
Differential Logic for
Reasoning about Hybrid Systems?

André Platzer

Carnegie Mellon University, Computer Science Department, Pittsburgh, PA
University of Oldenburg, Department of Computing Science, Germany

platzer@informatik.uni-oldenburg.de

Abstract. We propose a first-order dynamic logic for reasoning about
hybrid systems. As a uniform model for discrete and continuous evolu-
tions in hybrid systems, we introduce hybrid programs with differential
actions. Our logic can be used to specify and verify correctness state-
ments about hybrid programs, which are suitable for symbolic processing
by calculus rules. Using first-order variables, our logic supports systems
with symbolic parameters. With dynamic modalities, it is prepared to
handle multiple system components.

Keywords: dynamic logic, hybrid systems, parametric verification

1 Introduction

A key idea for scalable verification of hybrid systems [1] is to decompose [2]
reasoning into: (a) a closer investigation of the actual complex dynamics of
a single system component; and (b) an integration of local correctness results
into global system verification. Furthermore, both (a) and (b) need to handle
parameters, which naturally arise from the degrees of freedom of how a single
component can be instantiated in a system environment.

As first-order logic has widely proven its flexible power in handling symbolic
parameters with logical variables, we extend it for reasoning about hybrid sys-
tems. Moreover, in order to be able to relate statements about a component and
statements about its environment for compositional reasoning (b), we propose a
dynamic logic in which such relations are naturally expressible [3]. Since hybrid
systems are subject to continuous evolution along differential equations and dis-
crete state change, we propose a first-order dynamic logic, dL, that provides both
as fundamental system behaviour. Further, dL can even be used for parameter
extraction, i.e., automatic derivation of constraints for safety parameters.

Related work primarily uses propositional modal logic [4]. Unlike our first-
order dynamic logic, propositional modal logic is restricted to handling abstract
actions and does not support reasoning about concrete behaviour of hybrid sys-
tems like, for instance, continuous evolution along a differential equation z̈ = a.
? This research was supported by a fellowship of the German Academic Exchange

Service (DAAD) and by the German Research Council (DFG) as part of the Tran-
sregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS, see www.avacs.org).

A. Bemporad, A. Bichi, and G. Buttazzo (Eds.): HSCC 2007, LNCS 4416, pp. 746–749, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Differential Logic for Reasoning about Hybrid Systems 747

2 Differential Logic of Hybrid Programs

Dynamic Logic with Hybrid Programs. Dynamic logics (DL) [5] combine
descriptions of system behaviour and correctness statements about the system
state within a single specification language. By permitting arbitrary system op-
erations α as actions of a labelled multi-modal logic, DL provides formulas of
the form [α]φ and 〈α〉φ. The formula [α]φ expresses that all (terminating) runs
of system α lead to states in which condition φ holds, whereas 〈α〉φ expresses
that there is at least one (terminating) run of α after which φ holds.

In this paper, we propose to extend DL to use hybrid systems for α. In
particular, we propose a logic dL that extends discrete DL [5] by differential
actions such that α can display continuous evolution. Due to the symbolic nature
of logic, it is beneficial to use simple system actions of an isolated effect in α.
As a model for hybrid systems, we introduce hybrid programs, which are much
more amenable to step-wise symbolic processing by calculus rules than graph
structures of automata. Since hybrid automata [1] can be embedded, there is no
loss of expressivity. Our differential logic dL is a first-order dynamic logic with
three basic characteristics to meet the requirements of hybrid systems:

Discrete jumps. Projections in state space are represented as instantaneous as-
signments of values to state variables. With this, mode switches like mode := 4
or signal := 1 can be expressed with discrete jumps, as well as resets z := 0 or
discrete adjustments of control variables like z := z − 2.

Continuous evolution. Continuous variation in system dynamics is represented
with differential equations as evolution constraints. For example, the evolution
of a system with constant braking can be expressed with a differential action for
the differential equation z̈ = −5 with second time-derivative z̈ of z.

Regular combinations. Discrete and continuous evolutions can be combined to
form hybrid programs using regular expression operators (∪, ∗, ;) as structured
behaviour of hybrid systems. For example, mode := 4 ∪ z̈ = −5 describes a train
controller that can choose by a nondeterministic choice (∪) to either switch its
state to an alert mode (4) or initiate braking along the differential equation
z̈ = −5. In conjunction with other regular combinations, control constraints can
be expressed using conditions like z ≥ 9? as guards for the system state.

Transition Semantics. There is a variety of slightly different semantics of
hybrid system models. Since the interplay of discrete change with continuous
evolution raises peculiar subtleties, we carefully motivate the advantages of our
choice of semantics for dL and hybrid programs. Consider the possible hybrid
evolution with one system variable x over time t in Fig. 1. The semantics has
to restrict the behaviour of the hybrid system during the continuous evolution
phase, e.g., on the interval [1, 2] to respect the differential equation ẋ = f(x).
Yet, the discrete jump at time 2 will necessarily lead to a discontinuity in the
overall system trajectory.



748 André Platzer

t

x

ẋ=−2x

0.2

1
ẋ=f(x)

1

2

g

ẋ=h(x)

0.6

Fig. 1. Discontinuous hybrid trajectory.

A global system trajectory func-
tion g (where g(t) records the value
of x at time t) can only assume a single
value at time 2, say the value g(2) =
0.6. Hence, the continuous evolution—
as visible in g—will only be continu-
ous on the open interval (1, 2). Still,
the evolution along ẋ = f(x) has to
be constrained at time 2 to possess a
left-continuous continuation towards a
projected value of 1, although this value will never be assumed by g. This com-
plicates the well-posed definition of semantics on the basis of an overall system
trajectory. Note that leaving out this condition of left-continuity would lead to a
total transition relation with all states being reachable, which, of course, would
not reflect the proper system behaviour.

In contrast to this, the dL semantics inflates points in time with instantaneous
discrete progression by associating an individual trajectory for each continuous
evolution or instant jump phase, e.g. the phases [0, 1], {1}, [1, 2], {2}, [2, 4]. Hence,
the trajectories remain continuous within each differential evolution phase and
discontinuities are isolated purely in discrete jump transitions. Thereby, the dL
semantics directly traces the succession of values assumed during the hybrid evo-
lution, even if they belong to states which occur without model time passing in
between. In addition to the fact that those so-called super-dense time effects nat-
urally occur at mode switches between differential evolutions, they are necessary
for joint mode switches of several system variables at once, like in x := 3; y := 5.
We argue that the resulting dL semantics is much simpler to define than for
approaches with a global overall system trajectory as, for example, in [2].

3 Parametric Verification of Train Control Systems

Symbolic parameters occurring in system dynamics raise a couple of challenges.
Firstly, even very simple parametric flows and guards are non-linear : With pa-
rameter p, the flow constraint 2x + py ≤ 5 is an algebraic inequality but not
linear. Thus, our logic needs to handle dynamics in full real arithmetic. Secondly,
parameters often arise from system decomposition, e.g. in [2]. For this, safety
statements about a parametric component typically have to take its interaction
with the environment into account. In particular, local correctness statements
need to reflect this interaction to obtain global correctness for every possible
instantiation. Thus, the verification logic needs to support this interactive char-
acter with rely-guarantee reasoning; see, e.g. [2].

We argue that logic is the right level for handling the symbolic nature of
parameters. All the more, the ability of dynamic logic to relate statements about
multiple components is extremely valuable for compositional reasoning [3].

In the European Train Control System (ETCS) [6], the movement of trains
is controlled by decentralised Radio Block Centres (RBC), which grant or deny



Differential Logic for Reasoning about Hybrid Systems 749

movement authorities (MA) to trains by wireless communication. In case of an
emergency, trains always have to stop within the MA issued by the RBC. In
ETCS, the actual acceleration and braking behaviour is determined by the train
and subject to MA limits, weather conditions, slope of track etc. For simplicity,
assume that—depending on those conditions—the train motion control deter-
mines a safety envelope s around the train, within which it considers driving
safe. When an MA has been granted up to the track position m and the train is
currently located at position z then dL can analyse, for example, the following
safety statement about the (simplified) acceleration system:

ψ → [
(
(m− z < s?; a :=−b) ∪ (m− z ≥ 2s?; a := 0.1)

)
; z̈ = a] z < m . (1)

∪

m−z<s?

m−z≥2s?

a := -b

a :=
0.1

z̈ = a

Fig. 2. Acceleration transitions.

It expresses that, under a condition ψ about
parameters, trains always remain within
their MA m. Further, it specifies that the
train decelerates using engine brakes of
force b if the safety envelope is under-
run (m−z < s). It slowly accelerates if there
is sufficient distance (m − z ≥ 2s). To give
a more concise program, we have omitted
the case where the train keeps its current
speed if there is no need to brake nor sufficient distance (i.e., s ≤ m− z < 2s).
The resulting transition structure for the hybrid program in (1) is depicted in
Fig. 2. Formula (1) can be analysed successfully by our calculus for verifying dL
formulas, which is similar to the one in [3]. With such an analysis, parameter
constraints on the free variables of (1) can be discovered.

The behaviour of the program in (1) can be analysed in dL, which is a first-
order dynamic logic. In contrast, the hybrid program in (1) would collapse to
a mere abstract shape ((α1;α2) ∪ (α3;α4));α5 in propositional modal logics [4].
There, the truth of (1), which depends on the actual effects of the αi, cannot be
analysed, since the state changes induced by the abstract actions αi are unknown
in propositional programs. For this reason, dL is devised as a first-order logic.

References

1. Henzinger, T.A.: The theory of hybrid automata. In: LICS. (1996) 278–292
2. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating travel agents.

International Journal of Control 79(5) (2006) 395–421
3. Platzer, A.: Towards a hybrid dynamic logic for hybrid dynamic systems. In Black-

burn, P., Bolander, T., Braüner, T., de Paiva, V., Villadsen, J., eds.: Proc., LICS
International Workshop on Hybrid Logic, Seattle, USA. ENTCS (2006)

4. Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proceedings of the IEEE
88(7) (2000) 985–1010

5. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press (2000)
6. Faber, J., Meyer, R.: Model checking data-dependent real-time properties of the

European train control system. In: FMCAD, IEEE Computer Society Press (2006)


