Skip to main content

A Novel Method for Flux Distribution Computation in Metabolic Networks

  • Conference paper
  • 1168 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4414))

Abstract

In recent years, the study on metabolic networks has attracted considerable attention from the research community. Though the topological structures of genome-scale metabolic networks of some organisms have been investigated, their metabolic flux distributions still remain unclear. The understanding of flux distributions in metabolic networks, especially when it comes to the gene-knockout mutants, is helpful for suggesting potential ways to improve strain design. The traditional method of flux distribution computation, i.e., flux balance analysis (FBA) method, is based on the idea of maximizing biomass yield. However, this method overestimates the production of biomass. In this paper, we develop a novel approach to overcome the drawback of the FBA method. First, we adopt a series of extended equations to model reaction flux; Second, we build the stoichiometric matrix of a metabolic network by using a more complex but accurate model – carbon mole balance – rather than mass balance used in FBA. Computation results with real-world data of Escherichia coli show that our approach outperforms FBA in the accuracy of flux distribution computation.

This work was supported by National Natural Science Foundation under grants 60373019, 60573183 and 90612007, and the Shuguang Scholar Program of Shanghai Municipal Education Committee. Shuigeng Zhou is the correspondence author, he is also with Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, J.M., Gianchandani, E.P., Papin, J.A.: Flux balance analysis in the era of metabolomics. Brief Bioinform. 7, 140–150 (2006)

    Article  Google Scholar 

  2. Kauffman, K.J., Prakash, P., Edwards, J.S.: Advances in flux balance analysis. Curr. Opin. Biotech. 14, 491–496 (2003)

    Article  Google Scholar 

  3. Famili, I., Forster, J., Nielsen, J., et al.: Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. USA 100, 13134–13139 (2003)

    Article  Google Scholar 

  4. Palsson, B.O.: The challenges of in silico biology. Nat. Biotech. 18, 1147–1150 (2000)

    Article  Google Scholar 

  5. Lee, S., Phalakornkule, C., Domach, M.M., et al.: Recursive MILP model for finding all alternate optima in LP models for metabolic networks. Comp. Chem. Eng. 24, 711–716 (2000)

    Article  Google Scholar 

  6. Mahadevan, R., Schilling, C.H.: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276 (2003)

    Article  Google Scholar 

  7. Shlomi, T., Berkman, O., Ruppin, E.: Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. USA 102, 7695–7700 (2005)

    Article  Google Scholar 

  8. Segre, D., Vitkup, D., Church, G.M.: Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117 (2002)

    Article  Google Scholar 

  9. Fischer, E., Sauer, U.: Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat. Genet. 37, 636–640 (2005)

    Article  Google Scholar 

  10. Burgard, A.P., Maranas, C.D.: Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol. Bioeng. 82, 670–677 (2003)

    Article  Google Scholar 

  11. Burgard, A.P., Pharkya, P., Maranas, C.D.: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003)

    Article  Google Scholar 

  12. Burgard, A.P., Nikolaev, E.V., Schilling, C.H., Maranas, C.D.: Flux coupling analysis of genome-scale metabolic network reconstructions. Genome. Res. 14, 301–312 (2004)

    Article  Google Scholar 

  13. Pal, C., Papp, B., Lercher, M.J.: Chance and necessity in the evolution of minimal metabolic networks. Nature 440, 667–670 (2006)

    Article  Google Scholar 

  14. Reed, J.L., Vo, T.D., Schilling, C.H., Palsson, B.O.: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4, R54 (2003)

    Article  Google Scholar 

  15. Pharkya, P., Burgard, A.P., Maranas, C.D.: OptSrain: a computational framework for redesign of microbial production networks. Genome Res. 14, 2367–2376 (2004)

    Article  Google Scholar 

  16. Pharkya, P., Maranas, C.D.: An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab. Eng. 8, 1–13 (2006)

    Article  Google Scholar 

  17. Price, N.D., Reed, J.L., Palsson, B.O.: Genome-scale models of microbial cells: Evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 (2004)

    Article  Google Scholar 

  18. Fong, S.S., Palsson, B.O.: Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat. genet. 36, 1056–1058 (2004)

    Article  Google Scholar 

  19. Herrgard, M.J., Fong, S.S., Palsson, B.O.: Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Comput. Biol. 2, e72 (2006)

    Article  Google Scholar 

  20. Zhao, J., Baba, T., Mori, H., et al.: Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Appl. Microbiol. Biotechnol. 64, 91–98 (2004)

    Article  Google Scholar 

  21. Varma, A., Palsson, B.O.: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724–3731 (1994)

    Google Scholar 

  22. Wiback, S.J., Mahadevan, R., Palsson, B.O.: Reconstructing metabolic flux vectors from extreme pathways: Defining the α-spectrum. J. Theor. Bio. 24, 313–324 (2003)

    Article  MathSciNet  Google Scholar 

  23. Wiback, S.J., Mahadevan, R., Palsson, B.O.: Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: The Escherichia coli α-spectrum. Biotechnol. Bioeng. 86, 317–331 (2004)

    Article  Google Scholar 

  24. Siddiquee, K.A.Z., Arauzo-Bravo, M.J., Shimizu, K.: Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli. FEMS Microb. 235, 25–33 (2004)

    Article  Google Scholar 

  25. Daran-Lapujade, P., Jansen, M.L.A., Daran, J.M., et al.: Role of Transcriptional Regulation in Controlling Fluxes in Central Carbon Metabolism of Saccharomyces cerevisiae. J. Biol. Chem. 279, 9125–9138 (2004)

    Article  Google Scholar 

  26. Shimizu, K.: Metabolic Flux Analysis Based on 13C-Labeling Experiments and Integration of the Information with Gene and Protein Expression Patterns. Adv. Biochem. Engin.Biotechnol. 91, 1–49 (2004)

    Google Scholar 

  27. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., Gilles, E.D.: Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190–193 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sepp Hochreiter Roland Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Jiang, D., Zhou, S., Guan, J. (2007). A Novel Method for Flux Distribution Computation in Metabolic Networks. In: Hochreiter, S., Wagner, R. (eds) Bioinformatics Research and Development. BIRD 2007. Lecture Notes in Computer Science(), vol 4414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71233-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71233-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71232-9

  • Online ISBN: 978-3-540-71233-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics