
Reachability for Linear Hybrid Automata Using

Iterative Relaxation Abstraction

Sumit K. Jha1, Bruce H. Krogh2 , James E. Weimer2, Edmund M. Clarke1

1 Computer Science Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{jha|emc}@cs.cmu.edu
2 ECE Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA15213, USA

{krogh| jweimer}@ece.cmu.edu ⋆⋆

Abstract. Procedures for analysis of linear hybrid automata (LHA)
do not scale well with the number of continuous state variables in the
model. This paper introduces iterative relaxation abstraction (IRA), a
new method for reachability analysis of LHA that aims to improve scal-
ability by combining the capabilities of current tools for analysis of low-
dimensional LHA with the power of linear programming (LP) for large
numbers of constraints and variables. IRA is inspired by the success
of counterexample guided abstraction refinement (CEGAR) techniques
in verification of discrete systems. On each iteration, a low-dimensional
LHA called a relaxation abstraction is constructed using a subset of the
continuous variables from the original LHA. Hybrid system reachabil-
ity analysis then generates a regular language called the discrete path

abstraction representing all possible counterexamples (paths to the bad
locations) in the relaxation abstraction. If the discrete path abstraction
is non-empty, a particular counterexample is selected and LP infeasibil-
ity analysis determines if the counterexample is spurious using the con-
straints along the path from the original high-dimensional LHA. If the
counterexample is spurious, LP techniques identify an irreducible infeasi-

ble subset (IIS) of constraints from which the set of continuous variables
is selected for the the construction of the next relaxation abstraction.
IRA stops if the discrete path abstraction is empty or a legitimate coun-
terexample is found. The effectiveness of the approach is illustrated with
an example.

⋆⋆ This research was sponsored by the National Science Foundation under grant nos.
CNS-0411152, CCF-0429120, CCR-0121547, and CCR-0098072, the US Army Re-
search Office under grant no. DAAD19-01-1-0485, the Office of Naval Research under
grant no. N00014-01-1-0796, the Defense Advanced Research Projects Agency under
subcontract no. SA423679952, the General Motors Corporation, and the Semicon-
ductor Research Corporation. The views and conclusions contained in this document
are those of the author and should not be interpreted as representing the official poli-
cies, either expressed or implied, of any sponsoring institution, the U.S. government
or any other entity.

1 Introduction

Hybrid automata are a well studied formalism for representing and analyzing hy-
brid systems, that is, dynamic systems with both discrete and continuous state
variables [1]. Hybrid systems arise in a number of important situations, such
as embedded controllers interacting with physical environments, mixed signal
circuits, and quantitative models of biological systems [2]. LHA are an impor-
tant subclass of hybrid automata that can be analyzed algorithmically and can
asymptotically approximate hybrid automata with nonlinear continuous dynam-
ics [3]. Tools for reachability analysis of LHA typically compute the sets of reach-
able states using polyhedra [4], but the sizes of the polyhedral representations
can be exponential in the number of continuous variables of the LHA. Thus, the
verification of high-dimensional LHA is a hard problem. Although there has been
considerable progress in the development of tools and algorithms for analyzing
LHA [5, 6], there is still a great need to develop new techniques that can handle
high-dimensional LHA.

The approach to LHA reachability analysis proposed in this paper is inspired
by the success of the counterexample guided abstraction refinement (CEGAR)
technique for hardware and software verification [7–9]. In the CEGAR approach,
in each iteration an abstraction of the original model (the concrete system) is
constructed using only some of the state variables. The model with the smaller
state space is then analyzed by a traditional model checking [10] algorithm. If this
reduced model satisfies the given property, then the original system also satisfies
the property and the algorithm terminates. Otherwise, the CEGAR loop picks a
counterexample reported by the model checking algorithm, which determines a
path in the location graph of the LHA. A decision procedure is then applied to
the constraints along this path in the concrete system to determine if the coun-
terexample is valid (the constraints can be satisfied by some run of the LHA) or
spurious (the constraints cannot be satisfied) in the concrete system. The con-
straints used to check the feasibility of the counterexample involve all variables
in the concrete system. If the constraints can be satisfied, the path corresponds
to a true counterexample and the algorithm terminates. If the counterexample
is spurious, a subset of variables is selected such that the constraints along the
counterexample path are still infeasible by asking the decision procedure for an
unsatisfiable core [11] or by using heuristics [12]. These variables are added to
the set of variables used thus far and a new abstraction is constructed. On each
iteration, the abstractions are therefore more refined and exclude any previously
discovered spurious counterexamples.

The power of the above approach derives from its construction of abstrac-
tions with a small number variables for which model checking is feasible, while
leveraging the power of decision procedures to deal with constraints involving
many variables to test the feasibility of counterexamples in the original high-
dimensional system. For LHA, we propose a similar approach in which full
reachability analysis is performed on abstractions that have a small number of
continuous variables. Linear programming (LP) is then applied as the decision
procedure to check the validity of counterexamples using all of the variables in

the original LHA. LP methods also find the variables to be used for constructing
further abstractions. Linear programming for testing the feasibility of a path of
a LHA was proposed in [13].

The following steps comprise this approach, which we call iterative relaxation

abstraction (IRA). On each iteration, a low-dimensional LHA called a relaxation

abstraction is first obtained by using a subset of the continuous variables from
the original LHA. Hybrid system reachability analysis then generates a regular
language called the discrete path abstraction representing all possible counterex-
amples (paths to the bad locations) in the relaxation abstraction. If the discrete
path abstraction is non-empty, a particular counterexample is selected and lin-
ear programming (LP) determines if the counterexample is spurious using the
constraints along the path from the original high-dimensional LHA. If the coun-
terexample is spurious, infeasibility analysis of linear programs is applied to find
an irreducible infeasible subset (IIS) of constraints [14] for the infeasible linear
program corresponding to the spurious counterexample. The variables in the
IIS are then used to construct the next relaxation abstraction. IRA stops if the
discrete path abstraction is empty or a legitimate counterexample is found.

In the CEGAR loop for the analysis of discrete systems, the variables ob-
tained from a spurious counterexample on each iteration are added to the set
of variables used in previous iterations to construct a new abstraction. Such an
approach would be counterproductive for LHA, however, as LHA reachability
analysis does not scale well with increasing numbers of continuous variables. To
avoid growth in the number of variables in the relaxation abstractions, only the
variables in the current IIS are used on each iteration to construct the next re-
laxation abstraction, rather than adding these variables to the set of previously
used variables. This assures that the number of variables in the LHA to which
reachabililty analysis is performed is as small as possible. Counterexamples from
previous iterations are excluded at each stage by intersecting the discrete path
abstraction generated by the hybrid system analysis with the discrete path ab-
stractions from previous iterations before checking for new counterexamples.

The paper is organized as follows. The next section introduces definitions and
notation used throughout the paper. Section 3 defines the relaxation abstraction
for LHA based on subsets of continuous variables and a method for determining
if a counterexample from a relaxation abstraction is also a counterexample for
the original LHA. Section 4 presents the IRA procedure and Section 5 illustrates
its application to a simple example. The performance of IRA is compared to the
performance of PHAVer, a recently-developed LHA reachability analysis tool [6].
Section 6 summarizes the contributions of this paper and identifies directions for
future work.

2 Preliminaries

2.1 Linear Constraints

We wish to apply a given set of constraints to different sets of variables. There-
fore, we define a linear constraint of order m as a triple l = (c, ∼, b) where

c = [c1, . . . , cm] ∈ R
m, ∼∈ {=,≥,≤}, and b ∈ R. Lm denotes the set of all linear

constraints of order m. Given an ordered set of m variables X = {X1, . . . , Xm}
each ranging over the reals, lX defines a (closed) linear constraint over X given
by the expression lX :

∑m

i=1 ciXi ∼ b. For a given x = [x1, . . . , xm] ∈ R
m,

lX(x) denotes the value of the expression lX (true or false) for the valuation
X1 = x1, X2 = x2, . . . , Xm = xm. Thus, lX defines a predicate corresponding to
a closed half-space in R

m.
For P ∈ FIN(Lm), where FIN(A) denotes the set of finite subsets of a set

A, PX ,
∧

l∈P lX , that is, PX is the predicate over R
m defined by conjunction

of the predicates determined by the linear constraints in P . The predicate PX

corresponds to a closed polyhedron in R
m defined by the intersection of the

closed half-spaces determined by the linear constraints in P . We denote this
polyhedron by JP K and write P ⇒ P ′ to indicate that JP K ⊆ JP ′K.

Given a set of linear constraints P ⊂ Lm, the support of P, is defined as

support(P) = {i ∈ {1, . . . , m}| ∃ l = (c, ∼, b) ∈ P ∋ ci 6= 0}.

Given a second set of linear constraints P ′ ⊂ Lm, and a subset of indices I ⊂
{1, . . . , m}, P ′ is said to be a relaxation of P over I, denoted P ′ ⊒I P if: (i)
P ⇒ P ′; and (ii) support(P ′) ⊆ I.

Example 1. If P ≡ {([1 0 0],≥, 0), ([0 1 0],≥, 3), ([1 0 3],≥, 8)}, P ′ ≡ {([1 0 0],≥
, 0), ([0 1 0],≥, 3)}, and P ′′ ≡ {([1 0 0],≥,−1)}, then P ′′ ⊒{1} P ′ ⊒{1,2} P .

Relaxations of sets of linear constraints can be produced in many ways. For
example, for an ordered set of m variables X , if XI denotes the variables from
X corresponding to the indices in a set I ∈ {1, . . . , m}, applying the Fourier-
Motzkin procedure [15] for existential quantifier elimination of the variables in
X − XI from PX produces the projection of PX onto XI . This corresponds to
the tightest relaxation of P over I, which we denote by projI(P). By “tightest”
we mean that if P ′ is any relaxation of P over I, then P ′ ⊒I projI(P). A
much looser relaxation of P is generated by simply eliminating the constraints
involving variables not in XI . We call this method of relaxation localization

because of its similarity to the localization abstraction proposed by Kurshan for
discrete systems [7]. Localization of the constraints in P to the variables with
indices in I is given by

locI(P) = {l ∈ P |support(l) ⊆ I}.

A set of linear constraints P ⊂ Lm is said to be satisfiable if there exists a
valuation x ∈ R

m for a set X of m real-valued variables such that PX(x) is true.
We write SAT(P) to indicate a set of linear constraints is satisfiable. If P is not
satisfiable (in which case we write UNSAT(P)), we are interested in finding a
minimal subset of constraints in P that is not satisfiable. This is known as an
irreducible infeasible subset (IIS) of P , which is a subset P ′ ⊆ P such that (i)
UNSAT(P ′) and (ii) for any l ∈ P ′, SAT(P ′ − {l}) [14]. Although the problem
of finding a minimal IIS (an IIS with the least number of constraints) is NP

hard [16], several LP packages include functions implementing efficient heuris-
tic procedures to compute IISs that are often minimal (e.g., MINOS (IIS)[17],
CPLEX [18], IBM OSL [19], LINDO [20]).

2.2 Linear Hybrid Automata

Following [21], we define a linear hybrid automaton (LHA) [21] as a tuple H =
(G, n, ι, φ, γ, ρ), where

– G = (Q, q0, Qbad, Σ, E) is the (labeled) location graph of H , where
• Q is a finite set of locations;
• q0 ∈ Q is the initial location;
• Qbad ⊂ Q is the set of bad locations (the locations that should not be

reachable);
• Σ is a finite set of labels ;
• E ⊆ (Q − Qbad) × Σ × Q is finite set of (labeled) transitions, where no

two outgoing transitions from a given location have the same label;
– n is the number of continuous state variables,
– ι : Q −→ FIN(Ln) identifies the invariant for each location.
– φ : Q −→ FIN(Ln) identifies the flow constraints for each location.
– γ : E −→ FIN(Ln) identifies the guard for each transition.
– ρ : E −→ FIN(L2n) identifies the jump relation for each transition.

Figure 1 shows an LHA with continuous state variables X = {x1, x2}, discrete
states Q = {q0, q1, q2, q3, q4}, discrete state transition labels {a, b, c, d}, initial
location q0 (the unlabeled rectangle) with an invariant defining a unique initial
continuous state x(0) = {.5, 0}, and Qbad = {q4}.

Fig. 1. An example LHA

A run for t ≥ 0 for an LHA H is a (possibly infinite) sequence of the form

q0, x
0, σ0, q1, x

1, σ1, q2, x
2, . . . ,

where for all k = 0, 1, . . .

– xk : [tks , tkf] → Rn denotes the continuous evolution of the continuous state

variables for tks ≤ t ≤ tkf , where 0 = t0s ≤ t0f = t1s ≤ t1f = t2s · · · ;

– xk(t) ∈ Jι(qk)K (location invariants), where tks ≤ t ≤ tkf ;

– ẋk ∈ Jφ(qk)K (flow constraints), where tks ≤ t ≤ tkf ;
– (qk, σ(k+1), qk+1) ∈ E (transitions);

– xk(tkf) ∈ Jγ((qk, σ(k+1), qk+1))K (guards);

– (xk(tkf), xk(tk+1
s)) ∈ Jρ((qk, σk, qk+1))K (jump relation).

Projecting a run onto the transitions (i.e., eliminating the continuous state vari-
able evolution) leads to a sequence of the form

π = q0, σ1, q1, σ2, q2, . . . ,

which corresponds to a path in the location graph. Projecting a path onto the
transition labels gives a sequence of labels,

ω = σ1, σ2,

Since the labels on the outgoing transitions from each location are distinct, the
sequence ω corresponds to a unique path (π) in the location graph. A sequence
of transition labels is said to be feasible if the path to which it corresponds
could be generated by a run of the LHA; otherwise, the sequence is said to be
infeasible. A path that leads to a state in Qbad is called a counterexample.

We let LCE(H) denote the set of all feasible sequences of transition labels
generated by runs that lead to states in Qbad. The definition of the transitions
in the location graph precludes transitions from any state in Qbad, therefore
the sequences in LCE(H) are all finite, that is, LCE(H) ⊆ Σ∗. LCE(H) is not
necessarily a regular language, however.

3 Relaxation Abstractions and Counterexample Analysis

In this section we first introduce a new class of abstractions for LHA based on
relaxations of the linear constraint sets defining the invariants, flow constraints,
guards, and jump relation for a given LHA. We then present a method using
linear programming (LP) analysis for determining whether a counterexample for
a relaxation abstraction is spurious for the original LHA.

Given an LHA H = (G, n, ι, φ, γ, ρ) and an index set I ⊂ {1, . . . , n} with
|I| = n′ < n, a linear hybrid automaton H ′ = (G′, n′, ι′, φ′, γ′, ρ′) is said to be a
relaxation of H over I, denoted H ′ ⊒I H , if

– G′ = G = (Q, q0, Qbad, Σ, E);
– for each q ∈ Q:

• ι′(v) ⊒I ι(v) (invariants);
• φ′(e) ⊒I φ(e) (flows);

– for each e ∈ E:
• γ′(e) ⊒I γ(e) (guards);

• ρ′(e) ⊒I ρ(e) (jump relations).

Figure 2 shows a relaxed linear hybrid automaton derived from the LHA
in Figure 1 over the index set I = 1. This relaxation is obtained by applying
localization over I to each of the constraints in the original LHA.

Fig. 2. A relaxation abstraction for the LHA in Fig. 1

Since the constraints defining a relaxation abstraction H ′ are constraints of
the relation defining the original LHA H , it follows that any run for H is also a
run for H ′. Similarly, LCE(H ′) ⊇ LCE(H).

Given an LHA H and an index set I, let H ′ be a relaxation of H over I.
Given a counterexample for H ′,

ce = σ1σ2 . . . σK ∈ LCE(H ′),

there is a unique corresponding path in the location graph G of H of the form

πce = q0σ1q1σ2 . . . σKqK ,

where qK ∈ Qbad. To determine if there is a run for H corresponding to ce, we
consider whether or not the constraints along this state-transition sequence are
feasible as follows.

Given a feasible path π = q0σ1q1σ2 . . . σKqK , we introduce the following
variables :

– X0
s , corresponding to the initial continuous state in q0;

– X1
s , . . . , XK

s , corresponding to the values of the continuous states when the
transitions occur into locations q1, . . . , qK , respectively;

– X0
f , . . . , XK−1

f , corresponding to the values of the continuous states when

the transitions occur out of locations q0, . . . , qK−1, respectively;
– ∆0, ∆1, . . . , ∆K−1, corresponding to the amount of time the run spends in

q0, . . . , qK−1, respectively.

We let Vπ denote the set of variables defined above for a path π. From the
constraints in H we construct the following constraints over the variables in Vπ

that must be satisfied by a valid run for H . We denote this collection of linear
constraints by C(H, π) or Cπ depending on the context:

– ι(q0)X0
s

: the initial continuous states must be in the invariant of q0;

– for k = 1, . . . , K, the kth transition in the path is ek = (qk−1, σk, qk) and for
each transition:

• ι(qk−1)Xk−1

f

: the continuous state before the transition must satisfy the

invariant of qk−1;
• ι(qk)Xk

s
: the continuous state after the transition must satisfy the in-

variant of qk; 3

• γ(ek)
X

k−1

f
: the continuous state before the transition must satisfy the

guard of ek;
• ρ(ek)

X
k−1

f
,Xk

s
: the continuous states before and after the transition must

satisfy the jump relation for ek;

– for k = 0, . . . , (K − 1) :

• φ̂(qk)(Xk
f

,Xk
s ,∆k), where φ̂(qk) is the set of linear constraints of the form

l̂ = ([c,−c,−b], ∼, 0), each corresponding to a constraint l = (c, ∼, b) ∈
φ(qk).

The final constraint, which represents the flow constraint in each location,
follows from the following derivation:
– For each l = (c, ∼, b) ∈ φ(qk), cẋ ∼ b for all ts ≤ t ≤ tf .

– This implies c(x(tf) − x(ts)) =
∫ tf

ts
cx(τ)dτ ∼ b(tf − ts).

– Therefore, cx(tf)− cx(ts)− b∆ ∼ 0, where ∆ = tf − ts, which is the constraint

l̂.
As demonstrated in [13], a path is feasible if and only if the above linear

constraints are feasible.

4 Iterative Relaxation Abstraction

We now present the IRA procedure to CEGAR-based reachability analysis of
LHA. The following paragraphs describe the IRA steps shown in Fig. 3.

Step 1. Construct a relaxation abstraction over index set Ii of the LHA H ,
Hi ⊒Ii

H . Any relaxation method can be applied to the linear constraints in H .
Step 2. Compute the next discrete path abstraction Ai+1

CE (a regular language
containing LCE(H)) as the intersection of the previous discrete path abstraction

with L̂CE(Hi) , a regular language containing LCE(Hi), and (Σ∗−cei) to assure
the previous counterexample is removed from the next discrete path abstraction.

3 It is sufficient to check that the invariant holds at the beginning and end of the
continuous state trajectories in each location because the invariants are convex.

YES

NO

NO

YES

1

2

3

4

5

6

7

8

Hi ⊒Ii
H

Bad states NOT reachable

Is C feasible ?

i := i + 1

Is cei+1 == null ?

C := C(H, cei+1)

i := 0

Bad state is reachable.

Report Counterexample cei+1

cei+1 := Select CE(Ai+1

CE
)

S := Small IIS (C)

Ii+1 := SV support (S)

Ai+1

CE
:= Ai

CE
∩ L̂CE{Hi} ∩ (Σ∗ − cei)

A0
CE

:= Σ∗

I0 := null set, ce0 = empty srting

Fig. 3. The IRA procedure: Iterative relaxation abstraction reachability analysis for
LHA.

Step 3. Choose a counterexample cei+1 from Ai+1
CE , or set cei+1 == null if Ai+1

CE

is empty. This operation is performed by Select CE(Ai+1
CE).

Step 4. cei+1 == null indicates that no bad states are reachable in the original
linear hybrid automaton H since Ai+1

CE contains LCE(H).

Step 5. Construct C = C(H, cei+1), the set of linear constraints along the path
in the location graph of H determined by cei+1.

Step 6. Apply LP to determine the feasibility of the constraints C. We know
that SAT(C) if and only if cei+1 is a valid counterexample in H [13].

Step 7. If UNSAT(C), apply LP infeasibility analysis to find a minimal IIS for
the constraints in C. (Heuristic procedures will actually find an IIS that may
not be minimal.)

Step 8. Find the set of state variable indices corresponding to the variables
with indices in support(C). This is the operation represented by the function
SV support(C).

Correctness of the IRA procedure (in the sense that if it terminates, it is cor-
rect) is guaranteed since the LHA Hi and languages Ai are overapproximations
of H and LCE(H), respectively. Although termination cannot be guaranteed (be-
cause L̂CE (Hi) maybe an overapproximation of Trace LanguageCE(Hi)), the
sequence of discrete path abstractions generated on by the iterations is monoton-
ically decreasing in size and any counterexample that has been analyzed is elim-
inated in future iterations.

5 Implementation and Example

The IRA has been implemented using PHAVer [6] for LHA reachability analysis
and the CPLEX [18] library for LP analysis. PHAVer builds overapproximate dis-
crete abstractions of the linear hybrid automata represented by finite automata.
The discrete abstractions in the IRA tool are stored and manipulated using the
AT&T FSM library [22]. The IRA tool provides users the ability to write their
own relaxation functions. We experimented with two versions of IRA, referred
to as IRA-Localization and IRA-FM. IRA-Localization is the implementation
that uses localization as the technique for building the relaxation. IRA-FM is
another implementation which uses the Fourier Motzkin procedure for imple-
menting quantifier elimination to build the relaxation.

As an example, we consider the model of a central arbiter for a automated
highway and analyze the arbiter for safety properties, particularly for the speci-
fication that no two vehicles on the automated highway collide with each other.
The electronic arbiter enforces speed limits on vehicles on the automated high-
way to achieve this purpose. The arbiter provides allowed ranges of velocities for
each vehicle [a, b]. When two vehicles come within a distance α of each other,
we call this a “possible” collision event. The arbiter asks the approaching car
to slow down by reducing the upper bound to [a, c′] and asks the leading car to
speed up by increasing the lower bound to [c, b]; it also requires that all other

cars not involved in the possible collision slow down to a constant “recovery-
mode” velocity β for cars behind the critical region and β′ for cars in front of
the critical region. When the distance between the two vehicles involved in the
possible collision exceeds α, the arbiter model goes back to the dynamics of the
cruise mode.

Fig. 4. A automated highway with 4 vehicles.

The example is easily parameterized by varying the number of cars on the
highway. The linear hybrid automata representing the case of four cars is shown
in Fig. 4. If one were to add another car, another location needs to be added
to the linear hybrid automata representing the possible collision between this
newly added car and the one in front of it, as shown in Fig. 5.

Fig. 5. Parameterization of the example in Fig. 4

We ran this example on an AMD Opteron four processor x86 64 Linux
2.6.16.24-001-K8 machine running Fedora Core 5. The comparative results are
shown in Table 1. In each case with n cars, both IRA versions verify in n-1 it-
erations that the bad states are not reachable. Consequently, the tighter Fourier
Motzkin relaxation offer no advantage for this example. We expect, however,
that tighter relaxations will be necessary to verify properties of more complex
systems. Further empirical studies are currently being pursued. The plot of the
log of the time taken vs. the dimension of the LHA in Fig. 6 shows that PHAVer
outperforms IRA-Localization for small dimensional systems. This happens as
IRA-Localization spends time “reasoning” about the structure of the LHA and
the possibility of reducing its dimension. As the dimensions become larger, IRA-
Localization starts outperforming PHAVer significantly in both time and mem-
ory.

Time Taken in Seconds Memory Used in KBs

No

of

cars

PHAVer IRA-Localization IRA-FM PHAVer IRA-Localization IRA-FM

6 0.26 1.34 61.05 5596 18344 452408

8 0.96 5.11 170.11 7532 20128 1000436

10 8.21 17.76 402.15 13904 22652 1876256

12 147.11 50.04 933.47 32800 26132 3155384

14 7007.51 123.73 1521.95 103408 30712 4194028

15 70090.06 181.74 2503.59 198520 33896 4193620

16 – 267.46 3519.51 – 36828 4194024

17 – 339.08 4741.75 – 40316 4194140

18 – 493.34 6384.94 – 44368 4194280

19 – 652.51 8485.49 – 49272 4194296
Table 1. Comparison of analysis of Linear Hybrid Automata using PHAVer, IRA-
Localization (Localization Relaxation) and IRA-FM (Fourier-Motzkin Procedure)

6 Discussion

IRA combines reachability analysis for low-dimensional LHA with the power of
LP analysis for large numbers of variables. As proposed in [13], linear program-
ming is used as an efficient counterexample validation algorithm. This idea of
using linear programming as a counterexample validation is also used in [23].
As linear programming is in P [24], it is an efficient counterexample valida-
tion procedure for high dimensional LHA. Also, if a counterexample is found
and validated, the reachability procedure can terminate immediately. The IRA
procedure uses linear constraint relaxation as a technique for generating ab-
stractions of LHA. In contrast to previously proposed CEGAR techniques for

6 8 10 12 14 16 18 20
−2

0

2

4

6

8

10

12

Number of Cars (Dimension of the LHA)

Lo
g

of
 th

e
tim

e
ta

ke
n

in
 s

ec
on

ds

Log plot of the time taken vs dimension of LHA

IRA
PHAVer

Fig. 6. Results: IRA-Localization vs. PHAVer.

hybrid system analysis in which abstractions are refined by splitting locations
([25],[26]), the relaxation abstraction retains the location graph as the original
LHA. We are currently evaluating the effectiveness of this procedure on a number
of benchmark problems.

7 Acknowldgments

The authors thank Xuandong Li for suggesting the use of linear programming
for LHA analysis, Goran Frehse for his help and guidance with PHAVer, Ofer
Strichman and Sanjit Seshia for providing suggestions on the Fourier-Motzkin
procedure, Prasad Sistla for several useful discussions and Alhad Arun Palkar
for the implementation. Sumit Jha acknowledges the support of a graduate fel-
lowship from the Computer Science department at Carnegie Mellon.

References

1. Henzinger, T.: The Theory of Hybrid Automata. Lecture Notes in Computer
Science (1996) 278

2. Lincoln, P., Tiwari, A.: Symbolic systems biology: Hybrid modeling and analysis of
biological networks. In Alur, R., Pappas, G., eds.: Hybrid Systems: Computation
and Control HSCC. Volume 2993 of LNCS., Springer (2004) 660–672

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1) (1995) 3–34

4. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: A model checker for hybrid
systems. International Journal on Software Tools for Technology Transfer 1(1–2)
(1997) 110–122

5. Alur, R., Henzinger, T., Wong-Toi, H.: Symbolic analysis of hybrid systems. In:
Proc. 37-th IEEE Conference on Decision and Control. (1997)

6. Frehse, G.: PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech.
[27] 258–273

7. Kurshan, R.: Computer-aided Verification of Coordinating Processes: The Au-
tomata Theoretic Approach. Princeton University Press, 1994. (1994)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: CAV ’00: Proceedings of the 12th International Conference
on Computer Aided Verification, London, UK, Springer-Verlag (2000) 154–169

9. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic Predicate
Abstraction of C Programs. In: SIGPLAN Conference on Programming Language
Design and Implementation. (2001) 203–213

10. E. M. Clarke, J., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge, MA, USA (1999)

11. Zhang, L., Malik, S.: Validating SAT Solvers Using an Independent Resolution-
Based Checker: Practical Implementations and Other Applications. In: DATE,
IEEE Computer Society (2003) 10880–10885

12. Chaki, S., Clarke, E., Groce, A., Strichman, O.: Predicate abstraction with mini-
mum predicates. In: Proceedings of 12th Advanced Research Working Conference
on Correct Hardware Design and Verification Methods (CHARME). (2003)

13. Li, X., Jha, S.K., Bu, L.: Towards an Efficient Path-Oriented Tool for Bounded
Reachability analysis of Linear Hybrid Systems using Linear Programming. (2006)

14. Chinneck, J., Dravnieks, E.: Locating minimal infeasible constraint sets in linear
programs. ORSA Journal on Computing 3 (1991) 157–168

15. Dantzig, G.B., Eaves, B.C.: Fourier-Motzkin elimination and Its Dual. J. Comb.
Theory, Ser. A 14(3) (1973) 288–297

16. Sankaran, J.K.: A note on resolving infeasibility in linear programs by constraint
relaxation. Operations Research Letters 13 (1993) 1920

17. Chinneck, J.W.: MINOS(IIS): Infeasibility analysis using MINOS. Comput. Oper.
Res. 21(1) (1994) 1–9

18. ILOG: (http://www.ilog.com/products/cplex/product/simplex.cfm)
19. Hung, M.S., Rom, W.O., Waren, A.D.: Optimization with IBM OSL and Handbook

for IBM OSL (1993)
20. Systems Inc., L.: (http://www.lindo.com/products/api/dllm.html)
21. Ho, P.H.: Automatic Analysis of Hybrid Systems, Ph.D. thesis, technical report

CSD-TR95-1536, Cornell University, August 1995, 188 pages (1995)
22. Mohri, M., Pereira, F., Riley, M.: The design principles of a weighted finite-state

transducer library. Theoretical Computer Science 231(1) (2000) 17–32
23. Jiang, S.: Reachability analysis of Linear Hybrid Automata by using counterex-

ample fragment based abstraction refinement. submitted (2006)
24. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-

binatorica 4(4) (1984) 373–395
25. Fehnker, A., Clarke, E.M., Jha, S.K., Krogh, B.H.: Refining Abstractions of Hybrid

Systems Using Counterexample Fragments. [27] 242–257
26. Alur, R., Dang, T., Ivancic, F.: Counterexample-guided predicate abstraction of

hybrid systems. Theor. Comput. Sci. 354(2) (2006) 250–271
27. Morari, M., Thiele, L., eds.: Hybrid Systems: Computation and Control, 8th In-

ternational Workshop, HSCC 2005, Zurich, Switzerland, March 9-11, 2005, Pro-
ceedings. In Morari, M., Thiele, L., eds.: HSCC. Volume 3414 of Lecture Notes in
Computer Science., Springer (2005)

