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Abstract. Modeling and analysis of biochemical systems are critical
problems because they can provide new insights into systems which can
not be easily tested with real experiments. One such biochemical process
is the formation of sugar cataracts in the lens of an eye. Analyzing the
sugar cataract development process is a challenging problem due to the
highly-coupled chemical reactions that are involved. In this paper we
model sugar cataract development as a stochastic hybrid system. Based
on this model, we present a probabilistic verification method for com-
puting the probability of sugar cataract formation for different chemical
concentrations. Our analysis can potentially provide useful insights into
the complicated dynamics of the process and assist in focusing exper-
iments on specific regions of concentrations. The verification method
employs dynamic programming based on a discretization of the state
space and therefore suffers from the curse of dimensionality. To verify
the sugar cataract development process we have developed a parallel
dynamic programming implementation that can handle large systems.
Although scalability is a limiting factor, this work demonstrates that the
technique is feasible for realistic biochemical systems.

1 Introduction

Modeling and analysis of biochemical systems are important tasks because they
can unlock insights into the complicated dynamics of systems which are difficult
or expensive to test experimentally. A variety of techniques have been used to
model biochemical systems, but the effectiveness of the analysis techniques is
often limited by tradeoffs imposed by the modeling paradigms. Stochastic differ-
ential equations have been used to model biochemical reactions [13, 3]; however,
analysis of these models has mainly been limited to simulation. Hybrid systems
have also been used to model biochemical systems [1, 12]; however, verification



methods based on deterministic hybrid systems fail to capture the probabilistic
nature of some biochemical processes and therefore may not be able to correctly
analyze certain systems. Stochastic Hybrid Systems (SHS) have been used to
capture the stochastic nature of biochemical systems but have previously only
been used for simulations [31] or analysis of systems with simplified continuous
dynamics [16].

In this paper we analyze the biochemical process of sugar cataract devel-
opment in the lens of an eye. The enzyme sorbitol dehydrogenase catalyzes a
reversible oxidation of sorbitol and other corresponding keto-sugars. An accumu-
lation of sorbitol in the eye is theorized to be the main factor in the development
of a sugar cataract. The chemical reactions and kinetic constants for the model
have been previously studied [26]. Understanding the exact conditions that lead
to the development of sugar cataracts will help scientists better predict and pre-
vent the condition [3]. Our analysis results can potentially provide useful insights
into its complicated dynamics and assist in focusing experiments.

We model the sugar cataract development problem using SHS and use a dy-
namic programming verification method based on a discretization of the state
space [21]. The proposed method suffers from the curse of dimensionality. There-
fore, we have developed a parallel dynamic programming implementation of the
verification algorithm that can handle large systems. Although scalability is a
limiting factor, this work demonstrates that the technique is feasible for realistic
biochemical systems.

The organization for the rest of the paper is as follows: Section 2 describes the
related work, Section 3 describes modeling of biochemical systems and the sugar
cataract development process using SHS, Section 4 describes the probabilistic
verification method, Section 5 presents our experimental results, and Section 6
concludes the work.

2 Related Work

Many systems in the biological sciences can benefit from formal modeling and
analysis methods. A variety of modeling techniques have been used to model
species population evolution to molecular dynamics [19]. As computing power
has increased, modeling and simulation approaches have evolved to take advan-
tage of increased computational power to improve accuracy and speed. Stochastic
Differential Equations (SDE) have been used for modeling cell signaling path-
ways and molecular motion [12, 23, 3]. Since only specialized cases of SDEs can
be solved analytically, the vast majority of models are simulated using Monte
Carlo techniques. The original cell signaling models were simulated using a fixed-
step stochastic simulation algorithm presented in [13]. The simulation algorithm
was fairly inefficient for large models, so computational improvements have been
made since [3].

Hybrid systems have been used for modeling biological systems in order to
capture the complicated dynamics using well-defined abstractions. Biomolecu-
lar network modeling is accomplished by using differential equations to model



feedback mechanisms and discrete switches to model changes in the underlying
dynamics [1]. Biological protein regulatory networks have been modeled with
hybrid systems using linear differential equations to describe the changes in pro-
tein concentrations and discrete switches to activate or deactivate the continuous
dynamics based on protein thresholds [12].

Stochastic hybrid systems further improve on the benefits of hybrid systems
by providing a more realistic probabilistic framework for modeling real-world
biochemical systems. A modeling technique that uses SHS to construct models
for chemical reactions involving a single reactant specie is presented in [16]. A
genetic regulatory network was modeled with a SHS model and compared to
a deterministic model in [18]. SHS models of biochemical systems have been
developed and simulated using hybrid simulation algorithms in [14, 31].

This paper adopts a SHS model that is a special case of the general model
presented in [7]. Related models have been presented in [15] with the emphasis
on modeling and analysis of communication networks and in [5] for simula-
tion of concurrent systems. SHS can be viewed as an extension of piecewise-
deterministic processes [10] that incorporate stochastic continuous dynamics.
Reachability of such systems has been studied in [8].

Reachability properties for continuous and hybrid systems have been charac-
terized as viscosity solutions of variants of HJB equations in [25, 27]. Extensions
of this approach to SHS and a toolbox based on level set methods have been
presented in [28]. A technique for probabilistic reachability verification for dis-
crete time SHS based on the interpretation of the safety verification problem
as an optimal control problem for a certain controlled Markov process has been
presented in [2].

This paper employs a reachability analysis method based on discrete approx-
imations. Discrete approximation methods based on finite differences have been
studied extensively in [24] and the references therein. Based on discrete approx-
imations, the reachability problem can be solved using algorithms for discrete
processes [30]. The approach has been applied for optimal control of SHS given
a discounted cost criterion in [20]. For verification, the discount term cannot be
used and convergence of the value function can be ensured only for appropriate
initial conditions. A related grid based method for safety analysis of stochastic
systems with applications to air traffic management has been presented in [17].
Our approach is similar but using viscosity solutions we show the convergence
of the discrete approximation methods.

Reachability analysis for SHS can also be accomplished using Monte Carlo
methods. Multiple stochastic simulations are used to determine the reachability
probability for an initial state of a SHS. Confidence intervals and accuracy prob-
abilities can be selected by adjusting the number of simulations [29]. Stochastic
π-calculus is another effective modeling framework for biological processes. The
models generated by these techniques are continuous time Markov Chains so
verification techniques and tools can be used to analyze the systems [23]. The
modeling used by π-calculus is different from that used in SHS, and comparison
of these methods is a subject of future work.



3 Modeling Biochemical Reactions using SHS

3.1 Dynamics of Biochemical Reactions

All cellular function of living organisms is governed by complex systems of cou-
pled biochemical reactions. A reaction specifies all chemical species which react
(reactants) and are produced (products). A kinetic constant k, associated with
each reaction, numerically describes the affinity for the reactants to produce the
products in defined temperature and pressure conditions.

Experimental analysis is used to physically measure the variation in indi-
vidual concentrations of the chemical species in a biochemical system. However,
understanding the dynamical behavior of biochemical systems requires running
many experiments that can be time consuming, tedious, unsafe, or costly. Devel-
oping and analyzing dynamical models for capturing the evolution of individual
chemical species concentrations can reduce the number of experiments needed.

Discrete models are a natural modeling paradigm for biochemical systems
because reactions can be considered as occurring at specific points in time, and
when a reaction occurs, individual molecules interact and produce new mole-
cules. Discrete models update the concentrations of the involved reactants and
products at a certain reaction rate based on the stoichiometry defined by the
reaction.

Chemical reactions are inherently probabilistic because of the unpredictabil-
ity of molecular motion [11], so their dynamics are best described by stochastic
models. Discrete stochastic models of reactions can be created by describing a
reaction j as firing at a rate aj [9]. When the reaction fires, the concentrations
of the reactants and products are reset to the appropriate updated values. Table
1 shows the rates and resets for several examples of different types of reactions.
For example, when the reaction X → Z occurs, a molecule of X is consumed
and a molecule of Z is produced denoted by x− = 1 and z+ = 1 respectively
where x and z are the quantities of molecules of chemical species X and Z, and
ki is the kinetic constant for reaction i.

Reaction aj Reset

X → Z k1x x− = 1; z+ = 1;
X + Y → 2Z k2xy x− = 1; y− = 1 ; z+ = 2;

2X → Z 1/2 ∗ k3x(x − 1) x− = 2; z+ = 1;
2X + Y → 2Z 1/2 ∗ k4x(x − 1)y x− = 2; y− = 1; z+ = 2;

3X → Z 1/6 ∗ k5x(x − 1)(x − 2) x− = 3; z+ = 1;

Table 1. Example Reaction Rates and Resets

Reactions occur at different speeds depending on the concentrations of chem-
icals and the kinetic constant for each reaction. “Slow” reactions occur when
reaction rates and concentrations are small enough and they can be modeled
and simulated efficiently using discrete stochastic techniques. However, discrete
simulations become inefficient when there are large concentrations of molecules



and/or fast reaction rates. In such cases the reaction will occur very frequently
and the discrete simulation will need to consider a large number of transitions
in a short period of time. “Fast” reactions occur at a rate that is fast enough
or in high enough concentrations to consider as occurring at a constant rate.
Such reactions can be modeled more efficiently as stochastic continuous models
assuming the reactions happen in a well-mixed solution [31].

The rate of change of each chemical species is calculated using the chemical
dynamics from the biochemical reactions. Suppose that we have a system of M
chemical reactions and N chemical species. We define xi as the concentration
of the ith chemical species in micro-Molarity (µM), Mfast as the number of
fast reactions, aj as the reaction propensity of the jth reaction, and W as an
Mfast-dimensional Wiener process. The stoichiometric matrix v is a (Mfast X
N) matrix which holds values representing the concentration of chemical species
lost or gained in each reaction. The following equation describes the dynamics
for each of the i chemical species [31].

dxi =

Mfast
∑

j=1

vjiaj(x(t))dt+

Mfast
∑

j=1

vji

√

aj(x(t))dWj (1)

Discrete and continuous models consider only slow or only fast chemical
reactions, but real biochemical systems often contain a mixture of both fast and
slow reactions. In a such a situation it is most efficient to use a hybrid modeling
approach to take advantage of the efficiency of continuous modeling while still
keeping the accuracy of discrete modeling [31].

Stochastic hybrid systems are ideal for modeling biochemical systems with
both fast and slow chemical reactions systems because they are able to model
continuous and discrete dynamics in a stochastic framework. Fast reactions are
modeled using the continuous stochastic dynamics techniques presented earlier,
and slow reactions are modeled as discrete transitions with probabilistic rates
and resets.

To determine which reactions are fast or slow, one must analyze the rates
using the kinetic parameters and quantities of each reactant involved. The reac-
tion rate range can be determined by analyzing the rate aj from Table 1 over the
entire range of possible chemical concentrations. To determine the smallest rate,
the smallest concentrations for each chemical species should be used. Similarly,
the largest rate can be determined by using the highest concentrations in the
range. Reactions can be considered slow if the reaction rate never exceeds 100
reactions per second, otherwise reactions can be modeled as fast reactions. If a
reaction has a range that spans 100 reactions per second, the reaction can be
classified as either fast or slow.

3.2 Sugar Cataract Development

A sugar cataract is a type of cataract which distorts the light passing through
the lens of an eye by attracting water to the lens when an excess of sorbitol is
present. Often these cataracts are formed in the eyes of diabetes patients who



do have highly fluctuating blood sugar levels. Several factors affect the accumu-
lation of sorbitol including the amount of the enzyme sorbitol dehydrogenase.
Sorbitol dehydrogenase catalyzes the reversible oxidation of sorbitol and other
polyalcohols to the corresponding keto-sugars [26].

The chemical species and concentration ranges for the sugar cataract devel-
opment process for bovine lens are described in Table 2. The bovine lens data
is used as a standard model for human cataract development. The ranges are
bounded and are estimated using realistic concentration values derived from ex-
perimental data and Michaelis-Menten constants (Km) defined as the rate of the
reaction at half-maximal velocity [26]. Table 3 describes the seven reactions and
rates involved in sugar cataract development. The rate is calculated based on
the concentrations presented in Table 2 and the kinetic constants presented in
Table 3.

Reactant Variable Min conc. (µM) Max conc. (µM)

NADH x1 0.0005 20.0005
E − NADH x2 0.0005 20.0005

NAD+ x3 0.0009 10.0009
E − NAD+ x4 0.0009 10.0009

sorbitol dehydrogenase (E) x5 0.0002 0.2002
fructose (F) x6 0.2 2000.2
sorbitol (S) x7 0.2 2000.2

Inactive form of E (Z) - 0.000002 0.200002

Table 2. Chemical species properties for the sugar cataract model

Reaction Kinetic constant Rate

E + NADH → E − NADH k1 = 6.2 Fast
E − NADH → E + NADH k2 = 33 Fast

E − NADH + F → E − NAD+ + S k3 = 0.0022 Fast
E − NAD+ + S → E − NADH + F k4 = 0.0079 Fast

E − NAD+
→ E + NAD+ k5 = 227 Fast

E + NAD+
→ E − NAD+ k6 = .61 Fast

E → Z k7 = 0.0019 Slow

Table 3. Sugar cataract reactions and kinetic constants

The slow reaction E → Z describes the conversion of the enzyme (E) into
its inactive form (Z) at a rate of k7x5 according to Table 1. When the reac-
tion occurs, the number of molecules of E will be decreased by one and the
concentration will be decreased by d = 10−21 µ Molar.

