Improving the Numerical Simulation of an
Airflow Problem with the BlockCGSI Algorithm

C. Balsa', M. Braza?, M. Daydé?, J. Palma', and D. Ruiz?

L FEUP, Porto, Portugal
{cbalsa, jpalma}@fe.up.pt
2 IMFT-CNRS, Toulouse, France
braza@imft.fr
3 ENSEEIHT-IRIT, Toulouse, France
{dayde, ruiz}@enseeiht.fr

Abstract. Partial spectral information associated with the smallest ei-
genvalues can be used to improve the solution of successive linear sys-
tems of equations, namely in the simulation of time-dependent partial
differential equations, where at each time step there are several systems
with the same spectral properties to be solved. We propose to perform
a partial spectral decomposition with the BlockCGSI algorithm in the
first time step, and exploit this information to improve the convergence
of the Conjugate Gradient algorithm in the solution of the following lin-
ear systems. We describe in summary the BlockCGSI algorithm, that is
a combination of the block Conjugate Gradient (blockCG) with the In-
verse Subspace Iteration. Then, we validate the accelerating strategy in
the simulation of the flow around an airplane wing, where the Conjugate
Gradient is accelerated through the deflation of the starting residual.

1 Introduction

Partial spectral information associated with the smallest eigenvalues can be used
to improve the solution of successive linear systems of equations, namely in
the simulation of time-dependent partial differential equations, where at each
global iteration there are several systems with the same spectral properties to
be solved. We propose a two-phase acceleration technique, where in the first
phase we perform a partial spectral decomposition of the system solved in the
first global iteration, with the BlockCGSI algorithm. In a second phase we exploit
this information to improve the convergence of the Conjugate Gradient algorithm
in the solution of the following linear systems.

The two-phase acceleration strategy has been initially proposed in the exper-
imental work in Ref. [1]. In the first phase, the BlockCGSI algorithm computes
a near-invariant subspace associated with the smallest eigenvalues, and in the
second phase this spectral information is used to deflate the eigencomponents
associated with the smallest eigenvalues with an appropriate starting guess. We
concluded [2] that this strategy has a good potential to reduce the computing

time of a fluid flow simulation algorithm, and the success of this approach de-
pends on the appropriate monitoring of the BlockCGSI algorithm that combines
the blockCG iterative solver with the Subspace Iteration. In [3], we analyzed
the convergence of the BlockCGSI algorithm from an inner-outer iteration point
of view. We establish how the eigenvalue error of the Subspace Iteration varies
along the inner iteration, when the system is solved with the blockCG algorithm.
In agreement with these results, we proposed an appropriate stopping criterion
for each level of iteration, that enables to reduce the computational costs.

In the present work we validate the two phase accelerating strategy in the
simulation of a flow around an airplane wing (see [4]). Firstly, in section 2,
we describe in short, the BlockCGSI algorithm, that is a combination of the
block Conjugate Gradient (blockCG) [5,1] with the Subspace Iteration [6]. We
analyze the computational costs involved in the two phases, as a function of
the dimension of the computed near-invariant subspace, and compute the a
posteriori optimal dimension (section 3.1). Based on these results, we propose
a strategy for choosing dynamically the dimension of the basis, that does not
need a priori informations about the spectrum of the coefficient matrix. We
conclude (section 3.2), showing the benefits resulting from the application of the
two-phase approach to present airflow problem.

2 The BlockCGSI algorithm

The BlockCGSI algorithm is used to compute an M-orthonormal basis W of a
near-invariant subspace associated with the smallest eigenvalues in the precondi-
tioned matrix M~ A. If this basis incorporates, for instance, all the eigenvalues
of M~1A in the range [0, u], we can expect, when using it later as a second level
of preconditioning, that the condition number of the coefficient matrix will be
reduced to about k& = Apax/p, Where Apay is the largest eigenvalue in M ~1A.
In Algorithm 1, Apax and p are considered as input parameters (a rough upper
bound on Apax is usually enough). Another input concerns the choice of the
block size s that defines the dimension of the working subspace at each inverse
iteration; it also gives the number of right-hand sides and solutions vectors of
the multiple linear systems solved by the blockCG algorithm, and consequently
the amount of memory required as working space.

As a starting point, the algorithm requires the generation of an M-orthonormal
basis of size s. The closer are these vectors to the targeted near-invariant sub-
space, the faster will be the convergence of the inverse iteration. The scope of
steps 1 to 4 in Algorithm 1, is to generate an initial M-orthonormal set V(©)
of s vectors with eigencomponents corresponding to eigenvalues in the range
(7, Amax] below some predetermined value { <« 1 (denoted as the “filtering
level”). This filtering technique is based on Chebyshev polynomials (step 3) and
details about it can be found in [3]. The idea behind the use of these Cheby-
shev filters at the starting point is to put the inverse subspace iteration in the
situation of working in the orthogonal complement of a large number of eigen-
vectors, e.g. all those associated with the eigenvalues in the range [r, Amax)-

[ALcoriTEM 1: BLOCKCGSI ALGORITHM |

Inputs: A,M = RTR € R"™", tt, Amaz € IR, s € IN
Output: a near-invariant subspace W associated with all
eigenvalues in the range]0, y]

Begin
Generate the initial subspace (with filtering)

1. Z(©) =RANDOM(n, s)

2.Y©® = R-1ZO% such that YO MY© = I,
3. Q)=Chebyshev-Filter(Y 9, &, [us, Amax), 4, R)
4. VO = QO such that VO MV ©O =1,

5. WO = empty

6. For k = 1,..., until convergence Do:

Orthogonal iteration

i. Solve M—1AZ®) = V* =1 with blockCG

i PR — 7B _ =Dy k=0T pp 7 (k)

ii. QO 1, = P®) such that QT MQ®) = I,
iv. Q) = [k=1 Q)]

Ritz acceleration
v. B = QW' AQ®W
vi. Diagonalize 8 = U, AUL
where U,z = Ugl
and Ay =Diag(d,...,0p+s) (Ritz Values)
vii. VO = QW (Ritz Vectors)

Update the computational window
viil. W®*) = converged columns of V(*)
ix. V*) = non-converged columns of V' (¥)
x. (n,p) = size(WH)
xi. Incorporate new vectors in (V%))
7. EndDo
End

We can also expect that the resulting filtered right-hand sides will present more
favorable spectral properties that can improve the convergence behavior of the
blockCG. Obviously, there is some compromise to achieve, in the sense that very
small values of j1y and £ will minimize the number of inverse and blockCG iter-
ations, but will also increase the computational efforts in the Chebyshev initial
filtering step.

The essence of the inverse subspace iteration is the orthogonal iteration. It
consists in multiplying a set of vectors by A~*M and M-ortonormalizing it in

turn. In step i, the multiplication by A~'M is performed implicitly through
the iterative solution of the system M~'AZ®*) = V(=1 yia the blockCG. In
order to reduce the computational costs, this system is solved with an accuracy
determined by an appropriate residual threshold e (for details see [3]). In step ii,
the approximate solution vectors Z*) are then projected onto the orthogonal
complement of the converged vectors W (*~1) in order to remove the influence of
eigencomponents associated with the converged eigenvalues. The set of projected
vectors P(®) is then M-orthonormalized (step iii), and gathered together with
W(kfl).

To improve the rate of convergence of the subspace iteration, the orthogonal
iteration is followed by the Ritz acceleration (steps v to vii), as suggested by [6].
The spectral information contained in Q(® is thus redistributed in the column
vectors of V(¥) | that will contain each better approximations of individual eigen-
vectors. Steps v, vi, and vii, yield the Ritz values, diag(A) = 61, ..., Op+s, ranged
in increasing order, and the associated Ritz vectors, [v1, v, ..., Up, ..., Up4s], Where
p is the dimension of W*~1) and s is the current block size.

The end of the BlockCGSI algorithm consists in testing the convergence and
updating the computational window. In step viii, all the Ritz vectors that are
considered as near-invariant (with respect to the given accuracy) are assigned to
W) (more details are given in [3]). Step xi consists in incorporating new vectors
in the current set of vectors V). The operation that consists in introducing a
set of £ new vectors, after some of the Ritz vectors have converged, is detailed
in Algorithm 2. We denote this algorithmic issue in the BlockCGSI algorithm
as “sliding window”. Its purpose is to enable the approximation of a number
of eigenvectors greater than the block size s. Basically, we generate randomly a
linear combination of the filtered vectors V(9| generated in the starting steps
(1 and 2) of the BlockCGSI algorithm. Then, these vectors are projected in
the M-orthogonal complement of the converged ones, in order to remove the
corresponding eigencomponents. Note that we can also opt to reduce or enlarge
the block size s at this stage, when setting the value of ¢ (i.e. the number of
newly incorporated vectors).

[ALGORITHM 2: INCORPORATE NEW VECTORS |
Inputs: { € NM = RTRe R, VO ¢ RV Wk ¢ RP vk ¢ R*6-0

a) Y =RANDOM(s, ¢)
by P=vV0Oy
c) P=QI suchthat QTMQ = Iyx,
HP=Q-wmw®
e) VB = [V (¥ p]
End

3 Some numerical experiments in an airflow problem

We present some numerical results concerning the exploitation of a near-invariant
subspace W, with dimension ¢, associated with the eigenvalues of M ~'A in the
range |0, u[. The spectral information, computed with BlockCGST algorithm, is
used to improve an airflow simulation code of the flow around a wing (see de-
tails in [7,4,8]). The Navier-Stokes equations are solved by finite elements in
a 2D field, through a prediction-correction algorithm and a semi-implicit time
discretization scheme. To obtain all the physical structures of the flow, long pe-
riods of simulation (7" = 10 or T' = 20) are required. In each time step (typically
0.01 s) iteration, we need to solve a system of linear equation (Poisson type),
with the same coeflicient matrix and changing right-hand sides, of size n = 27283
and nz = 187487 non-zero elements.

3.1 Optimal dimension of the basis

After preconditioning, by means of the classical Incomplete Cholesky (M =
RTR = IC(0)), the spectrum is distributed from A, = 6.5¢ — 05 t0 Apax =
1.7e¢ 4+ 00, which corresponds to a spectral condition number of order 2.6e + 04.
After the preconditioning, there are still few eigenvalues on the left of the spec-
trum that are responsible for the non-linear convergence of the Conjugate Gra-
dient. To remove these problems we propose to deflate this part of the spectrum
through an initial projection on the CG algorithm. The spectral projector is built
with the basis W of the near-invariant subspace computed with the BlockCGSI
algorithm. We denote the technique that combines the Conjugate Gradient with
the initial deflation as the INIT-CG algorithm (see details in [3]). One open ques-
tion is how many eigenvalues we must compute to improve the convergence of
the INIT-CG algorithm. For instance, if we want to reduce the condition number
to 100, we need to cancel the effect of the 48 smallest eigenvalues (u ~ 1.7e —02).
The desirable choice is that pu falls between two clusters.

The optimal dimension of the basis W will be the one that minimizes the
total cost when solving all the systems during the simulation, with our two-phase
approach. This cost is given by

Total cost = Cpcasr + Crnitca X NGits, (1)

where NGits is the number of global iteration (or time steps), i.e. the total num-
ber of systems to be solved. The cost of pre-computing the spectral information
with the BlockCGSI algorithm is given by Cpcasr and the cost of solving one
system with INIT-CG is given by Crpitca-

3.1.1 Pre-computational cost. The cost of pre-computing the spectral in-
formation depends on the dimension q of the basis W and on working parameters
in the BlockCGSI algorithm, as for instance the block size s, the filtering level
&, and the cut-off value py for the filtering. In our experiments with the current
test problem, the value of ¢ was automatically set as pr = i, and £ was fixed to

le —10. As we have seen in [3], the filtering level is important but does not need
to be very small to reduce substancialy the costs in the BlockCGSI algorithm. In
an efficient implementation of the BlockCGSI algorithm, Level 3 BLAS kernels
can be incorporated in order to maximize the Megaflops rate, and the value of
s can also be determined only on the bais of such computer aspects, keeping in
mind that the sliding window technique adjusts the dimension of the basis W
automaticaly.

x10°

6 T
- s=5
—* s=10
o s=15
sk s=20 ||
o
S
b4
s /2 .
/Q> %
g B
2 / *
NS & ¥ 1
s 5 *
/ el o
o o}
Sl J 1
P w* QDQ"
*
@@4 ‘ -0
1t Q K S} .
&% . o
- * K o)
RO k- X P
5o okt - —0 - == =

0 10 20 30 40 50 60
Basis dimension q

Fig. 1. Costs of pre-computing the near-invariant subspace (Cpcgsr) for differ-
ent block sizes s

Figure 1 displays the values of Cgcasr for a block size s equal to 5, 10, 15 and
20. We can see that lower pre-computational costs are obtained with larger block
sizes, specially for high dimensions of ¢q. The principal reasons for that are the
guard vector effect [3] and the costs of incorporating new vectors by Algorithm 2.
As indicated in step b of Algorithm 2, we inject a random linear combination
of the filtered starting vectors V() generated in step 4 of Algorithm 1. With
this practical simplification we call the Chebyshev filtering routine only once
and do not need to filter the newly incorporated vectors. The idea behind that,
is that the starting vectors include already some information concerning all the
eigenvalues in the range]0, u[, and to recover it we just need to redistribute this
information over each of the newly incorporated vectors. In some cases, specially
if we want an accurate spectral information, a breakdown can occur due to the
near-collinearity of these new vectors relatively to the converged ones in W),
which can be avoided if we force the blockCG to do a minimum number of
iterations (for instance i,,;, = 4).

3.1.2 Solution cost. If we analyze now the behavior of the solution costs
Crnitca, as shown in figure 2. At the beginning a large decrease of the costs
until ¢ reaches approximately the dimension 20, above which the improvements
are minimal (gso; &~ 20). This occurs because until ¢ is lower than 20 we are
interpolating the extremal eigenvalues of the cluster and after that we are in the
middle of the cluster. As the basis is enlarged from ¢ = 20 to ¢ = 30 the value of
w is shifted from 6.63e — 3 to 1.02e — 2, which corresponds to a small reduction
of the condition number from k = 2.54e+02 to k = 1.68¢ +02. Additionally, the
costs of the initial and restarted oblique projection in the INIT-CG algorithm
also contribute to a constant level of solution costs Cr,;tc when q is larger than
approximately 20. This does not mean that we could not use the proposed two-
phase approach with dimension larger than ¢ = 20. As we will show, the large
number of times that the system, with the same coefficient matrix, is solved
enables the computation of larger dimension basis W. In the right of figure 2,
we plot the costs of pre-computing the spectral information in terms of number
of right-hand side computed through the formula

Cecasr

Amor. rhs = \‘—
Crnitca — Ceca

J+1

where Ceoq is the cost of classical CG algorithm, and Cgcgsy is the cost of pre-
computing the spectral information with the BlockCGSI algorithm using a block
size s = 10 (see figure 1). In the case of 100 systems to be solved (NGits = 100)
the pre-computational costs are amortized until the basis reaches a critical value
of ¢ = 50. Under these conditions, if a larger number of times-steps is needed
(for instance NGits = 1000) larger will be the critical value of q.

3.1.3 Minimizing the total cost function. Much more important than
the critical values of ¢ is the optimal value of ¢ that minimizes the total cost
function given by (1). As we have seen, the parameter Total cost is the addition
of two other cost functions that are inversely proportional, namely Cpcgsr and
Crnitcg X NGits. We have seen that the cost of pre-computing the spectral
information Cgcgsy increases with ¢, while the solution costs Crpitcq X NGits
decrease as ¢ increases. In figure 3, we plot all these two costs as well as the
sum of two (the Total cost). The cost Cpcgsr was computed with block size
s = 10, and the plot on the left corresponds to a simulation time of 7' = 1 where
NGits = T'/At = 100, and the plot on the right to 7" = 10 with NGits = T/At =
1000. The minimal value of Total cost occurs before Ceoasr = Crnitca XNGits
because the solution cost Crni:cq X NGits decrease very slightly when g is greater
than 20 and the cost Cpcasr grows in a larger scale. The optimal value of ¢ (gopt)
is near 20 when NGits = 100, and near 30 when NGits = 1000.

The optimal value of ¢ confirms that we must stop the BlockCGSI algorithm
when the Ritz values are very close to each other. There is no benefit in approx-
imating all the 48 eigenvalues corresponding to the targeted condition number
x = 100. The cost of solving all the systems given by Cpcgsr increases if we con-
tinue the subspace iteration when ¢ is larger than 20. Even if the total number

Megaflops

N
&
T

x10°

(a) Solution costs

o
Ssc6

906506,
00808C0S00606G08 0000800800600
1 1 .

—O- Solution costs

30
Basis dimension q

40

50 60

(b) Amortization Right-hand sides

;

o)

Number of Right-hand sides
3 3 g
> >
‘q
4

IS
8
T

201

N]
oo - - 077

1 1 1 1 1
0 10 20 30 40 50 60
Basis dimension

Fig. 2. Solution costs and amortization right-hand sides with INIT-CG (b).

of systems to be solved NGits is large, as for instance 1000, there is no effective
reduction of the total costs when we compute a basis of higher dimension. As
shown in figure 3b, the Total cost corresponding to ¢ = 20 is nearly 1.5e¢ 4+ 05
Mflops and the value corresponding to ¢ = 30 is nearly 1.3e + 05 Mflops. We
confirm the idea that if the spectrum is very clustered (as in the present case)
the two-phase accelerating strategy is more effective if we compute only the
near-invariant subspace associated with the extremal eigenvalues.

3.2 Costs-benefits of the two-phase approach

Table 1 shows the cost-benefits of accelerating strategy. We consider that the
INIT-CG algorithm has converged when the backward error is below 1078, In
this case the classical Conjugate Gradient (INIT-CG with ¢ 0) performs
423 Mflops. As before, we indicate the number of floating-point operations in

(a) Total costs, NGits = 100

x10'

—)~ Pre-computational costs
—C- Solution costs
-+ - Total costs

b +
a4 ¥ ¥
L +
¥
A
350 * ,§>
VA o
Lol et @QO
2 \ + £
S 4\
T 25 Q' ’ @
o ¢ /
g S \+¥ & @
2r Qo T + :
T + & ¢
15F See@% /(’>X>/
e%@oeeosoeeg@eoeg@eoeeoeoeeoaeoeo
1S P
oL
05 <P
0@
o--0® "7

H H H
0 10 20 30 40 50 60
Basis dimension g

(b) Total costs, NGits = 1000

—)~ Pre-computational costs
\ —O- Solution costs
4 — - Total costs
o
W
35014
T
3k @}
N
L
@« QN
g 2s o
g b
L
Dé%@
N
154 ey e
OO e 1 e e -
éeo@GO@G@WGO@%@o@e@eo@eoeeosoo
e
os|
000009 % *
PPN . $ 00 = 06 =0 VY, .

o 10 20 30 40 50 60
Dimension q

Fig. 3. Total costs of the two-phase approach.

Megaflops (Mflops) and the number of amortization right-hand sides by Amor.
rhs. The pre-computational costs Cgcgsr are obtained with a block size of
s =15.

Firstly we can observe that when NGits = 100 the minimum value of Total
cost, obtained with ¢ = 25, is 15925 Mflops. The optimal value of ¢ is greater
than in the previous section (¢ = 20) because we run the BlockCGSI with
s = 15 instead of s = 10. The same occurs when NGits = 1000 where the
optimal value of ¢ is equal to 40 instead of 30. This indicates that, if there were
no computational restrictions, the BlockCGSI algorithm would run with a block
size s as large as possible.

If we apply our accelerating technique to the current problem, and compute
a basis W with optimal dimension (¢ = 25), 3225 Mflops are needed for the
spectral pre-computation, out of which the INIT-CG achieves convergence in

Table 1. Cost-benefits of the two-phase accelerating technique

Spectral fact.|INIT-CG |Amor. rhs Total cost

q Cgcasr | Mflops NGIts = 100 NGIts = 1000
0 - 423 - 42300 423000
5 2041 261 13 28141 263041
10| 2377 189 11 21277 191377
15| 2767 162 11 18967 164767
20| 2767 145 10 17267 147767
25| 3225 127 11 15925 130225
30| 4242 121 15 16342 125242
35| 4242 122 15 16442 126242
40 7473 116 25 19073 123473
45| 11015 117 36 22715 128015
50| 14972 118 50 26772 132972
55| 24950 114 81 36350 138950

127 Mflops, i.e. a reduction of 70% compared with the work needed to solve
one system with the classical Conjugate Gradient (423 Mflops). Therefore, the
3225 extra Mflops are paid back after 11 consecutive global iterations of the
simulation code. And, in the case of NGits = 100, the value of Total cost is
reduced from 42300 to 15925 Mflops, which corresponds to a reduction of 62% of
the total amount of work required to solve 100 consecutive linear systems. In the
case of NGits = 1000, if a basis of size ¢ = 30 is used, the value of Total cost is
reduced from 423000 to 125242 Mflops, which is a reduction of order 70% over
all the computational work needed to solve the 1000 systems.

4 Conclusions

A two-phase approach was suggested to improve the numerical simulation of
an airflow problem. In the first phase we have computed with the BlockCGSI
algorithm a near-invariant subspace linked to the smallest eigenvalues. In the
second phase, the basis of this subspace is used in each run of the Conjugate
Gradient to deflate the starting residual (INIT-CG) and improve the consecutive
solutions of the linear systems with the same coefficient matrix and changing
right-hand sides.

The key question of this strategy is the dimension ¢ of the near-invariant sub-
space to be computed. The optimal dimension depends on a compromise between
the pre-computational (first phase) costs and the solution (second phase) costs.
The cost of pre-computing the spectral information, which increases with the
dimension of the basis, depends also on the block size s used on the BlockCGSI
algorithm. The results show that larger block sizes reduce the pre-computational
costs. On the other hand, the solution costs decrease with the increasing dimen-
sion of the mear-invariant subspace ¢, until a ¢ value (gso;) is reached, above

which the solution costs stagnates. The optimal dimension (gop;) is thus, the one
that minimizes the sum of the two costs (pre-computing and solution) over all
the systems to be solved. The results showed that g.,¢ and gso are close to each
other.

The stagnation of the solution costs occur because the convergence rate of
CG is not sufficiently improved, since the effect of all the extremal eigenvalues,
separated from the main cluster, was removed. As the remaining eigenvalues
are very close to each other, their deflation yields only a low reduction on the
condition number that governs the convergence rate of the CG.

As a consequence of the previous results, we suggest a dynamical strategy to
set up the dimension ¢ of the near-invariant subspace associated with the small-
est eigenvalues without a priori knowledge of the spectrum. At the beginning,
after setting a reduced condition number k = Apax/p in agreement with the
convergence rate of the CG, we request to approximate all the eigenvectors cor-
responding to the eigenvalues smaller that p. At each iteration of the BlockCGSI
algorithm, if the request is not satisfied, we compute the gaps between the ap-
proximated eigenvalues (Ritz values). As soon as the larger gap is below a given
preset tolerance (which means that we are in the middle of a cluster), we stop
the BlockCGSI algorithm and switch to the CG improved with precomputed
basis (INIT-CG), to compute the remaining system solutions of the simulation
problem.

References

1. Arioli, M., Ruiz, D.: Block conjugate gradient with subspace iteration for solving
linear systems. In: Iterative Methods in Linear Algebra, Second IMACS Symposium
on Iterative Metohds in Linear Algebra, Blagoevgrad, Bulgaria, S. Margenov and
P. Vassilevski (eds.) (June, 1995) pp. 64-79

2. Balsa, C., Palma, J., Ruiz, D.: Partial spectral information from linear systems
to speed-up numerical simulations in computational fluid dynamics. In Daydé,
M., Dongarra, J., Hernandez, V., Palma, J., eds.: High Performance Computing
for Computational Science, 6th Int. Meeting, VECPAR’04. LNCS 3402, Berlin,
Springer-Verlag (2005) pp. 699-715

3. Balsa, C., Daydé, M., Palma, J., Ruiz, D.: Inexact subspace iteration to exploit
partial spectral information. Technical Report TR/TLSE/05/09, Institut National
Polytechnique de Toulouse, LIMA-IRIT (2005)

4. Bergmann, M.: Analyse physique de la Transition Laminaire-Turbulent 2D dans
des écoulements Cisaillés a ’Aide d’un Code de Navier-Stokes en éléments Finis.
Rapport de stage de DEA, Toulouse (2001)

5. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear

Algebra and its Applications (1980) 293-322

Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998)

7. Braza, M.: Analyse Physique du Comportement Dynamique d’un Ecoulement
Externe, Décollé, Instationnaire en Transition Laminaire-Turbulent. Application:
Cylindre Circulaire. Thse d’état, INPT, Toulouse (1986)

8. Martinat, G.: Analyse physique de la Transition Laminaire-Turbulent sous I’Effect
de la Rotation par un Code en Element Finis. Rapport de stage de DEA, Toulouse
(2003)

o

