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Abstract. We present novel multiresolution particle methods with ex-
tended dynamic adaptivity in areas where increased resolution is re-
quired. In the framework of smooth particle methods we present two
adaptive approaches: one based on globally adaptive mappings and one
employing a wavelet-based multiresolution analysis to guide the alloca-
tion of computational elements. Preliminary results are presented from
the application of these methods to problems involving the development
of sharp vorticity gradients. The present particle methods are employed
in large scale parallel computer architectures demonstrating a high de-
gree of parallelization and enabling state of the art large scale simulations
of continuum systems using particles.

1 Approximations using particles

The development of particle methods is based on the integral representation of
functions and differential operators. The integrals are discretized using particles
as quadrature points.

1.1 Function approximation

The approximation of continuous functions by particle methods starts with the
equality

q(x) ≡

∫

q(x− y) δ(y) dy . (1)

Using N particles we discretize above equality by numerical quadrature and get
the “point-particle” approximation of q:

qh(x) =
∑

p

Qp(t) δ(x− xp) . (2)

Point particle methods based on the apprimation (2) yield exact weak solutions
of conservation laws. A drawback of point particle approximations is that the
function qh can only be reconstructed on particle locations xp.

This shortcoming is addressed by mollifying the Dirac delta function in (1)
resulting on a mollified approximation:

qε(x) =

∫

q(x− y) ζε(y) dy , (3)
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where ζε = ε−dζ(x/ε), x ∈ Rd, and ε being a characteristic length scale of
the kernel. For consistency of the approximation the kernel ζ has to fulfill the
following moment conditons:

∫

ζ xα dx = 0α for 0 ≤ |α| < r . (4)

The kernel ζ is of order r and the following error bound holds:

‖q − qε‖ ≤ Cεr‖q‖∞ . (5)

Now again, we get a discrete but smooth function approximation by approxi-
mating the integral in (3) by a mid point quadrature rule yielding

qε,h(x) =
∑

p

Qp ζ
ε(x− xp) , (6)

The error of (6) can be assessed by splitting ‖q − qε,h‖ into

‖q − qε,h‖ ≤ ‖q − qε‖+ ‖qε − qε,h‖

≤ C1ε
r‖q‖∞+ C2

(

h
ε

)m
‖q‖∞ .

(7)

We conclude from this, that (h/ε) must be smaller that 1, i.e. smooth particles
must overlap1.

1.2 Differential Operator approximation

In smooth particle methods differential operators can be approximated by dis-
crete integral operators. Degond & MasGallic developed an integral represen-
tation of the diffusion operator - isotropic and anisotropic - which was later
extended to differential operators of arbitrary degree in [6]. The integral opera-
tor for the 1D Laplacian for instance takes the form

∆εq =
1

ε2

∫

[q(y)− q(x)] ηε(x − y) dy , (8)

where the kernel η(x) has to fulfill
∫

x2 η(x) dx = 2. This integral is discretized
by particles using their locations as quadrature points:

(

∆ε,hq
)

(xp′ ) = ε−2
∑

p

[qp − qp′ ] ηε(xp′ − xp) vp . (9)

1 for certain kernels, an r-th order approximation can be achieved even with ε = h
[17]
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2 Solving transport problems with Particle Methods

Particle methods discretize the Lagrangian form of the governing equation,

∂q

∂t
+∇ · (u q) = L(q,x, t) , (10)

resulting in the following set of ODEs:

dxp

dt
= u(xp, t) , positions

dvp

dt
= vp (∇ · u) (xp, t) , volumes

dQp

dt
= vp L

ε,h(q,xp, t) . weights

(11)

Particle positions are usually initialized as a regular lattice with spacing h, vol-
umes are thus initially set to vp = hd and Qp = qo(xp)h

d. The ODES (11),
are now advanced using a standard explicit time stepper and the transported
quantity q can be reconstructed as

q(x, t) =
∑

p

Qp(t) ζ
ε (x− xp(t)) . (12)

However, as the particles follow the flow map u(x, t) their positions eventually
become irregular and distorted, and the function approximation (12) ceases to be
well-sampled. To ascertain convergence, it is therefore necessary to periodically
regularize the particle locations; this process is called “remeshing”.

2.1 Remeshing

Remeshing involves interpolation of particle weights from irregular particle lo-
cations onto a regular lattice. New particles are then created on the lattice,
replacing the old particles. This interpolation process takes the form

Qnew
p′ =

∑

p

W (xp′ − xp)Q
old
p , (13)

where Qnew
p′ are the new particle weights, and xp′ are located on a regular lattice.

The interpolation function W (x) is commonly chosen to be a tensor product of
one-dimensional interpolation function which for accuracy have to be sufficiently
smooth and moment-conserving. The M ′

4 function [14] is commonly used in the
context of particle methods; it is in C1(R) and of third order.

