Skip to main content

Identification of Cold-Induced Genes in Cereal Crops and Arabidopsis Through Comparative Analysis of Multiple EST Sets

  • Conference paper
Bioinformatics Research and Development (BIRD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4414))

Included in the following conference series:

Abstract

Freezing tolerance in plants is obtained during a period of low non-freezing temperatures before the winter sets on, through a biological process known as cold acclimation. Cold is one of the major stress factors that limits the growth, productivity and distribution of plants, and understanding the mechanism of cold tolerance is therefore important for crop improvement. Expressed sequence tags (EST) analysis is a powerful, economical and time-efficient way of assembling information on the transcriptome. To date, several EST sets have been generated from cold-induced cDNA libraries from several different plant species. In this study we utilize the variation in the frequency of ESTs sampled from different cold-stressed plant libraries, in order to identify genes preferentially expressed in cold in comparison to a number of control sets. The species included in the comparative study are oat (Avena sativa), barley (Hordeum vulgare), wheat (Triticum aestivum), rice (Oryza sativa) and Arabidopsis thaliana. However, in order to get comparable gene expression estimates across multiple species and data sets, we choose to compare the expression of tentative ortholog groups (TOGs) instead of single genes, as in the normal procedure. We consider TOGs as preferentially expressed if they are detected as differentially expressed by a test statistic and up-regulated in comparison to all control sets, and/or uniquely expressed during cold stress, i.e., not present in any of the control sets. The result of this analysis revealed a diverse representation of genes in the different species. In addition, the derived TOGs mainly represent genes that are long-term highly or moderately expressed in response to cold and/or other stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Browse, J., Xin, Z.: Temperature sensing and cold acclimation. Current Opinion in Plant Biology 4, 241–246 (2001)

    Article  Google Scholar 

  2. Kim, H.J., et al.: Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J. 29(6), 693–704 (2002)

    Article  Google Scholar 

  3. Sharma, P., Sharma, N., Deswal, R.: The molecular biology of the low-temperature response in plants. BioEssays 27, 1048–1059 (2005)

    Article  Google Scholar 

  4. Smallwood, M., Bowles, D.J.: Plants in cold climate. The Royal Society 357, 831–847 (2002)

    Google Scholar 

  5. Stitt, M., Hurry, V.: A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Current Opinion in Plant Biology 5, 199–206 (2002)

    Article  Google Scholar 

  6. Thomashow, M.F.: Plant Cold Acclimation: Freezing Tolerance Genes and Regulatory Mechanisms. Annual Reviews in Plant Physiology and Plant Molecular Biology 50, 571–599 (1999)

    Article  Google Scholar 

  7. Venter, J.C., et al.: Massive parallelism, randomness and genomic advances. Nature Genetics 33, 219–227 (2003)

    Article  Google Scholar 

  8. Lindlof, A.: Gene identification through large-scale EST sequencing processing. Applied Bioinformatics 2, 123–129 (2003)

    Google Scholar 

  9. Mayer, K., Mewes, H.W.: How can we deliver the large plant genomes? Strategies and perspectives. Current Opinion in Plant Biology 5, 173–177 (2002)

    Article  Google Scholar 

  10. Rudd, S.: Expressed sequence tags: alternative or complement to whole genome sequences? Trends in Plant Science 8, 321–329 (2003)

    Article  Google Scholar 

  11. Fei, Z., et al.: Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. The Plant Journal 40, 47–59 (2004)

    Article  Google Scholar 

  12. Romualdi, C., Bortoluzzi, S., Danieli, G.A.: Detecting differentially expressed genes in multiple tag sampling experiments: comparative evaluation of statistical tests. Human Molecular Genetics 10, 2133–2141 (2001)

    Article  Google Scholar 

  13. Wu, X.-L., et al.: Census of orthologous genes and self-organizing maps of biologically relevant transcriptional patterns in chickens (Gallus gallus). Gene 340, 213–225 (2004)

    Article  Google Scholar 

  14. Audic, S., Claverie, J.-M.: The Significance of Digital Gene Expression Profiles. Genome Research 7, 986–995 (1997)

    Google Scholar 

  15. Claverie, J.-M.: Computational methods for the identification of differential and coordinated gene expression. Human Molecular Genetics 8, 1821–1832 (1999)

    Article  Google Scholar 

  16. Jung, S.H., Lee, J.Y., Lee, D.H.: Use of sage technology to reveal changes in gene expression in arabidopsis leaves undergoing cold stress. Plant Molecular Biology 52, 553–567 (2003)

    Article  Google Scholar 

  17. Schmitt, A.O., et al.: Exhaustive mining of EST libraries for genes differentially expressed in normal and tumour tissue. Nucleic Acids Research 27, 4251–4260 (1999)

    Article  Google Scholar 

  18. Stekel, D.J., Git, Y., Falciani, F.: The Comparison of Gene Expression from Multiple cDNA libraries. Genome Research 10, 2055–2061 (2000)

    Article  Google Scholar 

  19. Strausberg, R.L., et al.: In Silico analysis of cancer through the Cancer Genome Anatomy Project. TRENDS in Cell Biology 11, S66–S70 (2001)

    Article  Google Scholar 

  20. Lee, Y., et al.: Cross-referencing Eukaryotic Genomes: TIGR Orthologous Gene Alignments (TOGA). Genome Research 12, 493–502 (2002)

    Article  Google Scholar 

  21. Li, L., Stoeckert, J.C.J., Roos, D.S.: OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research 13, 2178–2189 (2003)

    Article  Google Scholar 

  22. Bräutigam, M., et al.: Generation and analysis of 9792 EST sequences from cold acclimated oat, Avena sativa. BMC Plant Biology 5, 18 (2005)

    Article  Google Scholar 

  23. Parkinson, J., Guiliano, D.B., Blaxter, M.: Making sense of EST sequences by CLOBBing them. BMC Bioinformatics 3, 31 (2002)

    Article  Google Scholar 

  24. Huang, X., Madan, A.: CAP3: A DNA sequence assembly program. Genome Research 9, 868–877 (1999)

    Article  Google Scholar 

  25. Quackenbush, J., et al.: The TIGR Gene Indices: reconstruction and representation of expressed genes. Nucleic Acids Research 28, 141–145 (2000)

    Article  Google Scholar 

  26. Zhang, J.Z., Creelman, R.A., Zhu, J.-K.: From Laboratory to Field. Using information from Arabidopsis to Engineer Salt, Cold and Drought Tolerance in Crops. Plant Physiology 135, 615–624 (2004)

    Article  Google Scholar 

  27. Chen, W., et al.: Expression profile matrix of arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14, 559–574 (2002)

    Article  Google Scholar 

  28. Fowler, S., Thomashow, M.F.: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the cbf cold response pathway. Plant Cell 14, 1675–1690 (2002)

    Article  Google Scholar 

  29. Kreps, J.A., et al.: Transcriptome changes for arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology 130, 2129–2141 (2002)

    Article  Google Scholar 

  30. Seki, M., et al.: Monitoring the expression profiles of 7000 arabidopsis genes under drought, cold and high-salinity stresses using a full-length cdna microarray. Plant Journal 31, 279–292 (2002)

    Article  Google Scholar 

  31. Vogel, J.T., et al.: Roles of the cbf2 and zat12 transcription factors in configuring the low temperature transcriptome of arabidopsis. Plant Journal 41, 195–211 (2005)

    Article  Google Scholar 

  32. Hannah, M.A., Heyer, A.G., Hincha, D.K., Global, A.: Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana. PLoS Genetics 1, e26 (2005)

    Article  Google Scholar 

  33. Li, Q.-B., Haskell, D.W., Guy, C.L.: Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Molecular Biology 39, 21–34 (1999)

    Article  Google Scholar 

  34. Danyluk, J., et al.: Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Letter 344, 20–24 (1994)

    Article  Google Scholar 

  35. Christie, P.J., Hahn, M., Walbot, V.: Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. Plant Physiology 95, 699–706 (1991)

    Article  Google Scholar 

  36. Jarillo, J.A., et al.: Low temperature Induces the Accumulation of Alcohol Dehydrogenase mRNA in Arabidosis thaliana, a Chilling-Tolerant Plant. Plant Physiology 101, 833–837 (1993)

    Google Scholar 

  37. Jeong, M.J., Park, S.C., Byun, M.O.: Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3 phosphate dehydrogenase gene transfer. Mol. Cells 12(2), 185–189 (2001)

    Google Scholar 

  38. Seppanen, M.M., et al.: Characterization and expression of cold-induced glutathione S-transferase in freezing tolerant Solanum commersonii, sensitive S. Plant Science 153(2), 125–133 (2000)

    Article  Google Scholar 

  39. Yang, D.H., Paulsen, H., Andersson, B.: The N-terminal domain of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for its acclimative proteolysis. FEBS Lett. 466(2-3), 385–388 (2000)

    Article  Google Scholar 

  40. Toyama, T., Teramoto, H., Takeba, G.: The level of mRNA transcribed from psaL, which encodes a subunit of photosystem I, is increased by cytokinin in darkness in etiolated cotyledons of cucumber. Plant Cell Physiol. 37(7), 1038–1041 (1996)

    Google Scholar 

  41. Gulick, P.J., et al.: Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48(5), 913–923 (2005)

    Google Scholar 

  42. Bosl, A., Bock, A.: Ribosomal mutation in Escherichia coli affecting membrane stability. Mol. Gen. Genet. 182(2), 358–360 (1981)

    Article  Google Scholar 

  43. Chinnusamy, V., et al.: Ice1: A regulator of cold-induced transcriptome and freezing tolerance in arabidopsis. Genes & Development 17, 1043–1054 (2003)

    Article  Google Scholar 

  44. Wu, K.L., et al.: The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12(1), 9–26 (2005)

    Article  Google Scholar 

  45. Shinozuka, H., et al.: Gene expression and genetic mapping analyses of a perennial ryegrass glycine-rich RNA-binding protein gene suggest a role in cold adaptation. Mol. Genet. Genomics, 1–10 (2006)

    Google Scholar 

  46. Thomashow, M.F.: So What’s new in the field of plant cold acclimation? Lots! Plant Physiology 125, 89–93 (2001)

    Article  Google Scholar 

  47. Skinner, J.S., et al.: Structural, functional and phylogenetic characterization of a large CBF gene family in barley. Plant Molecular Biology 59, 533–551 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sepp Hochreiter Roland Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Lindlöf, A., Bräutigam, M., Chawade, A., Olsson, B., Olsson, O. (2007). Identification of Cold-Induced Genes in Cereal Crops and Arabidopsis Through Comparative Analysis of Multiple EST Sets. In: Hochreiter, S., Wagner, R. (eds) Bioinformatics Research and Development. BIRD 2007. Lecture Notes in Computer Science(), vol 4414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71233-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71233-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71232-9

  • Online ISBN: 978-3-540-71233-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics