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Abstract. This paper presents the use of the Multimedia C (MMC)
language to develop multimedia applications. The MMC language was
designed to support operations with multimedia extensions included in
all modern microprocessors. Although the idea to extend high program-
ming languages to support vector operations is not novel, we show that
integration of multimedia extensions into C is valuable. This is specially
true for idiomatic expressions which are difficult for a compiler to iden-
tify. The MMC language has been used to develop some of the most
frequently used multimedia kernels. The presented experiments on these
scientific and multimedia applications have yielded good performance
improvements. Although this paper discuses the use of MMC, the key
features of the MMC language and implementation of its compiler are
also presented.

1 Introduction

Today’s computer architectures are very different from those of a few years ago
in terms of complexity and the computational availabilities of the execution units
within a processor. Practically all modern processors have facilities that improve
performance without placing an additional burden on the software developers, as
well as those facilities which require support from external entities (i.e. assembler
language and compilers) such as multimedia (also called short vector) processing
ability (i.e. Intel MMX, Intel SSE, Intel SSE2, Motorola Altivec, SUN VIS,
...). This was reflected in an extension of the assembly languages (extended
instruction set).

But a powerful SIMD (Single Instruction Multiple Data) multimedia instruc-
tion set is worthless without the mean to utilize it. Today, we can utilize SIMD
multimedia instruction set in three ways:

1. assembly language - this is the most effective method but it is also more
tedious and error prone than any other methods,

2. shared libraries - these libraries are often available from microprocessor man-
ufacturers, but they tend to only cover particular functions and for some
particular class of microprocessors,
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3. vectorizing compilers - ideally, high level language compiler would be able
to automatically identify parallelizable sections of code and generate appro-
priate SIMD instructions. There have been many proposed methods of au-
tomatic SIMD vectorization ([1], [4], [8]) but they have only limited success
([6]).

Programming in high level languages and relying on the compiler to produce
the SIMD code is a much easier way to utilize multimedia extensions. But if we
want to use them in high-level programming languages such as C, then we have
to add these new facilities in some way to the high-level programming languages.

As a consequence of the above we decided to extend the syntax of C and
to redefine the existing semantics in such a way that we could use multimedia
processing facilities in C. The goal was to provide programmers with the most
natural way of using the multimedia processing facilities in the C language. We
named this extended C as MMC (MultiMedia C). The MMC was first intro-
duced in the paper [2]. Readers are suggested to refer to this paper for the more
extensive description of the language syntax.

This paper is organized as follows: in Section 2 we describe the MMC pro-
gramming language, in Section 3 we describe the implementation of the MMC
compiler, in Section 4 we give real examples from multimedia applications and
the performance results.

2 The MMC Language

MMC language is an upward extension of the ANSI C language with multimedia
processing facilities. It keeps all the ANSI C syntax plus the syntax rules for
vector processing.

2.1 Access to the array elements

To access the elements of an array or a vector we can use one of the following
expressions:

1. expression[expr1] - with this expression we can access the expr1-th ele-
ment of an array object expression. Here, the expr1 is an integral expres-
sion and expression has a type ”array of type”.

2. expression[expr1:expr2, expr3:expr4] - with this expression we can ac-
cess the bits expr4 through expr3 of the elements expr2 to expr1 of an array
object expression. Here, the expr1, expr2, expr3, expr4 are integral ex-
pressions and expression has a type ”array of type”. The expr1 denotes
the last accessed element, expr2 denotes the first accessed element, expr3
denotes the last accessed bit and expr4 denotes the first accessed bit.

3. expression[,expr1:expr2] - with this expression we can access the bits
expr1 through expr2 of all the elements of an array object expression.
Here, the expr1 and expr2 are integral expressions and expression has a
type ”array of type”. The expr1 denotes the last accessed bit and expr2

denotes the first accessed bit.
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4. expression[] - with this expression we can access the whole array object
expression. Here, the expression has a type ”array of type”.

2.2 Operators

Unary operators. We extended the semantics of the existing ANSI C unary
operators &, *, +, -, ~ , ! in the sense that they may now have both scalar-
and vector-type operands.

We have also added new reduction unary operators [+], [-], [*], [&],

[|], [^ ]. These operators are overloaded existing binary operators +, -, *,

&, |, ^ and are only applicable to the vector operands. These operators perform
the given arithmetic/logic operation between the components of the given vector.
The result is always a scalar value.

We have also added one new vector operator |/, which calculates the square
root of each component in the vector.

Binary operators. We have extended the semantics of the existing ANSI C
binary operators and the assign operators in such a way that they can now have
vector operands. Thus, one or both operands can have an array type.

We have overloaded the existing binary operators with 4 new operators:

? this operator overloads the binary operators in
such a way that the given binary operator performs
the operation with saturation,

@ this operator overloads the binary add operator in
such a way that the given binary operator first
performs addition over adjacent vector elements
and then averages (shift right one bit) the result.

˜ this operator overloads the multiply operator
in such a way that the result is the high part of
the product,
this operator overloads the multiply operator
in such a way that the result is the low part of
the product.

Besides the existing binary operators we have added one new, binary opera-
tor, which we found to be important in multimedia applications. This operator
is applicable only on vector operands (if any operand has a scalar type then it
is expanded into an appropriate vector strip) and is as follows:

| − | absolute difference
(in the grammar denoted as VEC SUB ABS).

Example 1. As saturated arithmetic is widely used in multimedia programs (es-
pecially in image processing) and as there should be a mechanism to efficiently
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deal with multiple possible overflows in packed values, the operations that sup-
port saturated arithmetic have been added to microprocessors’ instruction set.
Since C semantics does not support saturated arithmetic as native operators,
programmers are forced to express saturated operations in native C operations.

Figure 1 gives such an example (taken from Berkeley Multimedia workload
[7], [6]). The code presented in the Figure 1 could not be efficiently vectorized by
an automatic vectorizer. Thus, this portion of parallelism could not be efficiently
utilized on multimedia extended processors.

Fig. 1. C Implementation of saturated add operation from Berkeley Multimedia Work-
load/GSM.

Figure 2 gives the MMC code for the same saturated add operation. The
saturation is now easily expressed in native MMC operations.

Fig. 2. Implementation of saturated arithmetic in MMC.

Conditional expression. The conditional operator from ANSI C ’?:’ which
is used in the conditional expression can now have array-type operands.
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3 Implementation of the MMC Compiler

The laboratory version of the MMC compiler was implemented for Intel Pentium
III and Intel Pentium IV processors. It was implemented as a translator to
ordinary C code that is then compiled by an ordinary C compiler (in our example
with Intel C++ Compiler for Linux [9]).

The MMC compiler parses input MMC code, performs syntax and semantics
analysis, builds its internal representation, and finally translates the internal rep-
resentation into ANSI C with macros written in a particular assembly language
instead of the MMC vector statements. The compilation process is presented in
Figure 3. After syntax and semantic analysis of the MMC source code the list

Fig. 3. Compilation process of the MMC source.
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of tree-address codes (TAC) for SIMD statements is generated. Then, the MMC
Code Emitter inserts SIMD macros for each TAC. The appropriate macro is
taken from the MMC macro library. Here we will only show the implementation
of one macro for conditional assignment:

MMC_QUEST_INT;

*( ($T *)($1) ) = _

MMC_QUEST_SSE2_INT ( *( ($T *)($2) ) ,

*( ($T *)($3) ) ,

*( ($T *)($4) ));

__m128i _MMC_QUEST_SSE2_INT (__m128i ab,

__m128i c,

__m128i d )

{

__m128i rez1;

__m128i rez2;

__m128i tmp=_mm_set1_epi32(0);

tmp=_mm_cmpeq_epi32(tmp,ab);

rez1=_mm_and_si128(ab,c);

rez2=_mm_and_si128(tmp,d);

return _mm_or_si128(rez1,rez2);

}

The whole macro library, source code of the MMC compiler with Doxygen doc-
umentation can be freely downloaded from the MMC web site.

4 Developing Multimedia Kernels

In this section we present the use of MMC language to code some commonly
used multimedia kernels. At the end of this section the performance results for
the given examples are presented.

Example 2. Finite impulse response (FIR) filters are used in many aspects of
present-day technology because filtering is one of the basic tools of information
acquisition and manipulation. FIR filters can be expressed by the equation:

y(n) =

N−1∑

k=0

h(k) · x(n − k) (1)

where N represents the number of filter coefficients h(k) (or the number of delay
elements in the filter cascade), x(k) is the input sample and y(k) is the output
sample.

Structurally, FIR filters consist of just two things: a sample delay line and a
set of coefficients. To implement the filter one has to:
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1. Put the input sample into the delay line.
2. Multiply each sample in the delay line by the corresponding coefficient and

accumulate the result.
3. Shift the delay line by one sample to make room for the next input sample.

The MMC implementation of the above algorithm for the FIR filter is as
follows:

#define FILTER_LENGTH 1024

#define SIGNAL_LENGTH 8192

int j;

double h[FILTER_LENGTH];

double delay_line[FILTER_LENGTH];

double x[SIGNAL_LENGTH];

double y[SIGNAL_LENGTH];

for (j=0; j<SIGNAL_LENGTH; j++) {

delay_line[0] = x[j];

//calculate FIR:

y[j] = [+] ( h[] * delay_line[] );

//shift delay line:

delay_line[] = delay_line[] << 1;

}

This MMC code is translated by the MMC compiler into C code with inserted
macros. So, after strip-mining and macro insertion, which is done by the MMC
compiler, we have C code like in the Figure 4. The compiled code can now be
further compiled into binary code by the use of C/C++ compiler for desired
processor family.

Example 3. An Infinite Impulse Response (IIR) filter produces an output, y(n),
that is the weighted sum of the current and the past inputs, x(n), and past
outputs. IIR filters can be expressed by the equation:

y(n) =

N−1∑

k=0

h(k) · x(n − k) +

M−1∑

p=1

h′(p) · y(n − p) (2)

where N represents the number of forward-filter coefficients h(k) (or the num-
ber of delay elements in the forward-filter cascade) and M represents number
of backward-filter coefficients h′(k) (or the number of delay elements in the
backward-filter cascade), x(k) is the input sample and y(k) is the output sam-
ple.

To implement the IIR filter one has to:

1. Put the input sample into the input delay line, and the output sample into
the output delay line.
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Fig. 4. Compiled MMC source of the FIR filter.

2. Multiply each sample in the delay line(s) by the corresponding coefficient
and accumulate the result.

3. Shift the delay lines by one sample to make room for the next input or output
sample.

The MMC implementation of the above algorithm for the IIR filter is as
follows (note that for simplicity in implementation we use the h′(0) coefficient,
which is always zero):

int j;

float hf[FILTER_LENGTH_F];

float hb[FILTER_LENGTH_B];

float in_delay[FILTER_LENGTH];

float out_delay[FILTER_LENGTH];

float x[SIGNAL_LENGTH];

float y[SIGNAL_LENGTH];



9

for (j=0; j<SIGNAL_LENGTH; j++) {

in_delay[0] = x[j];

//calculate FIR:

y[j] = [+] ( hf[] * in_delay[] );

out_delay[0] = y[j];

//calculate IIR:

y[j] += ([+]( hb[] * out_delay[]))

//shift delay lines:

in_delay[] = in_delay[] << 1;

out_delay[] = out_delay[] << 1;

}

Example 4. The MPEG audio standard uses Discrete Cosine Transformation
(DCT) to transform samples from one domain into another. DCT is defined as a
linear transformation of N input samples, s[k], and N DCT samples , x[i] where
k = 0 . . .K − 1 and i = 0 . . .K − 1 (see Equation 3).

x(i) =

N−1∑

k=0

s(k) · cos
(2k + 1) · i · π

2N
(3)

The DCT formula can also be expressed in matrix form as:

x = D · s (4)

where x is the vector of N DCT samples and s is the vector of N input samples.
D is an N by N matrix with the elements presented in Equation 5.

