Skip to main content

Weighted Cohesiveness for Identification of Functional Modules and Their Interconnectivity

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4414))

Abstract

Systems biology offers a holistic perspective where individual proteins are viewed as elements in a network of protein-protein interactions (PPI), in which the proteins have contextual functions within functional modules. In order to facilitate the identification and analysis of such modules, we have previously proposed a Gene Ontology-weighted clustering coefficient for identification of modules in PPI networks and a method, named SWEMODE (Semantic WEights for MODule Elucidation), where this measure is used to identify network modules. Here, we introduce novel aspects of the method that are tested and evaluated. One of the aspects that we consider is to use the k-core graph instead of the original protein-protein interaction graph.Also, by taking the spatial aspect into account, by using the GO cellular component annotation when calculating weighted cohesiveness, we are able to improve the results compared to previous work where only two of the GO aspects (molecular function and biological process) were combined. We here evaluate the predicted modules by calculating their overlap with MIPS functional complexes. In addition, we identify the “most frequent” proteins, i.e. the proteins that most frequently participate in overlapping modules. We also investigate the role of these proteins in the interconnectivity between modules. We find that the majority of identified proteins are involved in the assembly and arrangement of cell structures, such as the cell wall and cell envelope.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oltvai, Z.N., Barabasi, A.L.: Systems biology. Life’s complexity pyramid. Science 298(5594), 763–764 (2002)

    Article  Google Scholar 

  2. Pereira-Leal, J.B., Levy, E.D., Teichmann, S.A.: The origins and evolution of functional modules: lessons from protein complexes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361(1467), 507–517 (2006)

    Article  Google Scholar 

  3. Schlosser, G.: The role of modules in development and evolution. In: Schlosser, G., Wagner, A. (eds.) Modularity in development and evolution, pp. 519–582. The Chicago University Press, Chicago (2004)

    Google Scholar 

  4. Creating the gene ontology resource: design and implementation. Genome Res. 11(8), 1425–1433 (2001)

    Google Scholar 

  5. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  Google Scholar 

  6. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. U S A 100(21), 12123–12128 (2003)

    Article  Google Scholar 

  7. Yook, S.H., Oltvai, Z.N., Barabasi, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4(4), 928–942 (2004)

    Article  Google Scholar 

  8. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  9. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004)

    Article  Google Scholar 

  10. Van Criekinge, W., Beyaert, R.: Yeast Two-Hybrid: State of the Art. Biol. Proced. Online 2, 1–38 (1999)

    Article  Google Scholar 

  11. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003)

    Article  Google Scholar 

  12. Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Natl. Acad. Sci. U S A 100(3), 1128–1133 (2003)

    Article  Google Scholar 

  13. Poyatos, J.F., Hurst, L.D.: How biologically relevant are interaction-based modules in protein networks? Genome Biol. 5(11), R93 (2004)

    Article  Google Scholar 

  14. Luo, F., Scheuermann, R.H.: Detecting Functional Modules from Protein Interaction Networks. In: Proceeding of the First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS’06), IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  15. Przulj, N., Wigle, D.A., Jurisica, I.: Functional topology in a network of protein interactions. Bioinformatics 20(3), 340–348 (2004)

    Article  Google Scholar 

  16. Lubovac, Z., Gamalielsson, J., Olsson, B.: Combining functional and topological properties to identify core modules in protein interaction networks. Proteins 64(4), 948–959 (2006)

    Article  Google Scholar 

  17. Lubovac, Z., Olsson, B., Gamalielsson, J.: Weighted Clustering Coefficient for Identifying Modular Formations in Protein-Protein Interaction Networks. In: Proceedings of the Third International Conference on Bioinformatics and Computational and Systems Biology, Prague, August 25-27, pp. 122–127 (2006)

    Google Scholar 

  18. Lubovac, Z., Gamalielsson, J., Olsson, B.: Combining topological characteristics and domain knowledge reveals functional modules in protein interaction networks. In: Proceedings of CompBioNets - Algorithms and Computational Methods for Biochemical and Evolutionary Networks, Lyon, France, pp. 93–106. College Publications (2005)

    Google Scholar 

  19. Tong, A.H., Drees, B., Nardelli, G., Bader, G.D., Brannetti, B., Castagnoli, L., Evangelista, M., Ferracuti, S., Nelson, B., Paoluzi, S., et al.: A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295(5553), 321–324 (2002)

    Article  Google Scholar 

  20. Wuchty, S., Almaas, E.: Peeling the yeast protein network. Proteomics 5(2), 444–449 (2005)

    Article  Google Scholar 

  21. Xenarios, I., Rice, D.W., Salwinski, L., Baron, M.K., Marcotte, E.M., Eisenberg, D.: DIP: the database of interacting proteins. Nucleic Acids Res. 28(1), 289–291 (2000)

    Article  Google Scholar 

  22. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. U S A 98(8), 4569–4574 (2001)

    Article  Google Scholar 

  23. Deane, C.M., Salwinski, L., Xenarios, I., Eisenberg, D.: Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell Proteomics 1(5), 349–356 (2002)

    Article  Google Scholar 

  24. Lord, P.W., Stevens, R.D., Brass, A., Goble, C.A.: Semantic similarity measures as tools for exploring the gene ontology. In: Pac. Symp. Biocomput., pp. 601–612 (2003)

    Google Scholar 

  25. Lin, D.: An information-theoretic definition of similarity. In: The 15th International Conference on Machine Learning, Madison, WI, pp. 296–304 (1998)

    Google Scholar 

  26. Dwight, S.S., Harris, M.A., Dolinski, K., Ball, C.A., Binkley, G., Christie, K.R., Fisk, D.G., Issel-Tarver, L., Schroeder, M., Sherlock, G., et al.: Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Res. 30(1), 69–72 (2002)

    Article  Google Scholar 

  27. Lord, P.W., Stevens, R.D., Brass, A., Goble, C.A.: Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation. Bioinformatics 19(10), 1275–1283 (2003)

    Article  Google Scholar 

  28. Yook, S.H., Jeong, H., Barabasi, A.L., Tu, Y.: Weighted evolving networks. Phys. Rev. Lett. 86(25), 5835–5838 (2001)

    Article  Google Scholar 

  29. Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U S A 101(11), 3747–3752 (2004)

    Article  Google Scholar 

  30. He, W., Parker, R.: Functions of Lsm proteins in mRNA degradation and splicing. Curr. Opin. Cell. Biol. 12(3), 346–350 (2000)

    Article  Google Scholar 

  31. Knauer, R., Lehle, L.: The oligosaccharyltransferase complex from Saccharomyces cerevisiae. Isolation of the OST6 gene, its synthetic interaction with OST3, and analysis of the native complex. J. Biol. Chem. 274(24), 17249–17256 (1999)

    Article  Google Scholar 

  32. Mendenhall, M.D., Hodge, A.E.: Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62(4), 1191–1243 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sepp Hochreiter Roland Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Lubovac, Z., Corne, D., Gamalielsson, J., Olsson, B. (2007). Weighted Cohesiveness for Identification of Functional Modules and Their Interconnectivity. In: Hochreiter, S., Wagner, R. (eds) Bioinformatics Research and Development. BIRD 2007. Lecture Notes in Computer Science(), vol 4414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71233-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71233-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71232-9

  • Online ISBN: 978-3-540-71233-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics