Skip to main content

Analysing Periodic Phenomena by Circular PCA

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4414))

Abstract

Experimental time courses often reveal a nonlinear behaviour. Analysing these nonlinearities is even more challenging when the observed phenomenon is cyclic or oscillatory. This means, in general, that the data describe a circular trajectory which is caused by periodic gene regulation.

Nonlinear PCA (NLPCA) is used to approximate this trajectory by a curve referred to as nonlinear component. Which, in order to analyse cyclic phenomena, must be a closed curve hence a circular component. Here, a neural network with circular units is used to generate circular components.

This circular PCA is applied to gene expression data of a time course of the intraerythrocytic developmental cycle (IDC) of the malaria parasite Plasmodium falciparum. As a result, circular PCA provides a model which describes continuously the transcriptional variation throughout the IDC. Such a computational model can then be used to comprehensively analyse the molecular behaviour over time including the identification of relevant genes at any chosen time point.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scholz, M., Kaplan, F., Guy, C.L., Kopka, J., Selbig, J.: Non-linear PCA: a missing data approach. Bioinformatics 21(20), 3887–3895 (2005)

    Article  Google Scholar 

  2. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)

    Google Scholar 

  3. Diamantaras, K.I., Kung, S.Y.: Principal Component Neural Networks. Wiley, New York (1996)

    MATH  Google Scholar 

  4. Kramer, M.A.: Nonlinear principal component analysis using auto-associative neural networks. AIChE Journal 37(2), 233–243 (1991)

    Article  Google Scholar 

  5. DeMers, D., Cottrell, G.W.: Nonlinear dimensionality reduction. In: Hanson, D., Cowan, J., Giles, L. (eds.) Advances in Neural Information Processing Systems 5, pp. 580–587. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  6. Hecht-Nielsen, R.: Replicator neural networks for universal optimal source coding. Science 269, 1860–1863 (1995)

    Article  Google Scholar 

  7. Scholz, M., Vigário, R.: Nonlinear PCA: a new hierarchical approach. In: Verleysen, M. (ed.) Proceedings ESANN, pp. 439–444 (2002)

    Google Scholar 

  8. Kirby, M.J., Miranda, R.: Circular nodes in neural networks. Neural Computation 8(2), 390–402 (1996)

    Article  Google Scholar 

  9. Hsieh, W.W.: Nonlinear multivariate and time series analysis by neural network methods. Reviews of Geophysics 42(1), RG1003.1–RG1003.25 (2004)

    Google Scholar 

  10. MacDorman, K.F., Chalodhorn, R., Asada, M.: Periodic nonlinear principal component neural networks for humanoid motion segmentation, generalization, and generation. In: Proceedings of the Seventeenth International Conference on Pattern Recognition (ICPR), Cambridge, UK, pp. 537–540 (2004)

    Google Scholar 

  11. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  12. Haykin, S.: Neural Networks - A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  13. Kissinger, J.C., Brunk, B.P., Crabtree, J., Fraunholz, M.J., et al.: The plasmodium genome database. Nature 419(6906), 490–492 (2002)

    Article  Google Scholar 

  14. Gardner, M.J., Hall, N., Fung, E., et al.: Genome sequence of the human malaria parasite plasmodium falciparum. Nature 419(6906), 498–511 (2002)

    Article  Google Scholar 

  15. Bozdech, Z., Llinas, M., Pulliam, B.L., Wong, E.D., Zhu, J., DeRisi, J.L.: The Transcriptome of the Intraerythrocytic Developmental Cycle of plasmodium falciparum. PLoS Biology 1(1), E5 (2003)

    Google Scholar 

  16. Verbeek, J.J., Vlassis, N., Kröse, B.: Procrustes analysis to coordinate mixtures of probabilistic principal component analyzers. Technical report, Computer Science Institute, University of Amsterdam, The Netherlands (2002)

    Google Scholar 

  17. Roweis, S.T., Saul, L.K., Hinton, G.E.: Global coordination of locally linear models. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 889–896. MIT Press, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sepp Hochreiter Roland Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Scholz, M. (2007). Analysing Periodic Phenomena by Circular PCA. In: Hochreiter, S., Wagner, R. (eds) Bioinformatics Research and Development. BIRD 2007. Lecture Notes in Computer Science(), vol 4414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71233-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71233-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71232-9

  • Online ISBN: 978-3-540-71233-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics