Skip to main content

Binary Rule Encoding Schemes: A Study Using the Compact Classifier System

  • Conference paper
Learning Classifier Systems (IWLCS 2003, IWLCS 2004, IWLCS 2005)

Abstract

Several binary rule encoding schemes have been proposed for Pittsburgh-style classifier systems. This paper focus on the analysis of how maximally general and accurate rules, regardless of the encoding, can be evolved in a such classifier systems. The theoretical analysis of maximally general and accurate rules using two different binary rule encoding schemes showed some theoretical results with clear implications to the scalability of any genetic-based machine learning system that uses the studied encoding schemes. Such results are clearly relevant since one of the binary representations studied is widely used on Pittsburgh-style classifier systems, and shows an exponential shrink of the useful rules available as the problem size increases . In order to be able to perform such analysis we use a simple barebones Pittsburgh classifier system—the compact classifier system (CCS)—based on estimation of distribution algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149–175 (1995)

    Article  Google Scholar 

  2. De Jong, K.A., Spears, W.M.: Learning Concept Classification Rules using Genetic Algorithms. In: Proceedings of the Twelfth International Conference on Artificial Intelligence IJCAI-91, vol. 2, pp. 651–656. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  3. Janikow, C.Z.: A Knowledge Intensive Genetic Algorithm for Supervised Learning. Machine Learning 13, 198–228 (1993)

    Article  Google Scholar 

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  5. Goldberg, D.E.: Computer-aided gas pipeline operation using genetic algorithms and rule learning. Dissertation Abstracts International 44, 3174B. Doctoral dissertation, University of Michigan (1983)

    Google Scholar 

  6. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  7. Wilson, S.W.: Get real! XCS with continuous valued inputs. In: Festschrift in Honor of John H. Holland, pp. 111–121 (1999)

    Google Scholar 

  8. Lanzi, P.L.: Extending the Representation of Classifier Conditions Part I: From Binary to Messy Coding. In: Proceedings of the Genetic and Evolutinary Computation Conference (GECCO’99), pp. 337–344. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  9. Lanzi, P.L., Perrucci, A.: Extending the Representation of Classifier Conditions Part II: From Messy Coding to S-Expressions. In: Proceedings of the Genetic and Evolutinary Computation Conference (GECCO’99), pp. 345–352. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  10. Llorà, X., Garrell, J.M.: Knowledge-Independent Data Mining with Fine-Grained Parallel Evolutionary Algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), pp. 461–468. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  11. Llorà, X.: Genetic Based Machine Learning using Fine-grained Parallelism for Data Mining. PhD thesis, Enginyeria i Arquitectura La Salle. Ramon Llull University, Barcelona (February 2002)

    Google Scholar 

  12. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  13. Butz, M., et al.: Automated Global Structure Extraction For Effective Local Building Block Processing in XCS. IlliGAL Report No. 2005011, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL (2005)

    Google Scholar 

  14. Butz, M., et al.: Extracted Global Structure Makes Local Building Block Processing Effective in XCS. IlliGAL Report No. 2005010, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL (2005)

    Google Scholar 

  15. Pelikan, M., Lobo, F., Goldberg, D.E.: A survey of optimization by building and using probabilistic models. Computational Optimization and Applications 21, 5–20 (2002), (Also IlliGAL Report No. 99018)

    Article  MATH  MathSciNet  Google Scholar 

  16. Harik, G., Lobo, F., Goldberg, D.E.: The compact genetic algorithm. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 523–528. IEEE Computer Society Press, Los Alamitos (1998), (Also IlliGAL Report No. 97006)

    Chapter  Google Scholar 

  17. Llorà, X., Sastry, K., Goldberg, D.E.: The Compact Classifier System: Motivation, Analysis, and First Results. In: Proceedings of the Genetic and Evolutinary Computation Conference (GECCO 2005), ACM Press, New York (in press, 2005)

    Google Scholar 

  18. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  19. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems 3(5), 493–530 (1989), (Also IlliGAL Report No. 89003)

    MATH  MathSciNet  Google Scholar 

  20. Baluja, S.: Population-based incremental learning: A method of integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University (1994)

    Google Scholar 

  21. Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm. Technical Report CMU-CS-95-141, Carnegie Mellon University (1995)

    Google Scholar 

  22. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Ebeling, W., et al. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  23. Mühlenbein, H.: The equation for response to selection and its use for prediction. Evolutionary Computation 5(3), 303–346 (1997)

    Article  Google Scholar 

  24. Harik, G., et al.: The gambler’s ruin problem, genetic algorithms, and the sizing of populations. Evolutionary Computation 7(3), 231–253 (1999), (Also IlliGAL Report No. 96004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tim Kovacs Xavier Llorà Keiki Takadama Pier Luca Lanzi Wolfgang Stolzmann Stewart W. Wilson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Llorà, X., Sastry, K., Goldberg, D.E. (2007). Binary Rule Encoding Schemes: A Study Using the Compact Classifier System. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds) Learning Classifier Systems. IWLCS IWLCS IWLCS 2003 2004 2005. Lecture Notes in Computer Science(), vol 4399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71231-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71231-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71230-5

  • Online ISBN: 978-3-540-71231-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics