair of the classifiers used
in XCS [Wil95]. From XCS again, [TB00a] proposed in CXCS a rule-chaining
mechanism able to build a bridge over ambiguous situations. ACS, an Anticipa-
tory LCS (ALCS), uses a similar rule-chaining mechanism to solve non-Markov
problems.

In two recent papers [LPSG02a, LPSGO02b], we have presented a new frame-
work, “ATNoSFERES” [LP01], also used to automatically design the behavior of
agents and able to cope with non-Markov environments. ATNoSFERES relies on
an evolutionary approach instead of classical reinforcement learning techniques,
but we have shown in [LPSG02a] that the resulting graph-based representation
was semantically very similar to the LCS representation, giving rise to a detailed
comparison between both classes of systems. In particular, we have shown that
two important advantages of the graph-based representation were its minimal-
ity and its readability. As a result, the structure of the controller gives a lot of
information about the structure of the problem faced by the system. In these
papers, ATNoSFERES was compared with XCSM on the well-known Mazel0
environment and then on a new environment called 12-Candlesticks.

In the present paper, we provide a new comparison between ATNoSFERES
and another LCS, ACS. We rely on a study from [MLO02] to compare the per-
formance of both systems on two distinct environments. Our comparison reveals
new features of the interaction of LCSs with non-Markov problems.

In the next section, we summarize the features and properties of the ATNoS-
FERES model, and we highlight the formal similarity between ATNoSFERES
and LCS representations. In section 3, we briefly present the different approaches
used in LCSs to cope with non-Markov problems. Then we actually compare
ATNoSFERES with ACS in section 4. This new study reveals that some prob-
lems found difficult with ACS appear easier with ATNoSFERES and vice versa.
We discuss this point in section 5. Finally, we draw lessons from the fact that
ATNoSFERES converges slower than ACS to conclude that we should include
on-line learning mechanisms in our model, and we highlight the need of more



experimental comparisons between classes of Learning Classifier Systems now
that the field is getting more mature.

2 The ATNoSFERES model and Learning Classifier
Systems

2.1 Graph-based expression of behaviors

The architecture provided by the ATNoSFERES model [LP01, PLO01]| involves
an ATN! graph [Woo70] which is basically an oriented, labeled graph with a
Start (or initial) node and an End (or final) node (see figure 7). Nodes represent
states while edges represent transitions of an automaton.

Like LCSs, ATNoSFERES binds conditions expressed as a set of attributes
to actions, and is endowed with the ability to generalize conditions by ignoring
some attributes. But in ATNoSFERES, the conditions and actions are used in
a graph structure that provides internal states.

The graph describing the behaviors is built from a genotype by adding nodes
and edges to a basic structure containing only the Start and End nodes. The
graph-building process was described in [LPSG02a, LPSG02b] and will not be
detailed here again. For the self-consistency of the paper, we just have to mention
that the process is separated into two steps:

1. The bitstring (genotype) is translated into a sequence of tokens.
2. The tokens are interpreted as instructions of a robust programming language,
dedicated to graph building.

Since any sequence of tokens is meaningful, the graph-building language is
highly robust to any variations affecting the genotype, thus there is no specific
syntactical nor semantical constraint on the genetic operators. In addition, the
sequence of tokens is to some extent order-independent and a given graph can be
produced from very different genotypes, which guarantees a degeneracy property.

2.2 ATNoSFERES model and Learning Classifier Systems

As explained in more details in [LPSGO02a] and illustrated in figure 1, an ATN
such as those evolved by ATNoSFERES can be translated into a list of classifiers.
The nodes of the ATN play the role of internal states and endow ATNoSFERES
with the ability to deal with perceptual aliazing. The edges of the ATN are
characterized by several informations which can also be represented in classifiers:
the source and destination nodes of the edge correspond to internal states; the
conditions associated to the edges correspond to the conditions of the classifiers
and the actions associated to the edges correspond to the actions of the classifiers.

! ATN stands for “Augmented Transition Networks”
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Fig. 1. The sensori-motor loop with ATNoSFERES and a standard LCS. The agent
perceives the presence/absence (resp. 1/0) of blocks in each of the eight surrounding
cells and must decide towards which of the eight adjacent cells it should move. In AT-
NoSFERES;, from its current location, the agent perceives [E —NE N —NW —W —SW S
—SE] (token E is true when the east cell is empty). From the current state (node) of its
graph, two edges (in bold) are eligible, since the condition parts of their label match
the perceptions. One is selected either deterministically or not, then its action part
(move east) is performed and the current state is updated. In a LCS case, the agent
perceives [01010111] (starting north and rotating clockwise). Within the list of classi-
fiers characterizing it, the LCS first selects those matching the current situation. Then,
it selects one of the matching classifiers and the corresponding action is performed.



3 Background: LCSs and non-Markov problems

Dealing with simple Condition-Action classifiers does not endow an agent with
the ability to behave optimally in perceptually aliazed problems. In such prob-
lems, it may happen that the current perception does not provide enough in-
formation to always choose the optimal action: as soon as the agent perceives
the same situation in different states, it will choose the same action even if this
action is inappropriate in some of these states.

For such problems, it is necessary to provide the system with more than just
current, perceptions. In the general reinforcement learning framework, several
kinds of solutions have been tested.

— The first one consists in adding explicit internal states to the perceptions
involved in the decisions of the system. This approach was used by Holland
in his early LCSs thanks to an internal message list [HR78]. But both [RR&8]
and [Smi94] reported unsatisfactory performance of Holland’s system on non-
Markov problems. In the context of more recent LCS research, the explicit
internal state solution was adopted by [CR94] in ZCSM and by [LWO00] in
XCSM and XCSMH.

— The second one, memory window management, is a special case of explicit
internal state management where the internal state consists in an immediate
memory of the past of length k. Some systems use a fixed size window (see
[LM92] for a review) while others use a variable size window (e.g. [McC95]).
The next solution, rule-chaining, can be seen as an alternative view of the
variable size window mechanism.

— The third one consists in chaining the decisions, making one decision depend
on the decisions previously taken, so as to use a memory of what was done
previously to disambiguate the current situation. Among LCSs, this solution
was used in ZCCS [TB00b], CXCS [TB00a] and ACS [St099].

— The fourth one consists in splitting a non-Markov problem into several
Markov problems, making sure that aliased states are scattered among dif-
ferent sub-problems. This solution has been investigated first by [WS97],
and then improved by [SS00]. To our knowledge, no LCS actually uses this
solution, despite its very interesting properties.

— The last solution consists in building a finite state automaton corresponding
to the structure of the problem, as [MPKK99] or [Han98| do, in a context
where the structure of the problem is known in advance. This is the solution
chosen in ATNoSFERES, using a Pittsburg style evolutionary algorithm,
but in a context where the agents do not know anything about the structure
of the problem before starting.

4 Experimental Comparison with ACS

4.1 ACS

In previous papers, we have compared ATNoSFERES with XCSM on two non-
Markov problems. In order to go deeper into the comparison between the abilities



of ATNoSFERES and LCSs to cope with the perceptual aliazing problem, we
present in this section a comparison with another system, ACS.

The Anticipatory Classifier System has been developed by Stolzmann [Sto98].
It differs from classical Learning Classifier Systems by adding to the perception-
action rules an “effect part” that represents a perceptual anticipation of the
consequences of the action upon the environment. ACS relies on an Anticipa-
tory Learning Process (ALP) [Sto98] and has been successfully applied to both
Markov and non-Markov environments.

The main feature of ACS with respect to XCS-like LCSs relies in the fact
that their use of anticipation make it possible to design some efficient heuris-
tics that are believed to make the system converge faster, though no explicit
performance comparison has been published yet. Gérard and Sigaud have pro-
posed two ALCSs similar to ACS, namely YACS [GSS01] and MACS [GMS03],
that have been shown to be faster than ACS, but are limited to Markov and
deterministic environments.

In ACS, in order to deal with non-Markov environments, it was chosen to use
a rule-chaining mechanism like in CXCS [TB00a]. In that case, the effect part
of a classifier consisting in a behavioral sequence is intended to represent the
perceptual consequence of the sequence of actions. As it is the case with CXCS,
this feature makes ACS able to deal efficiently with non-Markov environments
[Sto99].

In order to build such a behavioral sequence, a new parameter was added to
ACS, namely “BS,,,4."- BSmas represents the maximal length of the behavioral
sequences that ACS may build. Its value must be decided before starting any
run.

4.2 Experimental setup

We tried to reproduce an experimental setup as close as possible to that used
in [Lan98| with the Maze10 environment and ACS in E1 and E2 environments,
taking into account the specificities of our model. This setup has been applied
to all the experiments presented in this paper.

Perception/Action abilities and Tokens. The agents used for the experiments
are able to perceive the presence/absence of walls or the presence of food in the
eight adjacent cells of the grid, these three perceptions being mutually exclusive.
They can move in adjacent cells (the move will be effective if the cell is empty
or contains food). Thus, the genetic code includes 24 condition tokens, 8 action
tokens, 7 stack manipulation tokens and 4 node creation/connection tokens. We
used 7 bits encoding to define the tokens (27 = 128 tokens, which means that
some tokens are encoded twice or more).

In [LPSGO2b|, we demonstrated that the performances of ATNoSFERES
could be increased by using a new token, selfConnect, endowing our model with
the ability to build easily self-connecting edges from a node to itself. This new
token has been used in all the experiments presented below.



Course of Experiments. Each experiment involves the following steps:

1. Initialize the population with N = 300 agents with random bitstrings.

2. For each generation, build the graph of each agent and evaluate it in the
environment.

3. Select the 20 % best individuals of the population and produce new ones
by crossing over the parents. The system performs probabilistic mutations
(with a 1% rate) and insertions or deletions of codons (with a 0.5% rate) on
the bitstring of the offspring.

4. Tterate the process in 2 with the new generation.

Fitness function. Each individual is evaluated by putting it into the environ-
ment, starting on a blank cell in the grid, and letting it try to find the food within
a limited amount of time (the limit is 20 time steps in all experiments described
below). The agent can perceive the food, and it can perform only one action per
time step; when this action is incompatible with the environment (e.g. go west
when the west cell contains an obstacle), it is simply discarded (the agent loses
one time step and stays on the same cell).

The fitness of the agent for each run is the remaining time if the food has
been found within the time limit. Thus, the selection pressure encourages short
paths to food. For one generation, each agent is evaluated one time starting
on each empty cell, then its total fitness for this generation is the sum of the
fitnesses computed for each run. Each agent is reevaluated at each generation
in order to average its fitness over generations. This is necessary because of the
non-deterministic aspects of the automata.

Indeed, there are several potential sources of non-determinism in our au-
tomata. The first one is due to the fact that several arcs might be eligible from
the current node in the current situation. In that case, we can either choose
one arc randomly, giving rise to a non-deterministic behavior, or assign fixed
priorities (by order of creation, for instance) to arcs, so as to keep the automata
deterministic. In all the experiments presented here, we have chosen the deter-
ministic stance, after having checked that we obtain better performance with
such a choice.

But there are still two sources of non-determinism in our automata. In a
situation where no arc is eligible, or when an edge to cross does not carry any
action label, one action is chosen randomly. Thus an automaton will be fully
deterministic only in the case where one arc can be elected in any encountered
situation, and if all such arcs bear an action to perform. This explains the need
to average the performance over several runs.

4.3 Experimental environments

The experiments described below take place in two non-Markov environments
(E1 and E2, see figure 2) that have been used in [ML02] to study how ACS
deals with non-Markov problems. E1 presents 20 aliazed situations (among the



(a) E1 environment (b) E2 environment

Fig. 2. E1 and E2 environments. F (food) is the goal. Other marked cells represent
aliazed situations (identical letters imply the same perception).

44 free cells) which are perceived as 9 distinct situations. E2 presents 36 aliazed
situations (among 48 free cells), which are perceived as 5 distinct situations.

On figure 3, we show the number of steps an optimal agent among several may
need to reach food from each starting cell, given that its perception is limited
(an omniscient agent could perform even better).

(a) E1 environment (b) E2 environment

Fig. 3. One optimal policy for E1 (resp. E2), represented by the number of steps needed
to reach food from each Start cell. Other equivalent policies can be obtained at least
by applying all possible rotations and symmetries to all the numbers given. In E1, the
optimal average number of steps to food is 2.8181 steps. In E2, it is 2.9792 steps.



4.4 Comparison with ACS

Before comparing, we have to emphasize a major difference between the way
ACS and ATNoSFERES deal with these environments. This difference regards
the implicit selection of possible movements. In ACS experiments, as they are
described in [MLO02, § 4.1 and 4.2], the only movements tested in each free posi-
tion are transitions towards surrounding free cells (for example, if the cell to the
north contains an obstacle, the move to the north is not considered as a possible
move, thus it is not tested). This constitutes a kind of prior domain-dependent
knowledge about consistent perceptions-actions bindings, which significantly bi-
ases the learning process by reducing the number of classifiers to test. In [SG99],
we have shown that prohibiting the use of this bias can severely impair some
learning algorithms. For instance, McCallum’s U-Tree algorithm [McC95] which
works well in non-Markov mazes such as those studied here if the agent is pre-
vented from bumping into walls, might grow an infinitely deep tree if it keeps
bumping into the same wall in an aliased situation.

In ATNoSFERES, on the contrary, any move token can be used as an action
label. When the corresponding movement is impossible, the agent stays where
it is and loses a time step (it is penalized only in an indirect way, through the
fitness function).

The experiments reported here were carried out on various initial genotype
sizes. In E1, the genotypes that have been tested are between 40 and 150 tokens
long (with step 10), as in E2. Using these different sizes was necessary because
we do not know in advance the minimum size required to produce an efficient
automaton.

The original population genotype sizes may drift during an evolution, since
some genetic operators insert or delete parts of the genotype randomly. Each
experiment is stopped after 10,000 generations, and 10 experiments have been
performed in each experimental situation.

4.5 Results

Figure 4 gives the respective fitness values obtained by the best automata in
E1l and E2 experiments, depending on initial lengths of the genotypes. Each
cross in the figures represent the performance of the best automaton obtained
after 10,000 generations in one run. Thus there are ten crosses for each initial
length. From figure 4 (a), it can be seen that in E1, ATNoSFERES easily reaches
the performance of ACS in the case where BSp,,; = 1, but hardly reaches
the performance of ACS with BS,,., = 2, which is very close to the optimal
performance.

In E2, the performance obtained with ATNoSFERES is significantly better
than the one obtained with ACS with BS,.. = 2 and BSpa: = 3. Indeed,
ATNoSFERES is about twice closer to the optimum performance.

In order to check whether ATNoSFERES could reach an even higher per-
formance in E1, we took the best run on figure 4 (a) and ran it up to 100,000
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Fig. 5. Best fitness evolution in E1 (resp. E2) experiment as a function of genera-
tions; the shape and smoothness of the curve are representative for all E1 (resp. E2)
evolutions. The thickness of the curves (particularly manifest in E1) is due to the inde-
terministic behavior of agents. In E2, it seems that the pressure towards deterministic
behavior is stronger.

generations. The best performance was slightly improved again, reaching 3.2 (it
was 3.3 after 10,000 runs).

Figure 5 gives the evolution of the best fitnesses, respectively in E1 and
E2 environments. It appears clearly that gradual improvements occur in both
environments.

4.6 Representative solutions
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Fig. 6. A representative automaton found with ATNoSFERES in E1 experiment (after
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Fig. 7. The best automaton found with ATNoSFERES in E1 experiment (after 10,000
generations). Its average number of steps to food is about 3.3

Fig. 8. The best automaton found with ATNoSFERES in E1 experiment (after 100,000
generations). Its average number of steps to food is about 3.2



E1 environment We present on figure 8 the best automaton obtained in E1
experiments after 100,000 generations, on figure 7 the best automaton obtained
after 10,000 generations, and on figure 6 a more representative automaton ob-
tained after 10,000 generations. From these figures it is clear that the most
common solutions found are nearly reactive. The graph of the more common au-
tomata contains a single node (in addition to the Start and End node that always
exist in ATNoSFERES graphs), which means that a reactive behavior already
performs well in E1. The results show that this kind of behavior is produced
in most cases and gets high fitness values, more easily than solutions involving
internal states.

However, the automaton depicted on figure 7 shows that adding one node
can already improve significantly the global performance.

The main difference between the best automaton obtained after 10,000 gener-
ations and the one obtained after 100,000 generations is that the latter contains
several additional arcs. In particular, the agent will more often take into account
the presence of food (label f on the edges) in its immediate surrounding to reach
it immediately.

(a) E1 environment (b) E2 environment

Fig. 9. Best policy found with ATNoSFERES in E1 (resp. E2) in 10,000 generations,
represented by the number of steps needed to reach food from each Start cell (see
figure 3 for optimal policy).

Indeed, we can see on figure 9 (a) that in several situations where the food
is visible the agent needs more than one step to reach it, though a more efficient
behavior is obvious. ATNoSFERES has a lot of difficulties in finding these re-



active rules that a reinforcement learning algorithm combining exploration and
exploitation would find immediately.

However, even if these additional arcs could improve the performance a bit
more, this would not be enough to reach the true optimal performance. A care-
fully hand-crafted optimal automaton needs much more internal states than the
ones shown in this section.

~E~W SE S~N NE?
SE!

Fig. 10. The best automaton found with ATNoSFERES in E2 experiment. Its average
number of steps to food is about 3.8

E2 environment Figure 10 gives the best automaton found in E2 environment.
From this figure it is immediately clear that a good automaton in E2 needs more
nodes than it is the case in E1. This seems to imply that reactive and nearly
reactive behaviors perform much worse in E2 than in E1. This fact, in addition
to the fact that ATNoSFERES clearly outperforms ACS on E2 while it is less
the case in E1, will be at the heart of the discussion that follows.

5 Discussion

The experimental study presented in the previous section reveals that different
subclasses of non-Markov problems should be distinguished more accurately.
Indeed, some problems, like E1, are actually non-Markov, but in such a way
that reactive behaviors can still perform well on such problems.

In E1, our study has shown that through an evolutionary process, it is easy
to gradually grow a set of ad hoc rules (which are to some extent independent
from each other), even more if the agent is tested from each cell: thus, an agent



can start with a few rules that are efficient for a few cells, and evolve from
one generation to another rules that are useful for additional cells. From such
a reactive solution, built by the accumulation of small changes, it is unlikely
to develop internal states to deal with a few particular cases, since it requires
at the same time additional nodes, linked with consistent edges, conditions and
actions. We meet again the structural cost mentioned in [LPSGO02a]: “simple”,
incremental good solutions are preferred to structurally complex optima.

On the contrary, other problems, like E2, should be said “highly non-Markov”,
since reactive policies perform very poorly on such problems. In E2, there is no
hope that a reactive behavior could lead to the food in a reasonable amount of
time, due to the location and the nature of aliazed situations.

Our comparative study has revealed that ACS performs very well on the
first subclass of problems and more poorly on the second, while ATNoSFERES
performs consistently on both subclasses.

Now we should ask ourselves why this is so. On first thoughts, one might
consider that the maximal length of sequences in ACS plays a major role in the
phenomenon. One could expect that setting BSy,4, to more than 3 in E2 should
fix the problem. A closer examination, however, reveals that this is not so.

In [MLO02], the authors show that setting BSpma. to 3 is enough to let ACS
build a completely reliable model of E2, under the form of (situation, action,
next situation) classifiers. This explains why they did not try BS,.: = 4 or
more.

But the performance concern and the model reliability concern are not strictly
correlated. Regarding the convergence to stable reward performance, [ML02| em-
phasize that increasing the maximum length of the behavioral sequence “does
not improve the ‘steps to food’ performances”, i.e. a “good” behavioral solu-
tion can be exploited without having built an exhaustive representation of the
environment.

One reason explaining that building longer action sequences would not im-
prove the performance comes from the fact that these sequences specify a blind
series of actions to perform without interruption and without checking between
its beginning and its end the situation perceived in the environment by the agent.
These sequences can improve the performance of the agent when they let it jump
over ambiguous situations, but they have two main drawbacks:

— first, they do not help the agent when it is starting from an ambiguous
situation, since at the first time step the agent benefits from no memory to
help disambiguating its situation;

— second, once a sequence is elected, the agent will at least perform the number
of actions specified in the sequence.

Since the number of steps to the food given by the optimal policy in E1 and E2 is
generally less than 4, it is very unlikely that letting the agent perform sequences
of 4 actions or more will help reaching the optimal performance.

Even worse, if an agent starts from an ambiguous situation and then follows
a long sequence of actions, this sequence will delay the time at which the agent
can discover its actual location and then follow an optimal path to the food.



Indeed, our experience with ATNoSFERES in small environments like E1
and E2 is that the main issue for the agent consists in discovering as fast as
possible where it is from an initially ambiguous situation and then follow the
shortest path to the goal. Maybe the situation about the use of sequences would
be different in much bigger environments, but we will not treat this issue here.

Finally, we must compare the number of elementary runs necessary to reach a
good performance with ACS and ATNoSFERES. In the experiments reported in
[MLO02], ACS needs about 60,000 steps (resp. 120,000 steps) to build an exhaus-
tive internal model of E1 (resp. E2) given a convenient length of the behavioral
sequence used as action part in ACS. With ATNoSFERES, about 1500 gener-
ations of 300 individuals are necessary to obtain a performance similar to that
of ACS with BS,,4, = 1in E1 and BS,,4; = 2 or 3 in E2, which makes about
450,000 runs of 6 to 15 steps on average. Thus it is clear that ATNoSFERES
still needs several orders of magnitude more steps than ACS to converge.

This can be easily explained by the fact that ATNoSFERES evolves automata
thanks to a blind GA process while ACS relies on a reinforcement learning algo-
rithm which extracts information about the environment from its experiences.
From this comparison, it is clear that an area for a major improvement of AT-
NoSFERES consists in endowing it with reinforcement learning capabilities. This
is our immediate agenda for future work.

A source of inspiration in that direction comes from the SAMUEL system
[Gre91]. Like ATNoSFERES, SAMUEL is a Pittsburg style system based on a
single chromosome GA, but it also includes lamarckian operators that endow it
with basic learning capabilities. As a result, as claimed by the author, “Samuel
represents an integration of the major genetic approaches to machine learning,
the Michigan approach and the Pittsburg approach”. Most of the operators used
in SAMUEL can be transposed in ATNoSFERES, the main difference being that
ATNoSFERES does not provide a high level symbolic representation and that
SAMUEL does not include any mechanism to solve perceptual aliasing problems.

6 Conclusion and Future Work

In this paper, we have applied ATNoSFERES to non-Markov environments that
have been investigated with ACS. Our experiments confirm that ATNoSFERES
encounters more difficulties in producing an optimal behavior in some environ-
ments where reactive solutions are highly valuable than in environments that
are more difficult for ACS.

Such a result suggests that the difficulties of different non-Markov problems
with different hidden-state structure such as E1 and E2 should be distinguished
in more details than is usually done. Along that line, we believe that, thanks to
the information ATNoSFERES provides on the structure of different problems,
it can be seen as a tool that may help understanding which kind of system will
perform best in which kind of environment and why.

Finally, we would like to highlight the fact that the comparative studies
we provided with ATNoSFERES both in this paper and in [LPSGO02a] and



[LPSGO02b]| should be generalized in the LCS community. Previously, we have
compared ATNoSFERES with XCSM on some environments qualitatively, with-
out comparing both systems performances. Here we have compared ATNoS-
FERES with ACS quantitatively on other environments, relying on the exper-
iments presented on the available literature. Since XCSM and ACS have not
been tested on the same environments, a precise comparison of their respec-
tive performance has never been published yet. A lot of work deserves to be
done to provide more global comparisons between several systems and classes of
systems. We strongly believe that such comparisons would greatly enhance the
understanding of the current state of the art in the LCS research community.
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