The introduction of a grid clearly detracts from the meshless character of
particle methods. The use of a grid in the context of particle methods does not
restrict the adaptive character of the method and provides the basis for a new
class of “hybrid” particle methods with several computational and methodolog-
ical benefits
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2.2 Hybrid particle methods

The introduction of a grid enables fast evaluation of differential operators using
compact PSE kernels, enables the use of fast grid-based Poisson solvers [8],
facilitates parallelization and is a key component in adaptive particle methods,
which we will present in section 3. Hybrid particle methods make heavy use of
these computational advantages [19, 3, 11].

Recently, we have developed a generic hybrid particle method framework
[16], enabling efficient, parallel simulations of large-scale transport problems as
diverse as the DNS of turbulent flows and diffusion processes in complex bio-
logical organelles. Figure 1 shows visualizations of the Crow instability and the
elliptic instability of two counter-rotating vortex tubes employing a maximum
of 33 million particles. The simulations were performed on a 16 cpu Opteron
cluster. One time step for 1 million particles took less than 30 seconds. Cur-
rent implementations using the fast multipole method which retain the meshless
character of the particle method require approximately 2400 seconds per time
step [20]. This clearly demonstrates the advantages of hybrid methods.

Fig. 1. Crow (left) and short-wave or elliptic instability (right)

3 Adaptive Particle Methods

The accuracy of smooth particle methods is determined by the core size ε of
the kernel ζε(x). For computational efficiency this core size needs to be spatially
variable to resolve small scales in different parts of the flow, such as the boundary
layer and the wake of bluff body flows. As particles need to overlap, varying core
sizes imply spatially varying particle spacings. This can be achieved in two ways:

– remeshing particles on a regular grid corresponding to variable size particles
in a mapped using a global (adaptive) mapping

– remeshing particles by combining several simple local mappings in a domain
decomposition frame.

In the context of vortex methods, Hou [10] first introduced spatially varying
particle sizes and proved the convergence of the method in the case of the 2D
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Euler equations. This proof was extended in [15] to the viscous case and the
method was used for the simulation of wakes with stetched particle resolution.
In [2] Cottet, Koumoutsakos, and Ould-Salihi formulated a convergent variable
core size vortex method for the Navier-Stokes equations by using mappings from
a reference space Ω̂ ⊆ R

d with uniform core size ε̂ to the “physical” space
Ω ⊆ R

d with cores of varying size ε(x) in conjunction with an anisotropic
diffusion operator, i.e.

x = f(x̂) , x̂ = g(x) ,
{

Φ
}

ij
=
∂x̂i

∂xj

and |Φ| = detΦ (14)

Like in the uniform core size method (11), we convect the particles in physical
space, but diffusion is performed in reference space, so that with N particles,
located in {xj(t)}

N
j=1 = {f(x̂j)}

N
j=1 we find an approximate solution to (10) by

integrating the following set of ODEs:

dxj

dt
= u(xj , t) ,

dQj

dt
=

ν

ǫ̂2

∑

k

ψǫ̂
pq(x̂j − x̂k)

(mpq(x̂j) +mpq(x̂k)

2

)

[v̂jQ̂k − v̂kQ̂j ] ,

dv̂j

dt
= ∇̂ ·

(

Φu
)

(xj , t) v̂j .

(15)

In the above equation Qj and Q̂j denote the particle strength in physical and
reference space, respectively, related by

Q̂j = Qj|Φ|(xj) ,

and mpq = bpq −
1

d+2
δpqδp′q′bp′q′ , with

bp′q′ =
1

Φ

∂(x̂)p′

∂(x)r

∂(x̂)q′

∂(x)r

and ψpq(x) = (x)p (x)q ρ(x), ρ(x) being a radially symmetric kernel with suit-
able moment properties [4].

In [2] analytic, invertible mappings have been employed. Albeit being a simple
and robust way to efficiently resolve the range of length scales in the flow, this
method requires prior knowledge about the flow physics. In [1] we extended
this method by introducing two different approaches to dynamical adaptivity
in particle methods; One approach makes use of a global adaptive mapping
(AGM, see section 3.1), and one employing dynamically placed patches of smaller
sized particles, reminiscent of adaptive mesh refinement in finite volume methods
(AMR).

3.1 Particle method with adaptive global mappings

We introduce a transient smooth map f : Ω̂×[0, T ]→ Ω represented by particles:

x(x̂, t) = f(x̂, t) =
∑

j

χj(t) ζ
ε̂(x̂− ξj) , (16)
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where ξp are fixed at grid point locations. The parameters in the map that are
changed in the process of adaptation are the node values χj . As the map (16) is
not easily invertible, we require it to be smooth in both space and time. Given
this property, the governing equation (10) can be entirely cast into reference
space, again yielding a transport equation:

∂q̂′

∂t
+ ∇̂ · (q̂′ ũ) = L̂(q̂′, x̂, t) , (17)

where q̂′ = (|Φ|)−1q̂ and

ũ = Φ(û− U) , and U =
∂f

∂t
=

∑

j

∂χj

∂t
ζ ε̂(x̂− ξj) . (18)

What remains is to chose a U , such that particle core sizes in physical space
are small where small scale features are present in the flow. In [1] this was
accomplished by setting U to be the solution of a moving mesh partial differential
equation (MMPDE),

U = ∇̂ ·
(

M(x̂, t)∇̂f(x̂, t)T
)

, (19)

where M(x̂, t) is a so-called monitor function: a positive measure which takes
great values where numerical resolution should be increased, e.g.

M(x̂, t) =
√

1 + α|Bq̂|2 , (20)

B being a high-pass filter. We applied this method in [1] to the evolution of
an elliptical vortex governed by the 2D Euler equations. Figure 2 depicts the
adaptation of the underlying grid, and thus the particle core sizes ε(x).

Fig. 2. Simulation of the evolution of an inviscid elliptical vortex using the AGM
particle method: vorticity (left), particle sizes (middle, dark areas represent coarse
particle sizes) and grid (right).



Multiresolution Simulations using Particles 7

3.2 Wavelet-based multiresolution particle method

We employ a wavelet-based multiresolution analysis (MRA) using L + 1 levels
of refinement to guide the creation of particles on the grid. The function q(x, t)
can be represented as

qL =
∑

k

q0k ζ
0
k +

∑

0≤l<L

∑

k

dl
kψ

l
k , (21)

where q0k are the weights, ζ0
k are the scaling functions (or kernels) on the coarsest

level, dl
k are the so-called detail coefficients and ψl

k are the wavelets. The MRA
here is based on an iterative interpolation scheme as introduced by Deslauriers
and Dubuc [5], thus we do not have explicit scaling functions ζ and wavelets
ψ. In this scheme the scaling coefficients of two subsequent levels are related
through

ql+1

2k = ql
k

ql+1

2k+1
= dl

k +
∑

j

wl
j−k q

l
j−k ,

(22)

where wl
j are coefficients related to the polynomial interpolation of the scheme

[5].

x

y

dl,2

k

dl,3

k

dl,1

k

ql
k

Fig. 3. Each detail coefficient dl,m

k , with m = 1, . . . , 2d − 1 corresponds to a specific
grid point on the next higher level.

As illustrated in Figure 3 each detail coefficient is associated with a grid
point on the next finer grid. Let child(k,m) be the grid point associated with

dl,m
k and let ancs(k) denote the set of grid points k′ needed to interpolate the

value ql
k from values ql−1

k′ and detail coefficients dl−1

k′ of the next coarser level.
Then an adapted grid is constructed by discarding all those grid points whose
|dl,m

k | are smaller as a prescribed threshold, i.e.

K> = K
0 ∪

{

k′ = child(k,m) ∪ ancs(k′)
∣

∣

∣
|dl,m

k | > ε , l ∈ [0, L− 1]
}

. (23)

Note that K
0
> ≡ K

0 and that ancs(k′) are added to maintain proper nestedness
of the grids (see for instance [18] for details). In order to be able to capture small
scales that may emerge between two subsequent MRAs we follow the conserva-
tive approach of Liandrat and Tchamitchian [13] and additionally activate all
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children of the active grid points, i.e.

K
l
> ← K

l
> ∪ { child(k,m) | k ∈ K

l−1
> , m = 1, 2, 3 } for l = L, . . . , 1 . (24)

Multilevel remeshing interpolates particles created on a set of grid points K
l
>

onto a set of grid points K
l
×. This is accomplished in the following way: let M

denote the kernel used for remeshing the particles, then (i) horizontally extend
the set of source grid points K

l
> by B

l , where

B
l =

{

k′
∣

∣ min
k∈Kl

>

|k′ − k| ≤ ⌈ 1
2
supp(M) + LCFL⌉

}

, (25)

where the “Lagrangian CFL” LCFL ≡ δt ‖∇ ⊗ u‖∞, (ii) create particles on
K

l
> ∪B

l
1, i.e.

Ql
p = clk (hl)d , vl

p = (hl)d , xl
p = xl

k ,

(iii) after convection, interpolate these particles onto a new set of grid points
K

l
×. Clearly, for consistency K

l
× cannot be chosen arbitrarily. We propose the

following method: Introduce and indicator function χl defined as

χl
k =

{

1 , k ∈ K
l
>

0 , k ∈ B
l ,

(26)

and convect the particles, i.e. solve the following set of equations

dQl
p

dt
= L(q,x, t) ,

dχl
p

dt
= 0 ,

dxl
p

dt
= u(xl

p, t) ,
dvl

p

dt
= vl

p (∇ · u) (xl
p, t) .

(27)
The particle weights and the indicator are then interpolated onto the grid and
grid points with χ̃l

k > 0 are selected to consitute K
l
×, where χ̃l denotes the

remeshed indicator function. Using this technique, the scale distribution {Kl
>}

L
l=0

is naturally convected with the flow and we obtain and adaptation mechanism
which is independent of the CFL number.

To demonstrate the Lagrangian character of the adaptation we considered
the convection of a passive scalar in 2D, subject to a vortical velocity field [12].
The problem involves strong deformation of a initial circular “blob” which at the
end of the simulation returns to the initial condition. The remeshing function
and particle kernel were both chosen as

W (x) = ζ(x) =

d
∏

l=1

M ′′′
6

(

(x)l

)

,

where the fourth-order accurate interpolating function M ′′′
6 is of higher order

than the M ′
4 function at the expense of a larger support. The wavelets em-

ployed were also fourth-order accurate. Figure 4 illustrates the adaptation of the
grid/particles at two different times. We measure the L2 and L∞ error of the
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Fig. 4. Active grid points/particles at two
different times of the simulation of a pas-
sive scalar subject to a single vortex veloc-
ity field.

Fig. 5. Active grid points/particles at two
different times of the simulation of a prop-
agating interface subject to a single vortex
velocity field.

final solution for different choices of ǫ and observe second order convergence,
corresponding to fourth order convergence in h, as depicted in Figure 6. The
maximum CFL measured during the course of the simulation was 40.7.

We also applied the presented method to the simulation of a propagating
interface using a level set formulation. A “narrow band” formulation is easily
accomplished with the present method by truncating the detail coefficients that
are far from the interface. We consider the well-established 2D deformation test
case which amounts to the propagation of a circle subject to the same velocity
field as above. Figure 5 depicts the grid adaptation and comparing to Figure 4,
one can clearly see the restriction of the refinement to a small neighborhood
around the interface. We measure the error of the area encompassed by the
interface at the final time and compare it against a non-adaptive particle level
set method [9] and against the “hybrid particle level set method” of Enright et

al. [7]. Figure 7 displays this comparison and we find that our adaptive approach
performs favorably, which may be attributed in part to the adaptive character
and in part to the high order of the method.

3.3 Parallelization

Recently we have developed a Parallel Particle-Mesh (PPM) software library
[16] that facilitates large-scale calculations of transport and related problems
using particles. The library provides the mechanisms necessary to achieve good
parallel efficiency and load balancing in these situations where both meshes
and particles operate as computational elements. Figure 8 and Figure 9 depict
the parallel performance of the library for a Navier-Stokes solver based on the
vortex method. The calculations were run on the Cray XT3 at the Swiss National
Supercomputing Centre (CSCS). Our current work aims at implementing the
adaptive techniques described herein into the parallel framework of the PPM
library.
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Fig. 6. ε-refinement study; the data points correspond to ε = 2−p × 10−3 for p =
0 , . . . , 10. The triangle represents 2nd-order convergence. N is the number of active
grid points/particles.
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Fig. 7. Plot of relative error of the area enclosed by the interface against degrees of
freedom: Hieber & Koumoutsakos [9] ( , particles at time t=0), Enright et al.[7]
( , auxiliary particles at time t=0 and , grid points) and present method ( ,
active grid points at time t=0, , active grid points at the final time).
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Fig. 8. Parallel scaling of a particle-based Navier-Stokes solver built using the PPM
library. The calculations were performed on the Cray XT3, with 524,288 particles
per CPU. Curves denote double precision ( ), and single-precision ( ) results,
respectively.
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Fig. 9. Parallel Efficiency of a PPM-based Navier-Stokes solver. Curves denote double
precision ( ), and single-precision ( ) results, respectively.
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4 Conclusions

We present multiresolution particle-mesh methods for simulating transport equa-
tions. We outline two methods introducing enhanced dynamic adaptivity and
multiresolution capabilities for particle methods. The first method is based on
an adaptive global mapping from a reference space to physical space for the
particle locations; it has been successfully applied to the evolution of an ellip-
tical vortex in an inviscid incompressible fluid. The second method is based on
a wavelet multiresolution decomposition of the particle function representation.
It is equipped with a Lagrangian adaptation mechanism that enables the sim-
ulation of transport problems and interface capturing problems independent of
the CFL number. We have presented results of an interface tracking problem
where the method has shown to have superior volume conservation properties.
We are currently working on the application of this method to the Navier-Stokes
equations.
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