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Summary. We present a new method to generate spatial motion constraints for sur-
gical robots that provide sophisticated ways to assist the surgeon. Surgical robotic
assistant systems are human-machine collaborative systems (HMCS) that work inter-
actively with surgeons by augmenting their ability to manipulate surgical instruments
in carrying out a variety of surgical tasks. The goal of “virtual fixtures” (VF) is to
provide anisotropic motion behavior to the surgeon’s motion command and to filter
out tremor to enhance precision and stability. Our method uses a weighted, linearized,
multi-objective optimization framework to formalize a library of virtual fixtures for
task primitives. We set the objective function based on user input that can be ob-
tained through a force sensor, joystick or a master robot. We set the linearized subject
function based on five basic geometric constraints. The strength of this approach is that
it is extensible to include additional constraints such as collision avoidance, anatomy-
based constraints and joint limits, by using an instantaneous kinematic relationship
between the task variables and robot joints. We illustrate our approach using three
surgical tasks: percutaneous needle insertion, femur cutting for prosthetic implant and
suturing. For the percutaneous procedures we provide a remote center of motion (RCM)
point that provides an isocentric motion that is fundamental to these types of proce-
dures. For femur cutting procedures we provide assistance by maintaining proper tool
orientation and position. For the suturing task we address the problem of stitching in
endoscopic surgery using a circular needle. We show that with help of VF, suturing
can be performed at awkward angles without multiple trials, thus avoiding damage to
tissue.

22.1 Introduction

Robotic surgical assistance is an emerging technology of human-computer cooper-
ation to accomplish delicate and difficult surgical tasks. Examples of surgical assis-
tant systems can be seen in laparoscopic surgery [1, 2, 3, 4, 5], microsurgery [6, 7, 8],
orthopedic surgery [9] and sinus surgery [10]. The Intuitive daVinci robotic sur-
gical system [3] and the Computer Motion Zeus robotic surgical system [4] are
two commercialized surgical telemanipulators which are capable of performing
remote telerobotic laparoscopic surgery. Although most of the teleoperated sys-
tems are admittance-controlled microsurgical robots ([6, 11, 12, 13, 14]), based on
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force–reflectingmaster–slave configurations, some of the teleoperated robotic aug-
mentation systems employ a passive input device for operator control [7], while
others are joystick controlled [10].

Most surgical procedures in which robots are called for assistance are char-
acterised by restricted access to the workspace as well as constrained manip-
ulation of the surgical tool. In such cases, the surgeons’ ability can be aug-
mented by techniques such as virtual fixtures (VF). Virtual fixtures, which have
been discussed previously in the literature for both telerobotic and cooperative
robots [15, 16, 17, 18, 19, 20], are algorithms which provide anisotropic behavior
to surgeons motion command besides filtering out tremor to provide safety and
precision.

An important case of virtual fixtures are forbidden regions, where the surgical
tool is restricted to a certain region in the workspace. Davies et al. [15] set active
constraints to constrain the robot to cut the femur and tibia within a permitted
region for prosthetic knee surgery. Park et al. [16] developed sensor-mediated
virtual fixtures that constrain the robot’s motion or create haptic feedback di-
recting the surgeon to move the surgical instruments in a desired direction. They
applied a virtual wall based on the location of the internal mammary artery ob-
tained from a preoperative CT scan to guide a surgeon’s instrument during
teleoperated coronary bypass. The recent work at JHU by Okamura, Hager et
al. on virtual fixtures [17, 18, 19] used admittance control laws to implement
vision-based guidance virtual fixtures for retinal vein cannulation. These works
are based either on a specific robot type or on a specific task.

This chapter presents a new method to implement virtual fixtures for surgical
assistant robots. We extend the work of Funda et al. [21] by applying the method
to generate complicated virtual fixtures based on the human’s input for surgical
assistant robots. Funda presented an optimal motion control method to control
both redundant and deficient robotic systems based on motion constraints. Our
approach [22] uses a weighted, linearized multi-objective optimization framework
to formalize a library of virtual fixtures for task primitives. Our paradigm covers
the implementation of guidance virtual fixtures, forbidden region virtual fixtures
and combinations of both for generating spatial motion constraints to control
the robotic assistant. It is independent of manipulator characteristic and can be
used for admittance or impedance type.

22.2 Constrained Motion Control for Virtual Fixtures

Virtual fixtures are task-dependent computer-generated constraints that limit
the robot’s movement into restricted regions and/or influence its movement along
desired paths. The goal of the virtual fixture algorithm is to generate a sequence
of incremental motion commands for the robot such that certain task-specific
constraints are satisfied. To keep the system intuitive, the incremental motion
should be proportional to the user input. For a surgical assistant robot, it is
very important to be able to place absolute bounds on the spatial motion of the
different parts of the instrument.
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Often, surgical robots are designed to be kinematically redundant for pro-
viding dexterous assistance. At the same time, certain tasks such as passing a
tool through a cavity place certain requirements and constraints on the robot
motion and restrict dexterity. Indeed, some special purpose designs for mini-
mally invasive surgery, such as the IBM LARS [23] and the JHU Steady Hand
robot [24] provide such constraints through mechanism design. Other robots
such as the Intuitive daVinci [3] and Endorobotics [25] combine a kinematically
constrained remote center of motion (RCM) mechanism with a kinematically
redundant wrist. Thus, it is important for the robot control algorithm to be able
to accommodate unique, special purpose mechanical designs (such as kinemati-
cally redundant or deficient mechanisms). In this section we present an overview
of constrained optimization approach, followed by certain approximations that
allow us to execute the algorithm in real-time.

22.2.1 Constrained Optimization Approach

We begin by defining different task frames that specify a point and/or direction
of interest associated with different parts of the instrument. For each of the task
frames, we define actual state variables x and desired state variables xd. The
state, x = x(q + Δq) is a function of joint variables q and joint incremental
motion Δq. The desired state, xd = xd(τ , q) is a function of human’s input τ ,
joint variables q.

We can formulate a constrained optimization problem to generate the con-
strained motion for a certain task frame. The most general formulation for this
problem is:

Δqcmd = argmin
Δq

C(x(q + Δq),xd)

s.t. A(x(q + Δq)) ≤ b
(22.1)

where C(x(q + Δq),xd) is the objective function associated with the difference
between the actual state variables x and the desired state variables xd. The
inequality, A(x(q + Δq)) ≤ b represents the constraint conditions. These con-
straints are used to force the solution vector Δqcmd to satisfy certain critical
requirements, such as restricting the motion of a part of the instrument within
a strict motion envelope.

We can combine the constrained motions on different task frames for generat-
ing complicated constrained motions. For an example, assume the virtual fixture
for task frame {i} is

Δqcmd = arg min
Δq

Ci(xi(q + Δq),xd
i )

s.t. Ai(xi(q + Δq)) ≤ bi

(22.2)

Then the complicated virtual fixtures generated by constraining on task frames
{i, (i = 1, ..., N)} can be formulated as

Δqcmd = arg min
Δq

N∑
i=1

wiCi(xi(q + Δq),xd
i )

s.t. Ai(xi(q + Δq)) ≤ bi

i = 1, · · · , N.

(22.3)



384 M. Li, A. Kapoor, and R.H. Taylor

where wi specifies the relative importance of minimizing the objective function
error for different task frames. The combination of a weighted objective function
and an additional set of task constraints allow us to exploit the geometry of a
particular task space motion and effectively trade off the various performance
criteria. Our formulation could easily integrate any behavior, such as asserting
joint limits, resolving redundancy or incorporating haptic information to the
control strategy.

In this work we discuss virtual fixtures for five task primitives that form the
basis of a virtual fixture library. The nomenclature used is presented in the table
below.

xi Cartesian state of task frame {i}. xi ∈ �6. Subscript i
can be omitted for compactness.

xd
i Desired Cartesian state of task frame {i}.

xp,i Translational component state of task frame {i}. xp,i ∈
�3.

xr,i Rotational component state of task frame {i}. xr,i ∈ �3.
Δx Incremental Cartesian motion. Δx ∈ �6.
Δq Incremental joint motion. Δq ∈ �n, n is number of

robot joints.
J(q), J Jacobian relating the instantaneous kinematics to joint

motion.
δ Signed distance error between desired and current task

frame. δ ∈ �6

δp Translational component of error.
δr Rotational component of error.
l̂ Orientation of task frame. l̂ ∈ �3. E.g. ẑ component of

tool tip rotation matrix.

l̂
d

Desired or reference orientation of task frame.
τ User input, from force sensor or joystick or master.
d̂ Predefined direction specified by user. d̂ ∈ �3. E.g nor-

mal to plane, direction of path.
εi Small positive numbers. i = 1, 2, . . .

Using the formulation shown in (22.3), one or more of these primitives applied
to one or more task frames can be combined to create complex fixtures. Compli-
cated surgical tasks can then be composed from a sequence of these customized
virtual fixtures. The names and descriptions of these task primitives are listed
below.

• Stay on a point: Keep the tool position represented by xp fixed on the
reference position xd

p.
• Maintain a direction: Keep the tool orientation represented by l̂ aligned

with the reference direction l̂
d
.
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• Move along a line: Keep the tool position, xp on line L which has the
direction d̂ and passes through point L0. At the same time, the tool should
move along L proportional to the human’s input τ .

• Rotate around a line: Keep the tool orientation, l̂ perpendicular to line L
which has the direction d̂ and passes through point L0. At the same time,
the tool should rotate around L proportional to the human’s input τ .

• Stay above a plane: Keep the tool position, xp stay above a plane Π

which has the normal direction d̂ pointing to the free half space and passes
through point P0. At the same time, the tool should move proportional to
the human’s input τ .

We define a desired nominal behavior together with constraints specifying how
far actual behavior can differ from the nominal for each of these primitives. The
terms in the objective function of (22.3) are used to relate the desired motion
to user input, while the constraints place an absolute bound on the motion.
In Sec. 22.3 we elaborate on constraints for each of the five primitive virtual
fixtures.

22.2.2 Linearly Constrained Control

The general form of the optimization problem desribed by (22.3) has many
variants, both for the objective function and the constraints. As in Funda’s
work [21], we specialize (22.3) to produce a quadratic optimization problem
with linear constraints. We use linear constraints because of the efficiency and
the robustness of the computation. The objective function is a two-norm of
motion error in different task frames. Because the velocity of a surgical robot is
relative low, we can use robotic instantaneous kinematics to map the different
task frames to joint variables. The incremental motion of a certain task space
is approximated as Δx = J(q)Δq. Then we set an optimization problem over
incremental joint motion Δq. The cost function for task frame {i} has the form∥∥Ji(q)Δq − Δxd

i

∥∥2
2, and the constraint has the form Ai · Ji(q)Δq ≤ bi. This

inequality is linear in terms of our variables Δq. The matrix Ai and vector bi

are based on the virtual fixture primitive for task frame {i}.
Then the complicated virtual fixtures generated by combining task frames

{i, (i = 1, ..., N)} can be expressed as⎡⎢⎣A1 0
. . .

0 AN

⎤⎥⎦
⎡⎢⎣ J1(q)

...
JN (q)

⎤⎥⎦Δq ≤

⎡⎢⎣ b1
...

bN

⎤⎥⎦ (22.4)

where Ji(q) (1 ≤ i ≤ N) is the Jacobian matrix that maps Cartesian velocities
of frame {i} to the joint space. If the constraints are placed on the rotational
(with subscript r) and translational (with subscript p) components of the same
frame, the virtual fixtures can be expressed as[

Ap

Ar

]
J(q)Δq ≤

[
bp

br

]
(22.5)
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Our control algorithm need not to be modified for singularity, but a safety
check is important for actual robot control. Our optimization algorithm forms a
least squares problem with linear inequality constraints (algorithm LSI in [26]).
At each control loop, we check the solution of LSI before we command robot
to move. If the singularity is reached, then there will be no solution for LSI. If
the robot is very close to singularity, the solution for the LSI will be extremely
large. In both cases, we should stop the robot. Moreover an objective term
‖WqΔq‖2

2 can be added to the overall objective function, where Wq is a diagonal
matrix specifying the relative weights between different joints. Such an objective
function ensures reasonable and smooth joint velocities when the robot is near
singular points. The weights are chosen empirically and we typically use weights
in the range 1 × 10−3 to 1 × 10−9.

Additonally, it is straightforward to incorporate a per joint rate limit by using
additional inequality constraints of the form[

I
−I

]
Δq ≤

[
qmax − q
q − qmin

]
(22.6)

Besides this, the norm of the cost function gives an indication if an appropriate
solution that would satisfy all the constraints is possible. A large norm implies no
appropriate solution exists for the given set of constraints. Under such conditions
the safest behavior for a surgical robot would be to stop motion. Alternatively
some constraints can be relaxed if possible, but we suggest that this should be
done only through some user intervention.

22.3 Basic Geometric Constraints for the Virtual Fixture
Library

Next we present linearized approximations of constraints for five task primi-
tives. That is, we provide a method to set A and b in the inequality linear
constraints (22.4). We model the robot ith task frame as a purely kinematic
Cartesian device with the task frame position xp ∈ �3 and the task frame
orientation given by unit vector l̂ ∈ �3. Given a reference target, we define
the signed distance error δ =

[
δp

T , δr
T
]T ∈ �6 from the reference target

frame to the task frame. The incremental motion for each computational loop
is Δx =

[
Δxp

T , Δxr
T
]T ∈ �6. We denote translational components by sub-

script p, and rotational components expressed in Rodriguez angles by subscript
r. We assume that both the distance error δ and the incremental motion Δx
are very small and that for small angles, δr and Δxr approximate Euler Angles.
ε1,2,3,4,5 are small positive values.

22.3.1 Stay on a Point (VF1)

The first basic geometric constraint we describe is to keep the task frame position
on a given target point xd

p ∈ �3. The signed errors are then set as δ ≡ [δT
p , δT

r ]T =
[(xp − xd

p)T ,0T ]T . We require that after the incremental motion, the task frame
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position xp + Δxp to be as close to the target point xd
p as possible. As shown in

Fig. 22.1(a), the constraint can be expressed as

‖δ + Δx‖2 = ‖δp + Δxp‖2 ≤ ε1 (22.7)

which implies that the various projections of vector δp + Δxp on the pencil
through xd

p are less than ε1. We approximate the sphere of radius ε1 by consid-
ering a polyhedron with n×m vertices, and rewrite (22.7) by linear inequalities.[

cosα1i cosβ1j cosα1i sin β1j sin α1i 0 0 0
] · (δ + Δx) ≤ ε1,

i = 0, 1, · · · , n − 1; j = 0, 1, · · · , m − 1.
(22.8)

where α1i = i2π
n and β1j = j2π

m . Then we set A and b as

A =

⎡⎣ cosα11 cosβ11 cosα11 sinβ11 sin α11 0 0 0
· · ·

cosα1n cosβ1m cosα1n sinβ1m sin α1n 0 0 0

⎤⎦ , b =

⎡⎣ ε1
· · ·
ε1

⎤⎦− Aδ.

(22.9)
Note that (22.7) and (22.8) are equivalent only if m = n = ∞. For finite values
of m and n, (22.8) results in a polyhedron. As the value of n × m increases,
the volume of polyhedron reduces and the polyhedron approaches the inscribed
sphere with radius ε1. Therefore, the linearized conditions of (22.8) are a better
approximation to (22.7) for larger values of n × m. However, more constraints
require more time to solve the optimization problem. From (22.8), the minimum
value for n×m to obtain a symmetrical polyhedron is 4×4, though 3×3 gives a
bounded polyhedron with least value of n×m. On a Pentium IV, 2.0GHz, 512MB
computer the average time for each computational loop is 4.1 ms to solve the
problem with 8 constraints and 7 decision variables, 7.2 ms if the number of
constraints is 16 and 14.3 ms if the number of constraints is 32.

22.3.2 Maintain a Direction (VF2)

This basic geometric constraint is to maintain the task frame orientation l̂ along
a given direction l̂

d
. The signed errors are then set as δ ≡ [δT

p , δT
r ]T = [0T , (l̂d ×

l̂)T ]T . We require that after the incremental motion, the angle between the new

task frame orientation l̂
′
and l̂

d
is close to zero. As shown in Fig. 22.1(b), we can

approximate this constraint for a small angle assumption as

‖δr + Δxr‖2 ≤ ε2 (22.10)

where ε2 defines the size of the range that can be considered as the desired direc-
tion. Applying the approach described in Sec. 22.3.1 to the angular components,
we set A and b as

A =

⎡⎣ 0 0 0 cosα21 cosβ21 cosα21 sin β21 sin α21
· · ·

0 0 0 cosα2n cosβ2m cosα2n sin β2m sin α2n

⎤⎦ , b =

⎡⎣ ε2
· · ·
ε2

⎤⎦− Aδ.

(22.11)
where α2i = i2π

n and β2j = j2π
m .
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ε1

δp

Δxp

δp + Δxp

xd
p

xp

l̂

l̂
′

l̂
d

α

ε2

δr

δr + Δxr

Δxr

(a) (b)

task frame
orientation at time t

task frame
orientation at time t + Δt

Fig. 22.1. Geometric relation for (a) “stay on a point” and (b) “maintain a direction”

22.3.3 Move Along a Line (VF3)

The next basic geometric constraint is to guide the task frame position to move
along a reference line in 3D space, given by L : L(s) = L0+d̂·s, s ∈ (−∞, ∞). We
require that after each incremental motion, the translational component of the
task frame xp +Δxp to be along (or close to) the reference line (see Fig. 22.2(a)).
If the actual position is off the path because of some external disturbance, the
control algorithm should drive the task frame back to the line. The geometric
constraint should envelop the reference line and absorb the disturbance.

From the given line L, we can compute the closest point, xcl
p to xp on L. The

signed errors are then set as δ ≡ [δT
p , δT

r ]T = [(xp − xcl
p )T ,0T ]T . We define

a vector up as the projection of vector δp + Δxp on the plane Π which is
perpendicular to line L. As shown in Fig. 22.2(a), our requirement is equivalent
to ‖up‖2 be close to zero, which can be written as

‖up‖2 ≤ ε3 (22.12)

To determine up from δp + Δxp we need to compute a rotation matrix R3,
which would transform plane Π to the XY plane of the world (or robot) coordi-
nate frame. Though R3 is not unique, to compute R3, we first define an arbitrary
vector, which is not aligned with l̂, then we generate two unit vectors that span
the plane Π . Any unit vector with arbitary angle α3 in the plane Π with o as
origin can be written in the world coordinate frame as

R3
[
cosα3 sinα3 0

]T (22.13)
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Π

Π
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δr

δr + Δxr

Δxr
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(a) (b)

task frame
orientation at time t

task frame
orientation at time t + Δt

Fig. 22.2. Geometric relation for (a) “move along a line” and (b) “rotate around a
line”

Form (22.12) implies that the projections of up on the pencil at o in the
plane Π be less than ε3. We approximate the circle of radius ε3 by considering
a polygon with n vertices centered at the origin, and rewrite (22.12) as[

R3
[
cosα3i sin α3i 0

]T 0 0 0
]

· (δ + Δx) ≤ ε3,

i = 0, 1, · · · , n − 1.
(22.14)

where α3i = i2π
n . We can set A and b as,

A =

⎡⎢⎣ R3
[
cosα31 sin α31 0

]T 0 0 0
· · ·

R3
[
cosα3n sin α3n 0

]T 0 0 0

⎤⎥⎦ , b =

⎡⎣ ε3
· · ·
ε3

⎤⎦− Aδ. (22.15)

22.3.4 Rotate Around a Line (VF4)

Given a line L, with direction d̂, the geometric constraint is to rotate the task
frame orientation around the lines while keeping the orientation of the task
frame on the plane Π that is perpendicular to L. Even if an external disturbance
changes the orientation away from the plane Π , our virtual fixture is required
to drive it back.



390 M. Li, A. Kapoor, and R.H. Taylor

As shown in Fig. 22.2(b), l̂Π is the unit vector of the projection of the
orientation of the task frame l̂ on plane Π . The signed errors are set as
δ ≡ [δT

p , δT
r ]T = [0T , (̂lΠ × l̂)T ]T . We define a vector ur as the projection of

vector δr + Δxr on the plane Π . Our constraint that after the incremental ro-
tation the task frame is on plane Π is equivalent to ‖ur‖2 being close to zero:

‖ur‖2 ≤ ε4 (22.16)

We compute R4 in the same fashion as R3. Then we write (22.16) as[
0 0 0 R4

[
cosα4i sin α4i 0

]T ] · (δ + Δx) ≤ ε4,

i = 0, 1, · · · , n − 1.
(22.17)

where α4i = i2π
n . Then A and b are set as:

A =

⎡⎢⎣ 0 0 0 R4
[
cosα41 sinα41 0

]T
· · ·

0 0 0 R4
[
cosα4n sinα4n 0

]T
⎤⎥⎦ , b =

⎡⎣ ε4
· · ·
ε4

⎤⎦− Aδ. (22.18)

22.3.5 Stay Above a Plane (VF5)

This basic constraint is to prevent the task frame position from penetrating the
given plane Π . From the given plane Π(s), we can easily compute xcl

p on Π(s)
which is the closest point to xp. The signed errors are set as δ ≡ [δT

p , δT
r ]T =

[(xp − xcl
p )T ,0T ]T .

As shown in Fig. 22.3, this constraint can be expressed by

d̂ T · (δp + Δxp) ≥ 0 (22.19)

where d̂ is the unit normal direction of Π(s) and points to the free half space.
Then A and b are set as

A =
[−d̂ T 0 0 0

]
,

b = −Aδ
(22.20)

If we further want to confine the task frame position on the plane, we can add
constraints

d̂ T · (δp + Δxp) ≤ ε5 (22.21)

where ε5 is a small positive number, which defines the range of error tolerance.
Then A and b are set as

A =
[−d̂ T 0 0 0

d̂ T 0 0 0

]
, b =

[
0
ε5

]
− Aδ. (22.22)

All the small values ε1,2,3,4,5 specify how much the robot can drift away from
the reference direction. If they are small (close to zero), then the user can only
move the manipulator along the desired direction. If they are relatively large,
then the user has more freedom to deviate from the programmed virtual fixture.
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at time t
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Fig. 22.3. Geometric relation for “stay above a plane”

22.4 Applications and Experiments

In this section we demonstrate customized virtual fixtures generation using the
virtual fixture library on task primitives [22, 27]. As a preliminary test-bed we
have used a “remote center of motion” JHU Steady Hand robot [24], which
is equipped with a tool holder and a 6-DoF force-torque sensor (ATI Nano43
F/T transducer) mounted on the tool handle. The Optotrak (Northern Digital
Inc, Waterloo, CA) infrared optical position tracking system was used for robot
calibration. Our control algorithm is independent of manipulator characteristic.
Moreover, the desired user input can be obtained either from a master robot, a
joystick or a force sensor attached to the robot.

22.4.1 Application Task 1: Path-Following

Numerous surgical situations require surgeons to follow a predetermined path,
while maintaining certain other constraints. One such example is the cutting
procedure for a knee prosthetic implant. Knee prosthetic implants are used to
replace the bearing surfaces of the knee. Normally when done by manual tech-
nique, the surgeon positions cutting blocks (jigs) on the bone and then cuts
the femur and tibia to the required shape using a hand held saw to mount the
prosthetic components in position. In the robotic procedure adopted by systems
such as Robodoc [28], Acrobat [29] and CASPAR [30], a mill is used for the
cutting procedure, and the blade is required to cut along the planned path on
the bone. Meanwhile, the cutting edge of the tool should be kept perpendicular
to the cutting plane in order to provide more efficient force.

Modeling of Task

We model the femur cutting task as a task to guide the tip of a long straight
tool following a 2D b-spline curve C1 in plane Π while keeping the tool shaft
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force
sensor
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Body
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tool

Robot

Body
Rigid

C1

C2

xp,t

xp,s

xcl
p,t

xcl
p,s

ox y

z

Π
d̂C1

d̂C2

Fig. 22.4. (left) Experimental setup, (right) Geometric relation for the task “path-
following”

perpendicular to the plane. The geometric relation is shown in Figure 22.4. We
assume that the path C1 and the cutting plane are known in the robot coordinate
frame by using an appropriate registration method. During the procedure, the
tip of the tool (task frame {t}) is allowed to move along the planned path
C1. At the same time, a point, xp,s on the tool shaft (task frame {s}) is only
allowed to move along the second path C2, which is a translation of C1 above
the target plane. xcl

p,t is the closest point to the tip of the tool on C1 and xcl
p,s

is the projection of xcl
p,t on C2. We use each of these points and the tangent at

these points to create two sets of constraints according to formulation VF3 in
Sec. 22.3.3.

Experimental Results

We mounted a straight tool on the robot end-effector. We drew a set of line
segments on a flat plastic plate, assumed to be a plane, and attached Optotrak
LEDs to the plate. We used a digitizer to gather sample points on the line seg-
ments and then we generated a 5th degree b-spline curve in the target coordinate
frame by interpolating these sample points. We used an Optotrak to record the
tool tip position and the tool orientation. The tip position error is defined as the
distance from the tool tip position to the reference b-spline curve.

The average tip position error of five trials is 0.32 ± 0.19 mm. The trajectory
of the tool tip with respect to the b-spline curve and the error profile of a
trial are shown in Figure 22.5. The large errors occur at the sharp turnings.
The time for each loop is around 150 ms, in which more than 140 ms is for
communication between the robot and the Optotrak reading via a local network.
The communication delay contributes to the large errors on the sharp turnings
where the tangent direction changes dramatically.

To evaluate the effect of the communication delay, we compared the tip error
with different time intervals for the control loop. We removed the communication
between the robot and Optotrak from the loop, only robot encoders and kine-
matics were used to record the tool tip motion. As shown in Fig. 22.6, the error



22 Telerobotic Control by Virtual Fixtures for Surgical Applications 393

350

360

370

−100

−50

0
226
228
230

 

X (mm)
Y (mm) 

Z
 (

m
m

)
Tip trajectory
B−spline path

x18 x19 x20
v23

v24

v25

v26

v27

s02

s0
3

Fig. 22.5. (left) The trajectory of the tool tip with respect to the reference b-spline
curve (right) The magnitude of the tool tip position error measured by Optotrak in
“path-following” task

0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

parameter of bspline curve

E
rr

or
 (

m
m

)

0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

parameter of bspline curve

E
rr

or
 (

m
m

)

−35

−30

−25

−20

−15

−10

−5
−20 −10 0 10 20 30 40

Y (mm)

X
 (

m
m

)

u=0.59

u=0.42 
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(right) bspline curve and the position on which the large errors occur.

at the sharp turning decreased in the case that the time interval of each loop is
shorter. In this case, the velocity is updated more frequently. Especially at the
sharp turning, before the tool tip goes too far, the new velocity is computed and
applied. The prompt action of the robot reduces the error. With the same time
interval (150 ms), the error recorded by the Optotrak is larger than that by the
robot encoders and kinematics. This is due to the system registration error and
the accuracy of the Optotrak.

22.4.2 Application Task 2: Virtual RCM

In percutaneous needle insertions and also in robotic-assisted minimally invasive
surgery, the surgical tools are inserted into the human body through a port. It is
highly desireable to limit the motion of the tools at the entry port, and provide
sufficient degrees of freedom for manipulation of tools inside the body. Some
surgical robots [3, 23, 25] constrain the tool motion by providing a mechanical
isocenter mechanism also known as remote center of motion (RCM). This task
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demonstrates a virtual remote center of motion (RCM) configuration, which
provides an isocentric motion that is fundamental to percutaneous procedures.
Our virtual fixture paradigm can implement virtual RCM on any given position
other than mechanical RCM. Moreover, it can also be used in robots which do
not provide a mechanical RCM.

o

Π

l̂Π

Pt

l̂

d̂a

d̂

γ

γ

δr

d̂1 = l̂ × d̂a

d̂2 = d̂1 × d̂a

Fig. 22.7. Geometric relation for the task “Virtual RCM”

Modeling of Task

A surgical procedure using the virtual RCM can be modeled as to keep a selected
position on the tool staying on a given insert port on a patient skin, while moving
the orientation of the tool to follow the preplanned trajectory. The position and
tool trajectory can be defined by the surgeon. In our work, we simplify the task
as to keep the tip of a straight tool pivoting on a given point Pt (which is other
than any mechanical RCM of the given robots) while rotating the tool shaft
around a given direction d̂a with a fixed angle γ. The cone shape in Fig. 22.7
shows the desired trajectory of the tool shaft. We have combined the motion
primitives VF1 and VF4 as presented in sections 22.3.1 and 22.3.4 respectively
to create the virtual fixture for this task.

Experimental Results

For the experiment we set the given direction as da = [ 0 −0.2 1 ]T , the fixed
angle as γ = 15 deg and the pivot point as Pt = [ 0 0 −10 ]T (mm) with respect to
the robot mechanical RCM. The values (εi) for positional and angular tolerance
was selected as 0.1mm and 0.2deg respectively.

The trajectory of the tool and the error profile, which are measured by the
robot encoders, are shown in Figure 22.8. The average pivot point position error
for five trials is 0.01 ± 0.01 mm measured by the robot encoders. The average
tool orientation angle error is 0.03 ± 0.02 deg.
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Fig. 22.8. Experimental results of the “virtual RCM” task measured by the robot
itself. (left)The trajectories of a point on the tool shaft and the virtual RCM points.
The circle shows the actual trajectory of a point on the tool shaft, the dots close to the
circle represents the desired trajectory of the point. (right) The error profile for both
the pivot point position error and the tool orientation angle error.

22.4.3 Application Task 3: Suturing

Suturing is considered to be one of the most difficult and time consuming mini-
mally invasive surgical procedures. The surgeon faces the challenge of the limited
and constrained motion as well as the loss of direct visualization. The suturing
task was observed and analyzed as performed in training videos. This task in-
volves the following steps 1) (Select) Determine a suitable entry and exit point
for the suture needle leaving sufficient room from the edge to be sutured together.
2) (Align) Grasp the needle, move and orient it such that the tip is aligned with
the entry point. 3) (Bite) Entry and exit “bites” are made such that the needle
passes from one tissue to the other. 4) (Loop) Create a suture loop to tie a knot.
5) (Knot) Secure the knot under proper tension.

In this application, we address the align and bite steps of the suturing process,
where the primary challenges are manipulation of a curved needle under non-
ideal haptic conditions using a robot with complex kinematics. In the align
step, the goal is to move the robot to align the position and the orientation
of the suture needle such that it pierces the tissue correctly, while minimizing
extraneous motion of the needle and robot. The goal of the bite step is to move
the needle tip from the entry point to the exit point with minimum damage to
the tissue through which the needle passes.

Task Modeling

We assume that the entry and the exit points are known in the robot coordinate
frame. These could be specified by the surgeon using a tracked instrument or
by using a computer vision system registered to the robot coordinate frame, to
determine suitable points on the surface based on distance from the edge to be
sutured together. Fig. 22.9 (top left) shows the various task frames {i} associated
with the suturing task.
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ŷ
ẑ
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In our approach the required VF constraints for each substep are analyzed
and broken into a combination of one or more of the basic constraints. We make
use of the common structure between the different substeps and construct gen-
eralized constraints that take the desired target into consideration. Furthermore
we utilize the sequential nature of the task to switch between different substeps.
The switch could be triggered when the error between the current value and
target decreases below a threshold. Fig. 22.9 shows these substeps, along with
the entry, and the exit points on a phantom tissue.

Align Step. (Substep 1) First the needle tip is allowed to move in a straight line
such that the needle tip coincides with the desired entry point; at the same time
its orientation is allowed to change only about an axis such that this motion
will result in the tangent at the needle tip being coincident with the normal
to the surface at the entry point by using primitives VF3 and VF4. (Substep
2) In the next substep, the orientation of the normal to the needle plane is
allowed to change, such that the needle plane coincides with the line joining the
entry and exit points. Assistance is provided by not allowing any motion of the
needle tip or the tangent at the needle tip by using the using primitives VF1 and
VF2 respectively. (Substep 3) Once the desired orientations are reached we allow
the surgeon to penetrate the tissue by a small distance, (Substep 4) followed by
motion constraints that would let the surgeon bring the tangent at the needle tip
to coincide with the desired entry direction without changing the plane normal
and tip position by using primitives VF2 and VF1 repectively. The align step is
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completed once the desired orientation is reached, which is computed using the
entry and exit points specified by the surgeon and the needle radius. In all these
substeps only those motions that bring the needle closer to the desired position
and orientation are allowed.

Bite Step. (Substep 5) Once the entry and exit points are determined, and the
radius of needle is known, clearly the trajectory of the needle tip that would cause
minimum damage to the tissue lies on a circle with the entry and exit points as
points on a chord and with radius equal to the needle radius. To ensure sufficient
depth of penetration in the tissue we ensure that the needle plane is parallel to
the line joining the entry and exit points and the surface normal at the entry
point. In this step our constrained motion algorithm permits only those motions
that satisfy these constraints by using primitives VF1 and VF2 for needle center
and a normal to the needle plane respectively.

Experimental Results

For these experiments we selected a 3/8 circle 30mm cutting needle from Ethicon
(needle diameter 1mm). We recorded the encoder readings of the robot joints
and used direct kinematics of the robot to verify our algorithm by measuring the
errors between the ideal target path and that followed by the robot. Fig. 22.9
(bottom right) shows the progression of different substeps for one of the trials.
Fig. 22.9 (bottom left) shows the phantom with a portion cut out so that the
actual path taken by the needle is visible, the entry and exit points are 13.5mm
apart. As seen in Fig. 22.9, we have selected an angle that places limits on
performing the suture manually, to emphasize the ability of our algorithm to
assist in non-favorable orientations.

Table 22.1. The error (mm) in ideal and actual points as measured by the Optotrak

Entry Exit

Robot 0.6375 0.7742
Manual - 2.1

Fig. 22.10 shows the errors between actual and ideal robot motion as measured
by the robot encoders and kinematics for different substeps. The values (εi) for
positional and angular tolerance were selected as 0.5mm and 0.25deg. We also
demonstrate our algorithm using a phantom tissue. Since the phantom is opaque,
the measurements available are the entry and exit points of the needle. Table 22.1
presents the differences between the user specified targets and the actual ones
as measured by the Optotrak.

As expected, the errors measured by the Optotrak are higher than measured
by encoders alone, because this represents the overall accuracy of the system,
which also includes errors arising from calibration of the needle and accuracy
of the Optotrak (0.1mm). The residual calibration errors appear as errors in
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the entry point errors in Table 22.1. Average errors for free hand suturing as
performed by four users (5 trials each), using the same needle holder and without
robot assistance, are presented in Table 22.1. We believe that robot assistance
can improve accuracy especially in a constrained environment such as that of
endoscopic surgery. Moreover, robot assisted motions did not require multiple
trials and large undesirable movements of tissue, which is often the case in free
hand suturing.

22.5 Conclusion

This chapter described a new method to generate spatial motion constraints for
surgical robots that provide sophisticated ways to assist surgeons. Our approach
is based on the optimized constrained control. We set the objective function
based on the user input that can be obtained through a force sensor, joystick or
a master robot. We set the linearized subjective function based on five basic geo-
metric constraints. The combinations of one or more basic geometric constraints
for the same or different task frames could generate customized virtual fixtures
for complicated surgical tasks. Theoretically, different virtual fixtures can be im-
plemented by using this method if we know the instantaneous kinematics of the
manipulator and the geometric constraints [31].

Our approach provides the link between surgeon-understandable task behav-
iors and low level control for surgical assistance robots. The strength of this
approach is that it is extensible to include additional constraints that are im-
portant in robotic assisted surgery, such as collision avoidance, anatomy-based
constraints and joint limits by using the instantaneous kinematic relationship
between the task variables and the robot joints. In [32, 33], we extended our al-
gorithm to create anatomy-based motion constraints for a path-following task in
a constrained workspace. We integrated a 3-D geometric model of the workspace
to generate virtual fixtures to guide the tool tip along the paths while preventing
the tool shaft from entering forbidden regions for sinus surgery.
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