Skip to main content

Bloat Control and Generalization Pressure Using the Minimum Description Length Principle for a Pittsburgh Approach Learning Classifier System

  • Conference paper
Learning Classifier Systems (IWLCS 2003, IWLCS 2004, IWLCS 2005)

Abstract

Bloat control and generalization pressure are very important issues in the design of Pittsburgh Approach Learning Classifier Systems (LCS), in order to achieve simple and accurate solutions in a reasonable time. In this paper we propose a method to achieve these objectives based on the Minimum Description Length (MDL) principle. This principle is a metric which combines in a smart way the accuracy and the complexity of a theory (rule set , instance set, etc.). An extensive comparison with our previous generalization pressure method across several domains and using two knowledge representations has been done. The test show that the MDL based size control method is a good and robust choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  2. Smith, S.F.: Flexible learning of problem solving heuristics through adaptive search. In: Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Los Altos, CA, pp. 421–425. Morgan Kaufmann, San Francisco (1983)

    Google Scholar 

  3. Holland, J.H.: Escaping Brittleness: The possibilities of General-Purpose Learning Algorithms Applied to Parallel Rule-Based Systems. In: Machine learning, an artificial intelligence approach. Volume II, pp. 593–623 (1986)

    Google Scholar 

  4. DeJong, K.A., Spears, W.M.: Learning concept classification rules using genetic algorithms. Proceedings of the International Joint Conference on Artificial Intelligence, 651–656 (1991)

    Google Scholar 

  5. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3, 149–175 (1995)

    Article  Google Scholar 

  6. Langdon, W.B.: Fitness causes bloat in variable size representations. Technical Report CSRP-97-14, University of Birmingham, School of Computer Science, Position paper at the Workshop on Evolutionary Computation with Variable Size Representation at ICGA-97 (1997)

    Google Scholar 

  7. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  8. Bacardit, J., Garrell, J.M.: Métodos de generalización para sistemas clasificadores de Pittsburgh. In: Proceedings of the “Primer Congreso Español de Algoritmos Evolutivos y Bioinspirados (AEB’02)”, pp. 486–493 (2002)

    Google Scholar 

  9. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  10. Pfahringer, B.: Practical uses of the minimum description length principle in inductive learning (1995)

    Google Scholar 

  11. Bacardit, J., Garrell, J.M.: Evolving multiple discretizations with adaptive intervals for a pittsburgh rule-based learning classifier system. In: Proceedings of the Genetic and Evolutionary Computation Conference - GECCO2003, Springer, Heidelberg (2003)

    Google Scholar 

  12. Gao, Q., Li, M., Viányi, P.: Applying mdl to learn best model granularity. Artificial Intelligence 121, 1–29 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Iba, H., de Garis, H., Sato, T.: Genetic programming using a minimum description length principle. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, pp. 265–284. MIT Press, Cambridge (1994)

    Google Scholar 

  14. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  15. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 829–836 (2002)

    Google Scholar 

  16. Llorà, X., et al.: Accuracy, Parsimony, and Generality in Evolutionary Learning System a Multiobjective Selection. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003. LNCS (LNAI), vol. 2661, Springer, Heidelberg (2003)

    Google Scholar 

  17. Bernadó, E., Garrell, J.M.: Multiobjective learning in a genetic classifier system (MOLeCS). Butlletí de l’Associació Catalana l’Intel.ligència Artificial 22, 102–111 (2000)

    Google Scholar 

  18. Bacardit, J.: Pittsburgh Genetics-Based Machine Learning in the Data Mining era: Representations, generalization, and run-time. PhD thesis, Ramon Llull University, Barcelona, Catalonia, Spain (2004)

    Google Scholar 

  19. Rivest, R.L.: Learning decision lists. Machine Learning 2(3), 229–246 (1987), citeseer.nj.nec.com/rivest87learning.html

    Google Scholar 

  20. Wolpert, D.H., Macready, W.G.: No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe, NM (1995)

    Google Scholar 

  21. Brodley, C.: Addressing the selective superiority problem: Automatic algorithm /model class selection (1993)

    Google Scholar 

  22. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  23. Llorà, X., Garrell, J.M.: Knowledge-independent data mining with fine-grained parallel evolutionary algorithms. In: Proceedings of the Third Genetic and Evolutionary Computation Conference, pp. 461–468. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  24. Blake, C., Keogh, E., Merz, C.: Uci repository of machine learning databases (1998), http://www.ics.uci.edu/mlearn/MLRepository.html

  25. Martínez Marroquín, E., Vos, C., et al.: Morphological analysis of mammary biopsy images. In: Proceedings of the IEEE International Conference on Image Processing, pp. 943–947. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  26. Martí, J., Cufí, X., Regincós, J., et al.: Shape-based feature selection for microcalcification evaluation. In: Imaging Conference on Image Processing, 3338, pp. 1215–1224 (1998)

    Google Scholar 

  27. Golobardes, E., et al.: Genetic classifier system as a heuristic weighting method for a case-based classifier system. Butlletí de l’Associació Catalana d’Intel.ligència Artificial 22, 132–141 (2000)

    Google Scholar 

  28. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, pp. 1137–1145 (1995), citeseer.nj.nec.com/kohavi95study.html

  29. Witten, I.H., Frank, E.: Data Mining: practical machine learning tools and techniques with java implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  30. Aha, D.W., Kibler, D.F., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6(1), 37–66 (1991)

    Google Scholar 

  31. Bernadó, E., Garrell, J.M.: Accuracy-based learning classifier systems: Models, analysis and applications to classification tasks. Special Issue of the Evolutionary Computation Journal on Learning Classifier Systems (in press, 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tim Kovacs Xavier Llorà Keiki Takadama Pier Luca Lanzi Wolfgang Stolzmann Stewart W. Wilson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bacardit, J., Garrell, J.M. (2007). Bloat Control and Generalization Pressure Using the Minimum Description Length Principle for a Pittsburgh Approach Learning Classifier System. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds) Learning Classifier Systems. IWLCS IWLCS IWLCS 2003 2004 2005. Lecture Notes in Computer Science(), vol 4399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71231-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71231-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71230-5

  • Online ISBN: 978-3-540-71231-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics