Skip to main content

Statistical Inference on Distinct RNA Stem-Loops in Genomic Sequences

  • Conference paper
Bioinformatics Research and Development (BIRD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4414))

Included in the following conference series:

Abstract

Functional RNA elements in post-transcriptional regulation of gene expression are often correlated with distinct RNA stem-loop structures that are both thermodynamically stable and highly well- ordered. Recent Discoveries of microRNA (miRNA) and small regulatory RNAs indicate that there are a large class of small non-coding RNAs having the potential to form a distinct, well-ordered and/or stable stem-loop in numbers of genomes. The distinct RNA structure can be well evaluated by a quantitative measure, the energy difference (E diff ) between the optimal structure folded from the segment and its corresponding optimal restrained structure where all base pairings formed in the original optimal structure are forbidden. In this study, we present an efficient algorithm to compute E diff of local segment by scanning a window along a genomic sequence. The complexity of computational time is O(L ×n 2), where L is the length of the genomic sequence and n is the size of the sliding window. Our results indicate that the known stem-loops folded by miRNA precursors have high normalized E diff scores with highly statistical significance. The distinct well-ordered structures related to the known miRNA can be predicted in a genomic sequence by a robust statistical inference. Our computational method StemED can be used as a general approach for the discovery of distinct stem-loops in genomic sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simons, R.W., Grunberg-Manago, M. (eds.): RNA Structure and Function. Cold Spring Harbor Lab. Press, New York (1998)

    Google Scholar 

  2. Griffiths-Jones, G.R., van Dongen, S., Bateman, A., Enright, A.J.: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–144 (2006)

    Article  Google Scholar 

  3. Macke, T.J., Ecker, D.J., Gutell, R.R., Gautheret, D., Case, D.A., Sampath, R.: RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res. 29, 4724–4735 (2001)

    Article  Google Scholar 

  4. Le, S.Y., Maizel Jr., J.V., Zhang, K.: An Algorithm for detecting homologues of known structured RNAs in genomes. In: Proceedings of the 2004 IEEE Bioinformatics Conference, CSB2004, Stanford, California, pp. 300–310. IEEE, Los Alamitos (2004)

    Google Scholar 

  5. Klein, R.J., Eddy, S.R.: RSEARCH: Finding homologs of single structured RNA sequences. BMC Bioinformatics  4, 44 (2003)

    Article  Google Scholar 

  6. Gautheret, A., Lambert, A.: Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J. Mol Biol. 313, 1003–1011 (2001)

    Article  Google Scholar 

  7. Grillo, G., Licciulli, F., Liuni, S., Sbisa, E., Pesole, G.: PatSearch: a program for the detection of patterns and structural motifs in nucleotide sequences. Nucleic Acids Res. 31, 3608–3612 (2003)

    Article  Google Scholar 

  8. Lowe, T.M., Eddy, S.R.: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997)

    Article  Google Scholar 

  9. Billoud, B., Kontic, M., Viari, A.: Palingol: a declarative programming language to describe nucleic acids’ secondary structures and to scan sequence database. Nucleic Acids Res. 24, 1395–1403 (1996)

    Article  Google Scholar 

  10. Le, S.Y., Chen, J.H., Konings, D., Maizel Jr., J.V.: Discovering well-ordered folding patterns in nucleotide sequences. Bioinformatics 19, 354–361 (2003)

    Article  Google Scholar 

  11. Carter, R.J., Dubchak, I., Holbrook, S.R.: A computational approach to identify genes for functional RNAs in genomic sequences. Nucl. Acids Res. 29, 3928–3938 (2001)

    Google Scholar 

  12. Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, M., Rhoades, M.W., Burge, C.B., Bartel, D.P.: The microRNAs of Caenorhabditis elegans. Genes & Development 17, 991–1008 (2003)

    Article  Google Scholar 

  13. Lai, E.C., Tomancak, P., Williams, R.W., Rubin, G.M.: Computational identification of Drosophila microRNA genes. Genome Biology 20, R42.1-R42.20 (2003)

    Google Scholar 

  14. Nam, J.W., Shin, K.R., Han, J., Lee, Y., Kim, V.N., Zhang, B.T.: Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucl. Acids Res. 33, 3570–358 (2005)

    Google Scholar 

  15. Pfeffer, S., Sewer, A., Lagos-Quintana, M., Sheridan, R., Sander, C., Grasser, F.A., van Dyk, L.F., Ho, C.K., Shuman, S., Chien, M., Russo, J.J., Ju, J., Randall, G., Lindenbach, B.D., Rice, C.M., Simon, V., Ho, D.D., Zavolan, M., Tuschl, T.: Identification of microRNAs of the herpesvirus family. Nature Methods 2, 269–276 (2005)

    Article  Google Scholar 

  16. Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R.H.A., Cuppen, E.: Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21–24 (2005)

    Article  Google Scholar 

  17. Wang, X., Zhang, J., Li, F., Gu, J., He, T., Zhang, X., Li, Y.: MicroRNA identification based on sequence and structure alignment. Bioinformatics 21, 3610–3614 (2005)

    Article  Google Scholar 

  18. Le, S.Y., Maizel Jr., J.V., Zhang, K.: Finding conserved well-ordered RNA structures in genomic sequences. Int. J. Comp. Intelligence and Applications 4, 417–430 (2004)

    Article  Google Scholar 

  19. Le, S.Y., Zhang, K., Maizel Jr., J.V.: RNA molecules with structure dependent functions are uniquely folded. Nucleic Acids Res. 30, 3574–3582 (2002)

    Article  Google Scholar 

  20. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999)

    Article  Google Scholar 

  21. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

  22. Bennasser, Y., Le, S.Y., Yeung, M.L., Jeang, K.T.: MicroRNAs in human immunodeficiency virus-1 infection. Methods Mol. Biol. 342, 241–252 (2006)

    Google Scholar 

  23. Lex, S.Y., Chen, J.H., Maizel Jr., J.V.: Statistical inference for well-ordered structures in nucleotide sequences. Proc. IEEE Comput. Soc. Bioinform. Conf. 2, 190–196 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sepp Hochreiter Roland Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Le, SY., Chen, JH. (2007). Statistical Inference on Distinct RNA Stem-Loops in Genomic Sequences. In: Hochreiter, S., Wagner, R. (eds) Bioinformatics Research and Development. BIRD 2007. Lecture Notes in Computer Science(), vol 4414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71233-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71233-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71232-9

  • Online ISBN: 978-3-540-71233-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics