
Towards Description and Optimization of
Abstract Machines in an Extensión of Prolog

2,3 José F . Morales1, Manuel Carro 2 , and Manuel Hermenegildo

1 U. Complutense de Madrid (UCM)
jfmcQfdi.ucm.es

2 T. University of Madrid (UPM)
{mcarro,herme}@fi.upm.es
3 U. of New México (UNM)

hermeOunm.edu

Abstract. Competitive abstract machines for Prolog are usually large,
intricate, and incorpórate sophisticated optimizations. This makes them
difñcult to code, optimize, and, especially, maintain and extend. This is
partly due to the fact that efñciency considerations make it necessary
to use low-level languages in their implementation. Writing the abstract
machine (and ancillary code) in a higher-level language can help harness
this inherent complexity. In this paper we show how the semantics of ba-
sic components of an efficient virtual machine for Prolog can be described
using (a variant of) Prolog which retains much of its semantics. These
descriptions are then compiled to C and assembled to build a complete
bytecode emulator. Thanks to the high level of the language used and
its closeness to Prolog the abstract machine descriptions can be manip-
ulated using standard Prolog compilation and optimization techniques
with relative ease. We also show how, by applying program transforma-
tions selectively, we obtain abstract machine implementations whose per­
formance can match and even exceed that of highly-tuned, hand-crafted
emulators.

Keywords: Prolog, Abstract Machines, Compilation, Optimization,
Program Transformation.

Introduction

Designing and implementing competitive "abstract" (or "virtual") machines is
not without dimculties. In particular, the extensive code optimizations required
for performance make development and, especially, maintenance and further

http://ucm.es

modification non-trivial. Implementing or testing new optimizations is often in-
volved, as decisions previously taken need to be revisited and low level and
tedious recoding is often necessary to test a new idea.

Systems based on virtual machines are typically composed of a compiler from
the source language (Cp) to bytecode language (CB, aimed at being fast to
interpret, for which an intermediate-level symbolic representation CA usually
exists), plus an emulator for CB written in a lower-level language Ce- In our
particular case, Cp is Prolog, CA is symbolic WAM code, and Ce is C.

Complexity of virtual machines and low level of Ce has led to several propos-
als in order to raise the level at which the virtual machine is written, while trying
to maintain the possibility of translating it to the in principie more efficient Ce
language. A particularly interesting possibility when Cp is a general-purpose lan­
guage (as in our case) is to use Cp itself to write its virtual machine. This has
been done for example in JavalnJava [1] and PyPy [2]. However, making these
implementations competitive with existing hand-tuned abstract machines is un-
doubtedly a challenge: JavalnJava reports initial slowdowns of approximately
700 times w.r.t. then-current implementations, and PyPy started at the 2000x
slowdown level.

This slowdown is largely due to the "semantic gap" existing between Cp and
Ce, even in the case of imperative and O.O. languages such as Java or Python.
Cp should be precise enough to describe the algorithms underlying the basic
operations of the abstract machine with, at most, a constant slowdown (Le.,
with no penalty regarding computational complexity). In order to achieve this,
and in addition to using improved compilation technology, we made changes to
the initial Cp in the form of extensions which make it easier to reflect (or control)
Ce characteristics not originally available such as, e.g., data sizes, alignments,
unboxing, etc. We will refer to this extended versión of Cp as C¡. A similar
approach has made it possible to, for example, reduce the slowdown of PyPy to
3.5-;— 11.0-f- in more recent versions [2].

The approach of coding completely the whole abstract machine in Cp or C¡
at once has the disadvantage of making it almost inevitable (as illustrated by,
e.g., PyPy) to start from a large slowdown and then work slowly towards regain-
ing performance. This makes it dimcult to use the generated virtual machines
as "production" software (which would therefore be routinely tested) and, espe-
cially, it makes it dimcult to study how a certain optimization will carry over to
a complete, optimized abstract machine.

We propose herein another possibility which is to proceed the other way
around by starting from a highly optimized abstract machine, keeping some
key elements coded in Ce and gradually replacing different pieces of code with
code written in Cj, making sure that no performance is lost at each step. In our
implementation, and following this approach, we have chosen to genérate the
bytecode fetching and decoding loop directly in Ce using the emulator genera-
tor of [3]. This automates the generation of efficient emulators, makes devising
and generating bytecode easy, and, notwithstanding, it makes it possible to write
the definitions of the abstract machine instructions in C¡. This is not at odds

with compilation to native code and just-in-time systems, where a sizable part
of the emulator machinery is still there in the form of runtime libraries.

We started with an efficient, WAM-based abstract machine for Prolog initially
coded in C and we rewrote parts of it in a variant of Prolog {C¡) which we
have termed ImProlog and which both extends and restricts Prolog. ImProlog
can be translated into very efficient C and at the same time its semantics is
cióse enough to Prolog so as to be able to reuse many compilation techniques
(certain analyses, specialization, etc.). This allows obtaining highly optimized
and specialized emulators while avoiding obscure, redundant implementations
or overuse of C macros. In addition, the combination of this approach with an
emulator generator makes it possible to carry out non-trivial optimizations, such
as instruction merging, automatically.

2 A Prolog Variant to Describe Virtual Machines

In this section we will describe our C¡ language, ImProlog, and the analysis and
code generation techniques used to produce highly efficient code from it.

2.1 New Features in the Language

ImProlog adds two features to Prolog that can be modeled as new language con-
structs (expressible, however, within standard Prolog):

Native types and operations on them: They are opaque ("hidden" types
in terms of the Ciao module system and assertion language [4]), and used
to reflect in C¡ the basic data representations of Ce and the data types re-
quired by the abstract machine (e.g., integers, floats, tagged words, etc.).

Mutable variables (mutvars): They associate an identifier (which can be
any first-order ground term) with an arbitrary term.

Two operations are defined over mutable variables:

Access: @MutVar acts as a functíon which returns the valué previously
stored in MutVar.

Assignment: MutVar <= Valué assigns Valué to the identifier MutVar.
The assignment is imperative and non-backtrackable. If MutVar is a free
variable then a new, unique identifier is allocated for it. If it is a ground
term, it is used as identifier. Its behavior remains unspecified otherwise.

Figure 1 shows an example of ImProlog code which defines how to dereference
a variable to reach a term. Similarly to the standard algorithm, it follows a
reference chain and stops when the valué pointed to is the same as the pointing
term. Note the use of mutable variables and the operations on native types
tagof/2 and tagval/2, which check the tag of a tagged word and retrieve the
valué of the tagged word, respectively.

The extensions included in ImProlog can easily be defined in full Prolog, as
shown in Figure 2 (we assume that new_id/l returns a new, unique identifier in

deref(Reg) :-

(tagof(OReg.ref) ->

tagval(@Reg,V), T = <8V,

(OReg = T -> true

; Reg <= T, deref(Reg))

; true).

Fig. 1. Dereference operation

tagof (tagged(Tag, Val) ,Tag) .
tagval(tagged(Tag,Val) ,Val) .
:- dynamic (@)/2.
Id <= V :-

(var(Id) -> new_id(Id) ; true) ,
retract(@(Id,_)), assertz(@(Id,V)).

Fig. 2. Prolog semantics of extensions

each cali and that a trivial syntactic transformation makes goals Q(X, Y) and
Y = QX equivalent). As Q/2 can be expressed in Prolog, we would not need any
additional machinery to write (and run) our virtual machine in a Prolog system
and as a Prolog program, should we want to make that experiment. But that
would clearly not be without an immense performance penalty (at least without
complex optimizations), which is against our initial aims. By making these new
constructs natively known by the compiler, and restricting their application to
the cases which are useful to describe the virtual machine, we can compile them
efficiently time- and memory-wise, and they become easy to map onto low-level
primitive constructs of Le-

1.1 Conditions to Ensure Efñcient Code Generation

As shown in [5,6,7] and other work (see [8] for more references), generation of
highly efficient executables from logic programs heavily depends on reducing
the computational overhead that supports the extended semantic capabilities
of Prolog for the specific cases in which the full power of the language is not
needed. This generally requires a wealth of compile-time information regarding
types, modes, determinism, non-failure, and other properties of the program.

This information is generally inferred by means of static analysis.1 When such
information can be inferred, optimizations are performed, and less efScient code
is generated otherwise. However, since our initial goal was to ensure efñciency,
we will, instead of allowing the generation of suboptimal code, impose a number
of constraints on the ImProlog code that can be written when describing the
abstract machine: precisely those that will allow an almost direct (often one-
to-one) translation to Le code. The compiler will raise an (efñciency-related)
error while processing the code that describes the virtual machine and abort its
generation if the necessary conditions are not met. This is obviously too drastic
a solution for general programs, but a good compromise in our application.

Program analysis combined with program assertions allows the compiler to
identify when it is safe (or possible) to genérate code based on these constraints.
The conditions that must hold after analysis are that code must be deterministic
(with optional support for failure continuations, as in i f - then-e l se constructs,

1 It can be also provided by program annotations written by the user, which will
indeed be necessary in some cases in practice.

but not for full non-determinism), and that no garbage collection, trailing, or
boxing should be required. The analyses used to ensure that those restrictions
hold are listed in the next section.

2.3 Analysis

Following the order in which they are applied in the compiler, the analyses used
can be divided into three main groups.

TVaditional Prolog Analyses: These include analyses for types, modes, de-
terminism, and non-failure. They are instrumental to decide the best data rep-
resentation and to detect which pieces of code may require choice points or fail-
ure continuations. They are performed using the abstract interpretation-based
analyzer in CiaoPP [9]. As CiaoPP was designed with extensibility in mind,
knowledge about ImProlog native types and associated operations can be given
to CiaoPP via (Ciao) assertions, without having to actually change the analyzer.
Assertions are also used to state the types, modes, etc. of externally defined fa-
cilities and routines (so that they can be taken into account by the analyzers)
and to declare properties to be met at the entry point of each abstract machine
instruction, which is typically written as a predicate. This information includes
implementation decisions such as the use of short or long native integers, etc.

In addition to assertions, the type of some mutable variables may be further
restricted by knowledge about the location they refer to or by type-constraining
program calis. For example, mutables for X(i) registers are always bound to
elements of type 'tagged'. A typed specification of the assignment operation
could be written as follows:

Id <= Val :- id_type(Id, Type), Type(Val),

retract(@(Id, _)), assertz(@(Id, Val)).

where id_type/2 relates an identifier with the ñame of its type, and Type (Val)
is a higher-order cali which states the type of Val. As we will see later, this
knowledge helps in unboxing and analysis of mutables. Type analysis can ensure
that Type (Val) always holds and it can therefore be harmlessly removed. This
additional information makes mapping to C much easier.

Imperative State Analysis: Analysis of the valué of mutable variables re-
quires tracking their (imperative) state, which is updated using rules that reflect
the actual operational semantics (i.e., sequential execution of OR-alternatives,
etc.). Since C¡ programs are limited to the deterministic case, the complexity
of this analysis is reduced with respect to a more general case. The domains
used are precise enough to identify an abstraction of some properties of mutable
variables (e.g., whether they represent an X register, a Y register, a heap loca­
tion, etc.). Strict type restrictions for some identifiers are applied here, thereby
increasing the performance of the analysis. The analysis is conservative: every
time a mutable may be written to (directly or by code which is externally avail-
able, and therefore difiicult of impossible to access and analyze) its state is set to
the top valué of the domain lattice. Different mutable variables may be aliased

(i.e., they can point to the same location), and only a limited alias analysis is
performed; it takes advantage of the knowledge of the compiler regarding the
memory location of the variable: e.g., a mutable variable living in X(0) cannot
share with a mutable variable living in Y (1). This simple approach was effective
enough for the purpose of this work.

Analysis for Unboxing: This analysis tries to determine whether the type of
some variable is known at all points where it is reachable. If so, then there is
no need to reserve space for a tag to check its type at runtime. This requires
a previous pass to determine the scope of the identifiers for mutable variables
in order to establish in which program points they may be accessed. This is
also needed in order to assign memory locations at compile time to the mutable
variables created within the body of a predicate and which are not allocated on
the heap. Since non-determinism is not allowed, and according to the compilation
scheme we follow, if a variable ñame cannot be reached outside the scope of
a predicate it can be safely mapped to a (local) C variable. A conservative
approximation, which is easier to check and precise enough, is the following: the
variable ñame can be read from, assigned to, and passed as argument to other
predicates, but it cannot be assigned to anything else than other local variables.

2.4 Code Generation

The information provided by the analysis is used to optimize code generation,
especially in order to partially evalúate away whole sections of code (e.g., simpli-
fying conditionals, reducing calis to true/noop, etc.). The algorithm extends that
of ciaocc [7] to support ImProlog and also simplifies it in view of the constraints
on the code specified in Section 2.2.

Predicates that may or may not fail are mapped to C functions with boolean
or void return types, respectively. Generation of code for several clauses or pred­
icates in the same C function and jumping to C labels is also supported (e.g., to
transform recursions into loops). Additionally, an interface to internal compiler
modules is provided. This makes it possible to invoke instruction compilation
from within the emulator generator.

Schematically, compilation distinguishes among control constructs, external
C functions, and builtins. Compilation of control is as follows:

— A block Gl, G2 is translated to the code for Gl having its success continua-
tion pointing to G2, followed by the code for G2.

— The construct Gl -> G2 ; G3 is compiled into an i f - then-e l se , where Gl
is compiled in a context where the failure continuation points to G3. G2 and
G3 are compiled in the same context where the whole construct appeared
(i.e., success / failure continuations point to where Gl -> G2 ; G3 did).

For a goal G which calis a C function f () , arguments are compiled (see later)
and then f O is called. If the predicate is semi-deterministic, the emitted code

checks the return code and, if necessary, a jump to the failure continuation is
made. When G corresponds to a built-in, its compilation proceeds as follows:

— t rue does nothing.
— f a i l is translated to a jump to the failure continuation.
— A <= B is translated into assignment instructions. If A was not initialized it

is declared.
— A = B is handled as follows:

• When A is unbound and B is ground (and also for the symmetrical case),
the builtin is translated into the declaration of A plus an assignment
statement that moves the valué of executing the compiled code corre-
sponding to B to the memory location associated with A.

• When A and B are both ground, the builtin is translated into a compar-
ison of the valúes resulting from executing the compiled code of both
expressions.

Note that although full unification may be assumed during program transfor-
mations, it is ultimately reduced to the two cases above. This has to be possible
in order to avoid bootstrapping problems: e.g., (full) unification, also defined in
ImProlog, should not be based itself on a full unification built-in.

Prolog logical variables and mutable variables are mapped to C variables
(which can be global, local, or be passed as function arguments). The type of
those C variables is extracted from the declarations and using type inference.
Due to the determinism of ImProlog, trailing is unnecessary.

During compilation a symbol table keeps track of the type and memory lo­
cation (or C variable) associated to each variable. All variables have to have an
associated type in order to perform unboxing (an error is flagged otherwise),
and all types are either native types or mutables whose valué is of a native type.
For a variable whose associated C type is Te, a declaration of variable named V,
with C type Vt, is emitted, and the associated memory location is set to Mem, as
follows:

— If the variable is not mutable, Vt is Te and Mem is V.
— If the variable is mutable:

• if its scope is local, then Vt is Te and Mem is V, or
• Vt is (Te *) and Mem is *V, otherwise.

For simplicity we assume that goal arguments have been normalized and only
variables or @ expressions appear. Compilation of arguments, assuming that the
memory location for A is Mem, is as follows:

— @A is translated to Mem (and A must be a mutable variable in this case).
— A is translated to &Mem (if A is mutable), or
— A is translated to Mem otherwise.

3 Generat ing Emulators with ImProlog

We now sketch how WAM instructions can be described using ImProlog and how
the full emulator is assembled using a generic abstract machine generator.

3.1 Defining WAM Instructions in ImProlog

The definition of every WAM instruction in ImProlog looks just like a regular
predicate, and the types, modes, etc. of each of their arguments have to be
declared using (Ciao) assertions. Figure 3 shows the definition of an instruction
which tries to unify a term and a constant. The pred/1 declaration states that
the first argument is a mutable variable and that the second is a tagged word
containing a constant. The predicates deref / l (from Figure 1) and bind/2 (also
a defined predicate) are used in the instruction definition.

: - p r e d u _ c o n s (m u t a b l e , c o n s) .
u_cons(A, Cons) : -

T <= <8A, d e r e f (T) ,
(tagof(@T, r e f) -> bind(@T,Cons) ; @T = Cons) .

F i g . 3 . Unification wi th a constant

The general compilation process to C, described later, is able to unfold (if
so desired) the definition of the predicates called by u_cons/2 and to propágate
information from the code inside the instruction in order to optimize the resulting
piece of the emulator. After the set of transformations instruction definitions are
subject to, the generated C code is of high quality.

Our approach has been to define a reduced number of instructions (50 is a
ballpark figure) and let the merging and specialization process (see Section 4)
genérate all instructions needed to have a competitive emulator. Note that effi-
cient emulators tend to have a large number of instructions (hundreds or even
thousands) and many of them are variations (obtained through specialization,
merging, etc.) on common blocks [10,11]. These common blocks are the simple
instructions we aim at representing explicitly in ImProlog.

In the experiments we performed (Section 5) the emulator with a larger num­
ber of instructions had 199 different opcodes (not counting those which result
from padding some other instruction with zeroes to ensure a correct alignment
in memory). Starting with a simple instruction set makes it easier to maintain
instruction sets and to make sure that they are consistent. Complex instructions
are generated automatically in a (by construction) correct way.

3.2 Assembling the Emulator

To avoid the burden associated with the coding and £c-dependent details of the
emulator, we chose to use here the framework previously described in [3], where
instruction semantics and bytecode representation are independently handled
and assembled together using an emulator compiler. Using the terminology of
[3] we define the relation between LA and CB by means of several pieces:2

2 A complete description, not included due to space constraints, would detail all ex-
pected elements for a WAM: X and Y registers, atonas, numbers, functors, etc.

Ai ene which declares how bytecode encodes LA instructions and data (e.g. X(0)
is encoded as the number 0).

Ai dec which declares how bytecode should be decoded to return the initial in-
struction format in LA (e.g., for an instruction which uses as argument an
X register, a 0 means X(0)).

Aiarg which expresses how LA expressions are translated to Ce, e.g., how X(0)
goes to x[0] (assuming X registers end up in an array).

Higher-level instruction definitions in L¡ (which abstract away bytecode repre-
sentation issues) and program assertions are processed to genérate:

Ai de¡ which contains the definition of each instruction in the language LA in
terms of Le code.

Aiins' which describes the instruction set with opcode numbers and the format
of each instruction, i.e., the type in LA for each instruction argument.

The instruction set Aiins1 is generated by reading the information for each
instruction contained in the assertions, interpreting types as LA elements, and
assigning opcodes to each instruction, either automatically or via user annota-
tions. The definition of Ai def is based on cgen, that generates Le code from L¡
as defined in Figure 4. In this figure, memstorage stands for a look-up table
which relates each £^-level variable argí with its type and location in Le, ai-
The pseudo-instruction faüureJns takes care of causing a failure. Some LA
instructions are not supposed to fail (e.g., pushing a choicepoint), while others,
such as performing a unification, can fail. In the former case cgen is able to
discard the else part and simplify the then part; in the latter case, jumps to
failureJns are inserted in the appropriate places.

The components Ai ene and Aiins1 are used to genérate the LA to LB compiler
back-end. The rest of the components and Aiins1 are used by the emulator
compiler. The emulator has to understand LB and therefore it has to agree in
its format with what the compiler back-end emits. Note that the overall emulator
structure is largely independent of the code of the instructions.3 A summarized
definition of the emulator compiler and how it uses the different pieces in A4 can
be found in Figure 4. The scheme of the generated emulator code is some what
similar to what the Janus compilation scheme [12] produces, although in the
Janus case the continuation to every cali (in the source code) is known statically.
The compiler can therefore genérate a direct jump to a fixed label, while in
our case the continuation can in principie be any program point which comes
from the bytecode program itself and is not known until the emulator is being
executed.

Example 1. Code for a specíalízed instruction. From the instruction in Figure 3,
which unifies a term living in some variable with a constant, we can derive a
specialized versión in which the term is supposed to live in an X register. The
declaration:

3 Assuming that no global transformations are done, which we are not addressing here.

emucomp(Ai) = inscomp(opcode, Ai) =
[em\iB (p, pr g) = [Aidefijp' ,cont,name,Aiargs(args)); cont(p')]

case get_opcode(p,prg) of where
opcodei : inscomp(opcode\, Ai) (name,format) = Ai ins>(opcode)

(args,p') = decodei„s(format, [p], [prg], Ai)
opcode„ : inscomp(opcode„, Ai)] cont = Xa.[emue(a,prg); return]

where opcodei e domain(Aiins>)
Aidefinext,cent,ñame, [argl,... ,arg„]) =

[cgen](name(ai, . . . ,a„) —> true; failurejns)
where memstorage[ai : arg\,... ,a„ : arg„]

Fig. 4. Emulator compiler

loop:

switch(Op(short,P,0)) { ux_cons:

tagged t;

case 97: goto ux_cons; t = X(0p(short,P,2));

deref(ftt);

} if (TagOf(t) == REF) {

bind(t, 0p(tagged,P,4));

void deref(tagged_t *a0) { } e l se {
deref: i f (t != 0p(tagged,P,4))

if (tagged_tag(*aO) == REF) { goto f a i l u r e_ ins ;
tagged_t tO; }
tO = *(tagged_val(*aO)); P = Skip(P,8) ;
if ((*a0) != tO) { goto loop;

*a0 = tO;
goto deref; }}}

Fig. 5. Schema for the code generated for a simple instruction

:- ins_alias(ux_cons, u_cons(xreg_mutable, any)).

states precisely that , assigns the (symbolic) ñame ux_cons to the new instruction,
and specifies tha t the first argument lives in an X register. The declaration:

: - ins_entry(97, ux_cons).

indicates tha t the emulator has an entry with opcode 97 for tha t instruction.4

Figure 5 shows the code generated for the instruction (right) and a fragment of
the emulator generated by the emulator compiler in Figure 4.

We want to note tha t we deliberately stay within s tandard C: the use of C
extensions (such as storing labels in variables, which are provided by gcc and
used, for example, in [13,14]), is outside the scope of this paper.

4 In fact, different assignments of instruction numbers to opcodes can have an impact
on the final performance, as they díctate how the code is laid out in the emulator
switch. This affeets, for example, the behavior of the cache.

4 Automat ic Generation of Abstract Machine Variations

Substantial work has been devoted to abstract machine generation strategies
such as, e.g., [10,11], which explore different design variations with the objective
of achieving highly optimized emulators. By making the semantics of the abstract
machine instructions explicit in a language like ImProlog, which can be easily
processed automatically, such variations can be formulated mostly as automatic
transformations. Adding new transformation rules and testing them together
with the existing ones becomes a relatively easy task.

We will briefly describe some of these transformations, which will be experi-
mentally evaluated in Section 5. Each transformation is identified by a two-letter
code. We make a distinction between transformations which change the instruc-
tion set (e.g., creating new instructions) and those which only affect the way
code is generated.

4.1 Instruction Set Transformations

New instructions are currently synthesized from existing ones by explicitly un-
folding shared pieces of code, by merging instructions (different or not), and by
performing specialization for some operand valúes, types, or locations.

Instruction Merging [om]: Merging generates larger instructions from se-
quences of smaller ones, and aims at saving fetch cycles at the expense of
an increased switch size. This technique has been used extensively in high-
performance systems (e.g., Quintus Prolog, SICStus, Yap, etc.). The performance
of different combinations has been studied empirically [10], but in that paper new
instructions were generated by hand, although deciding which instructions had
to be created was done by means of profiling. In our framework all that is needed
in order to emit code for a merged instruction is a single declaration. Merging
is done automatically through code unfolding based on the definitions of the
component instructions. This makes it possible to define a set of optimal user
rules for merging.

Instructions with a Variable Number of Operands [vo]: For some instruc­
tion families a number of instructions (e.g., unify with void) can be collapsed
into a single instruction with a variable number of operands. Code generation
emits a loop whose internal iteration code comes directly from the single instruc­
tion definition.

Instructions for Built-ins [ib]: Calling external library code or built-ins often
requires ad-hoc instructions (to make the appropriate parameter conversión,
etc.). A single family of instructions that cali a foreign C function can be used
to do that, and this is the default option. The same instruction can then be
specialized for a predefined set of built-ins, thus generating a special instruction
set that includes faster calis to, e.g., arithmetic operations.

4.2 TVansformations of Instruction Code

Some transformations do not créate new instructions, but perform instead dif­
ferent optimizations on already existing instructions by manipulating the code
or choosing alternative translation schemes.

Unfolding Rules [ur]: Simple predicates are unfolded throughout the code
before compilation. In the case of instruction merging, unfolding is used to merge
the code of two or more instructions into a single piece of code. In some cases
unfolding can be limited so that common pieces of instructions can be shared.
This transformation enables or disables a set of predefined unfolding rules.

Different Tag Switching Schemes [ts]: Tags are used to detect dynamically
the type of basic data (atom, structure, number, variable, etc.) contained in a
machine word, so that different actions can be taken depending on this type. The
corresponding tag switching code is a heavily-used operation which is worth op-
timizing as much as possible. This option generates either an automatic C switch
(when enabled) or a set of predefined switch patterns based on tag encodings
(when disabled).

Connected Continuations [je]: Tests (or other actions) are sometimes un-
necessarily repeated because they appear at the end of an operation and at the
beginning of the next one. They are redundant at this point, because they are
bound to fail or succeed depending on their behavior in the previous operation.
For example, in the fragment deref (T), (ref (T) -> A ; B), T is checked to
test whether it is a reference just before exiting deref / l . Code can be generated
that jumps directly to the implementation of A or B depending on the result of
this test. This option enables or disables the optimization.

Read/Write Mode Specialization [rw]: WAM-based implementations
sometimes use a flag to test whether heap structures (Le., the memory rep-
resentation of functors) are being read (matched against) or written (created).
According to the valué of this flag, several instructions adapt their behavior with
an i f - t h e n - e l s e . A common optimization is to partially evalúate the switch in-
side the emulator loop to genérate two different, parallel switch structures, one
for each of the read/write possibilities. We can genérate instruction sets (and
emulators) where this optimization has been turned on or off.

5 Experimental Evaluation

We will report here on experimental data regarding the performance which was
achieved on a set of benchmarks by a collection of emulators, all of them auto-
matically generated through different combinations of options. In particular, by
using all compatible possibilities for the transformation and generation options
given in Section 4 we generated 96 different emulators (instead of 27 = 128, as
not all options are independent; for example, vo needs om to be performed).

This bears a cióse relationship with [11], but here we are not changing the inter-
nal data structure representation (and of course our instructions are all coded in
ImProlog). It is also related to the experiment reported in [10], but the tests we
perform are more extensive and cover more variations. Additionally, [10] starts
off by being selective about the instructions to merge; this is a point we want to
address in the future by using instruction-level profiling.

Our initial point was a "bare" instruction set comprising the "common basic
blocks" of a relatively efficient abstract machine (the "stock" abstract machine
of Ciao 1.10, itself an independent branch off the original SICStus Prolog 0.5/0.7
emulator, and with performance currently just below modern SICStus versions).
Figures 6 to 7 summarize overall results for the experiments, as the data gath-
ered —96 emulators x 13 benchmarks = 1248 performance figures— is too large
to be examined in detail here. In those figures we plot, for three different cases,
the resulting speed of every emulator using a dot per emulator. Every benchmark
was run several times on each emulator to arrive at meaningful time measures,
in a Linux machine with a Pentium 4 processor and using gcc 3.4 as C compiler.
Although most of the benchmarks we used are relatively well known, we include
a brief description in [15].

In order to encode emulator generation options in the corresponding dots, each
available option in Sections 4.1 and 4.2 is assigned a bit in a binary number
(a ' 1 ' means activating the option and a '0' means deactivating it). Every valué
in the y axis of the figures corresponds to a combination of the three options
in Section 4.1, but only 6 combinations are plotted due to dependencies among
options. Options in Section 4.2, which correspond to transformations in the way
code is generated, are represented with four bits which are encoded as 16 different
dot shapes (shown in each figure). Every combination of emulator generation
options is thus assigned a different 7-bit number and a different dot shape and
location. The x coordínate represents the relative speed w.r.t. the hand-coded
emulator currently in Ciao 1.10, which is assigned speedup 1.0.

Of course, different selections for the bits assigned to the y coordínate and
to the dot shapes would yield a different picture. However, our selection seems
intuitively appropriate, as it addresses separately two different families of
transformations. Indeed, Figure 6, which uses the geometric average5 of all
benchmarks to determine the overall performance, shows a quite well defined
clustering around eight centers. Although it is not immediate from the picture
(it has to be "decoded"), poorer speedups come from not activating some instruc­
tion creation options (which, for the stock emulator, really means deactivating
them, since merging and specialization was made by hand quite some time ago,
and the resulting instructions are already part of the emulator).

As a side note, while this figure portrays an average behavior, there were
benchmarks whose results actually tracked this average behavior quite faithfully.
An example is the the doubly recursive Fibonacci, which is often disregarded as
unrealistic but which, for this particular experiment, turns out to predict very
well the (geometric) average behavior of all benchmarks. All in all, this picture

5 As a means to alleviate the effect of extremely good or bad cases.

Showing Geometric mean of benchmark set

111

101

0000
-1000
0100
1100
0010
1010
0110
1110

"0001
1001
0101

-1101
0011
1011
0111
1111

-

+
X
se
•

0

1

w
X

1

«•

ÍR

1 1 1

4Í*

^üft]»

f$m

<ow»

1 '
-

-

-

-

-

-

0.7 0.8 0.9 1 1.1

speed-up relative to default Ciao opte

Fig. 6. Geometric average of all benchmarks (a dot per emulator)

(or, rather, the method which led to it) tries to reveal families of optimization
options which give similar speed by showing dot clusters. Interestingly enough,
once a set of generation options for CB is fixed, the changes in the generation of
Ce have (in general - see below) a relatively low impact. The general question
which options should he used for the "stock" emulator to be offered to general
users is answered by selecting a set of options somewhere in the topmost, right-
most cluster.

In any case, there are combinations of code generation options which achieve
a speedup of 1.05, on average. While this may appear modest, consider tha t by
start ing with a simple instruction set (coded in ImProlog!) and applying system-
atically a set of transformation and code generation options, we have managed to
match (and exceed) the t ime performance (memory performance was untouched)
of an emulator which was hand-coded by very proficient programmers, and in
which decisions were thoroughly tested along several years. Moreover, the trans­
formation rules we have applied in our case are of course not the only ones, and
we look forward to performing a more aggressive merging guided by profiling
(merging is right now limited in depth to avoid a combinatorial explosión in the
number of instructions). Similar work, with more emphasis on the production of
languages for microprocessors is presented in [16], where a set of benchmarks is
used to guide the (constrained) synthesis of such a set of instructions.

Figure 7 shows two cases of particular interest. The plot for queensll is a
typical case which departs from the average behavior but which still resembles
it. As a relevant difference, a much better speedup (around 1.25)6 is achieved
with some combinations of flags. On the other hand, the plot for crypt presents
a completely different landscape: a plot where variations on the code generation
scheme are as relevant as variations on the bytecode itself. This points to the
need to find other clustering arrangements which shed some light on the inter-
actions among different emulator code and bytecode generation schemes. Our
experiments, however, lead us to think tha t in some cases the behavior tends to

6 Which of course means that some benchmarks do not get any speedup.

Showing benchmark queensl 1

0000
000
0100
1100
0010
010
0110

4 • $ • ° o *

®* X.WD

0.7 0.8 0.9 1
speed-up relative to default C¡ao opts

1.2 1.3

111

101

011

001

010

000

0000
-1000

0100
1100
0010
1010
0110

"0001
1001
0101

-1101
0011
1011
0111
1111

+ '
X

:

Showing benchmark crypt

1 '

£

1

v

o

%t

1

g. •

,^
U*

i ;

§

•

fc*T

°«

o°

*°

n*°xS

' *0"&
"ítb

n * *:

« i

¡a ° ? i

•+

1

-

-
-

0 7 0 8 0 9 1 11 12 1 3

speed-up relative to default Ciao opts

Fig. 7. Crypt: extreme case of spreading. Queens: scattered distribution.

be almost chaotic, as the lack of registers in the target architecture (i86) makes
optimization a difficult task for the C compiler. This is supported by similar
experiments on a PowerPC architecture, which has more general purpose regis­
ters, and in which the results are notably more stable across benchmarks. The
overall conclusions for the best options and speedups remain roughly the same,
only with less vari anee.

Table 1 tries to isolate the effeets of sepárate options. It does so by listing, for
each benchmark, including the geometric average, which options produced the
best and the worst results time-wise. While there is no obvious conclusión, instruc­
tion merging is a clear winner, probably followed by having a variable number of
operands, and then by specialized calis to built-ins. The first and second options
save fetch eyeles, while the third one saves processing time in general.

It can come as a surprise that using sepárate switches for read/write modes,
instead of checking the mode in every instruction which needs to do so, does
not seem to bring any advantage. A similar result was already observed in [11],
and was attributed to modern architectures performing branch prediction and
speculative work with redundant units. Therefore, short if-then-else statements
might get both branches executed in parallel with the evaluation of the condition.
Besides, implementing read/write modes with two switches basically doubles the
size of the core of the emulator. A similar size growth happens when extensive
merging is performed. In both CclSGS el side effect is that of an increased cache
miss ratio and the corresponding reduced performance.

Table 1. Options which gave best/worst performance

B e n c h m a r k

default

all (geom.)
boyer
crypt
deriv
factorial
fib
knights
nreverse
poly
primes
qsort
q u e e n s l l
query
tak

B e s t p e r f o r m a n c e
v o ib o m

X X

X X X

X X

X X

X X X

X X

X X X

X X X

X X X

X X X

X X

X X

X X X

X X

X X X

t s je ur rw
X X X

X X

X
X

X

X

X

X

X
X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

S p e e d - u p
1.00
1.05
1.18
1.22
1.10
1.02
1.02
1.06
1.03
1.02
1.10
1.05
1.26
1.06
1.23

W o r s t p e r f o r m a n c e
v o ib o m
X X

X

X X

X

X

t s je ur rw
X X X

X X

X
X

X

X

X
X

X
X

X

X
X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

S p e e d - d o w n
1.00

0.7
0.70
0.86
0.62
0.76
0.75
0.72
0.57
0.56
0.73
0.54
0.77
0.71
0.69

6 Conclusions

We have designed a language (ImProlog, a variation of Prolog with some impera-
tive features) and used it to describe the semantics of instructions of a bytecode
interpreter. ImProlog, with the proposed constraints, makes it possible both to
perform non-trivial transformations (e.g., partial evaluation, unfolding, merging,
etc.) and to genérate efficient low-level code (using the cgen compiler) for each of
the emulator instructions. Different transformations and code generation options
can be applied, which result in different grades of optimization / specialization
and different bytecode languages.

The low-level code for each instruction and the definition of the bytecode can
be taken as input by a previously developed emulator generator to assemble
full, high-quality emulators. Since the process of generating instruction code
and bytecode format is automatic, we were able to produce and test different
versions thereof to which several combinations of code generation options were
applied.

We have also studied how these combinations perform with a series of bench-
marks in order to find, e.g., what is the "best" average solution and how inde-
pendent coding rules affect the overall speed. We have in this way as one case the
regular emulator we started with (and which was decomposed to break complex
instructions into basic blocks). However, we also found out that it is possible to
outperform it by using some code patterns and optimizations not explored in the
initial emulator, and, what is more important, starting from abstract machine
definitions written in ImProlog. We intend to continué this line of exploration
of improved abstract machines and incorporating them in the standard Ciao
distributions.

References

1. Taivalsaari, A.: Implementing a Java Virtual Machine in the Java Programming
Language. Technical report, Sun Microsystems (1998)

2. Rigo, A., Pedroni, S.: PyPy's Approach to Virtual Machine Construction. In:
Dynamic Languages Symposium 2006, ACM Press (2006)

3. Morales, J., Carro, M., Puebla, G., Hermenegildo, M.: A generator of efficient
abstract machine implementations and its application to emulator minimization.
In Meseguer, P., Larrosa, J., eds.: International Conference on Logic Programming.
LNCS, Springer Verlag (2005)

4. Puebla, G., Bueno, F., Hermenegildo, M.: An Assertion Language for Constraint
Logic Programs. In Deransart, P., Hermenegildo, M., Maluszynski, J., eds.: Anal-
ysis and Visualization Tools for Constraint Programming. Number 1870 in LNCS.
Springer-Verlag (2000) 23-61

5. Van Roy, P., Despain, A.: High-Performance Logic Programming with the Aquarius
Prolog Compiler. IEEE Computer Magazine (1992) 54-68

6. Taylor, A.: High Performance Prolog Implementation through Global Analysis.
Slides of the invited talk at PDK'91, Kaiserslautern (1991)

7. Morales, J., Carro, M., Hermenegildo, M.: Improving the Compilation of Prolog to
C Using Moded Types and Determinism Information. In: Proceedings of the Sixth
International Symposium on Practical Aspects of Declarative Languages. Number
3057 in LNCS, Heidelberg, Germany, Springer-Verlag (2004) 86-103

8. Van Roy, P.: 1983-1993: The Wonder Years of Sequential Prolog Implementation.
Journal of Logic Programming 19 /20 (1994) 385-441

9. Hermenegildo, M., Puebla, G., Bueno, F., López-García, P.: Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In:
lOth International Static Analysis Symposium (SAS'03). Number 2694 in LNCS,
Springer-Verlag (2003) 127-152

10. Nássén, H., Carlsson, M., Sagonas, K.: Instruction Merging and Specialization in
the SICStus Prolog Virtual Machine. In: Proc. 3rd ACM SIGPLAN Int. Conf. on
Principies and Practice of Declarative Programming, ACM Press (2001) 49-60

11. Demoen, B., Nguyen, P.L.: So Many WAM Variations, So Little Time. In: Com-
putational Logic 2000, Springer Verlag (2000) 1240-1254

12. Gudeman, D., Bosschere, K.D., Debray, S.: je : An efficient and portable sequential
implementation of janus. In: Proc. of 1992 Joint International Conference and
Symposium on Logic Programming, MIT Press (1992) 399-413

13. Henderson, F., Conway, T., Somogyi, Z.: Compiling Logic Programs to C Using
GNU C as a Portable Assembler. In: ILPS 1995 Postconference Workshop on
Sequential Implementation Technologies for Logic Programming. (1995) 1-15

14. Codognet, P., Diaz, D.: WAMCC: Compiling Prolog to C. In Sterling, L., ed.:
International Conference on Logic Programming, MIT PRess (1995) 317-331

15. Morales, J., Carro, M., Hermenegildo, M.: Description and Optimization of Ab­
stract Machines in an Extensión of Prolog. Technical Report CLIP8/2006.0, Tech­
nical University of Madrid (UPM), School of Computer Science, UPM (2006)

16. Holmer, B.K.: Automatic Design of Computer Instruction Sets. PhD thesis,
University of California at Berkeley (1993)