Di,j = cos
(2j + 1) · i · π

2N
(5)

The matrix representation is used for practical implementation. The matrix
representation of the DCT algorithm is well suited for MMC code implementa-
tion since the regular structure of matrix multiplication fits the SIMD nature.
The MMC implementation of the DCT algorithm is as follows:

int j;

float D[N*N];

float v[N];

float s[N];

float D_row[N];

for (j=0; j<N; j++) {

D_row[] = D[j*N : j*N+(N-1)];
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//calculate j-th DCT sample:

v[j] = [+] ( D_row[] * s[] );

}

This MMC code is translated by the MMC compiler into C code with inserted
macros. So, after strip-mining and macro insertion, which is done by the MMC
compiler, we have C code like in the Figure 5. The compiled code can now be
further compiled into binary code by the use of C/C++ compiler for desired
processor family.

Fig. 5. Compiled MMC source of DCT.

Example 5. This example demonstrates how to implement saturated operations
in MMC. Saturated addition of two vectors (i.e. bitmaps) can be expressed in
MMC as: :
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char bits1[SIZE];

char bits2[SIZE];

char bitsDest[SIZE];

...

bitsDest[] = bits1[] ?+ bits2[];

...

This MMC code is translated by the MMC compiler into C code with inserted
macros. The compiled code is:

int __mmc_internal_symbol_2;

for(__mmc_internal_symbol_2=0;

__mmc_internal_symbol_2<SIZE;

__mmc_internal_symbol_2+=8)

{

*((__m64 *)(destBits + __mmc_internal_symbol_2 + 0)) =

_mm_adds_pi8( *( (__m64 *)(bits1 + __mmc_internal_symbol_2 + 0) ) ,

*( (__m64 *)(bits2 + __mmc_internal_symbol_2 + 0) ) );

}

Example 6. This example demonstrates how to implement averaging operations
in MMC. We can describe an average operation as:

A[]@+[] = ((A[0]+[0])>>1)|((A[0]+[0])&1),

...

((A[N-1]+[N-1])>>1)|((A[N-1]+[N-1])&1)

This is an idiomatic expression that is ussually hard to detect by compilers. The
MMC implementation of an average operation is straightforward:

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

void main()

{

char x[1024];

char y[1024];

char z[1024];

z[] = x[] @+ y[];

}
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This MMC code is translated by the MMC compiler into C code with inserted
macros. So, after strip-mining and macro insertion, which is done by the MMC
compiler, we have C code like in the Figure 6. The compiled code can now be
further compiled into binary code by the use of C/C++ compiler for desired
processor family.

Fig. 6. Compiled MMC source of an averaging operation.

In Figure 7 we can see the performance improvement of some typical multi-
media cores when using the MMC language instead of C. We have implemented
these cores in MMC and C. Then, the MMC code was compiled into C code
with the MMC compiler and into binary code with Intel C/C++ compiler. Se-
quential C sources are compiled into binaries with Intel C/C++ compiler with
vectorization switched on.

In cases where vectorization was successful we reached slightly better perfor-
mance with the Intel vectorizing compiler. This is because the Intel vectorizing
compiler performs some additional optimizatins on the vectorized loop [1], [9].
But in cases where vectorization failed (SATURATION, AVERAGE, SUM OF
ABS. DIFF.), better performance is reached with MMC. This is because in
these three cases idiomatic expressions where used, which were very difficult for
a compiler to identify.

5 Conclusion

We have developed a MMC programming language which is able to use hardware-
level multimedia execution capabilities. The MMC language is an upward exten-
sion of ANSI C and it saves all the ANSI C syntax. In this way it is suitable for
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Fig. 7. Speedup on an Intel Pentium IV using MMC.

use by programmers who want to extract SIMD parallelism in a high-level pro-
gramming language and also by programmers who do not know anything about
multimedia processing facilities and who are using the C language.

We have shown the ease with which it is possible to express some common
multimedia kernels with MMC. With MMC we can express these kernels in a
more straightforward or ’natural’ way. The presented extension to C also pre-
serves the interchangeability of arrays and pointers and adds as few as possible
new operators. All added operators have an analogue in ordinary C. The decla-
rations of arrays are left unchanged and also no new types have been added.

We obtained good performance for several application domains. Experiments
on representive scientific and multimedia applications have significant perfor-
mance improvements. We are currently rewriting Berkely Multimedia Workload
with the MMC language. In such a way we will be able to fully evaluate the
performance improvement of widely used multimedia applications. We will also
be able to evaluate how difficult is for people to use the MMC language.
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