Each of the six fast reactions are modeled using the SDE (1). The inactive
form of E (Z) is not a reactant in any of the chemical equations, so its concentra-
tion is not modeled. The equations describe the rates of change of the individual
chemical species and are given below.



dx1 = (−k1x1x5 + k2x2)dt−
√

k1x1x5dW1 +
√

k2x2dW2

dx2 = (k1x1x5 − k2x2 − k3x2x6 + k4x4x7)dt+
√

k1x1x5dW1 −
√

k2x2dW2 −
√

k3x2x6dW3 +
√

k4x4x7dW4

dx3 = (k5x4 − k6x3x5)dt+
√

k5x4dW5 −
√

k6x3x5dW6

dx4 = (k3x2x6 − k4x4x7 − k5x4 + k6x3x5)dt+
√

k3x2x6dW3 −
√

k4x4x7dW4 −
√

k5x4dW5 +
√

k6x3x5dW6

dx5 = (−k1x1x5 + k2x2 + k5x4 − k6x3x5)dt−
√

k1x1x5dW1 +
√

k2x2dW2 +
√

k5x4dW5 −
√

k6x3x5dW6

dx6 = (−k3x2x6 + k4x4x7)dt−
√

k3x2x6dW3 +
√

k4x4x7dW4

dx7 = (k3x2x6 − k4x4x7)dt+
√

k3x2x6dW3 −
√

k4x4x7dW4

Biologists have determined that a ratio of sorbitol to fructose that is greater
than one is correlated to the beginning stages of sugar cataract formation [4].
It has been shown that fructose (x6) and sorbitol dehydrogenase (x5) play a
significant role in the accumulation of sorbitol (x7) in the eye which in turn
begins the formation of sugar cataracts.

3.3 SHS Model of Sugar Cataract Development

This section describes a formal SHS model for the sugar cataract development
following the formalism presented in [21]. Let x = [x1, . . . , x7]

T denote the con-
tinuous state taking values in X ⊂ R

7 where the set X is defined by the con-
centration ranges in Table 2. The continuous dynamics of the SHS are given by
the SDE

dx = b(x)dt+ σ(x)dW (2)

describing the dynamics of the fast reactions for the sugar cataract development
presented in Subsection 3.2 where b : R

7 → R
7 is the drift vector, σ(x) : R

7 →
R

7×6 is the dispersion matrix, and W (t) is an R
6-valued Wiener process.

To capture the discrete dynamics due to the slow chemical reaction, it is
sufficient to consider a hybrid system with one discrete state and with a self-
transition representing an occurrence of the slow reaction. When the discrete
transition occurs, the concentration of E (x5) jumps instanteneously according
to the assignment x5 := x5 − d.

Let Q = {q} denote the discrete state set and λ(x) = k7x5 the transition rate
function that is associated with the discrete transition. To represent the state
jumps, we define a reset map R : R

n × R
n → {0, 1} by

R(x, x′) =

{

1 if x′5 = x5 − d

0 otherwise
.



The SHS is then defined as (Q,R7, b, σ, Init, λ,R) where Init is the initial con-
dition for the concentrations of the reactants.

Between transitions, the continuous state evolves according to the SDE where
the solution is understood using the Itô stochastic integral. The occurrence of a
discrete transition is governed by an exponential distribution characterized by
the state-dependent transition rate λ(x) and, upon occurrence of a transition,
the continuous state x is reset according the the reset map R(x, x′).

The functions b(x) and σ(x) are bounded and Lipschitz continuous in x ∈ X

and thus the SDE has a unique solution. The transition rate function λ(x) = k7x5

is a bounded and measurable function which is integrable for every sample path
xt, and therefore, the expected value of the number of discrete transitions in a
finite interval [0, t] will be finite.

As described in Table 2, the concentrations of the sugar cataract develop-
ment system are assumed to be bounded. Further, since all concentrations are
positive, it is reasonable to assume that the diffusion term for the SDE is non-
degenerate, i.e. a(x) = σ(x)σT (x) is positive definite for every x ∈ X. Given
these assumptions, the SHS for the sugar cataract development is a special of
the SHS model described in [21]. In particular, this model has one discrete state
and one discrete transition with a deterministic reset map.

For the sugar cataract development, a ratio of sorbitol to fructose that is
greater than one is correlated to the beginning stages of the sugar cataract
formation [3]. Therefore, we can define the set of safe states as the set of all
concentrations that satisfy x7 − x6 < 1 and apply the reachability analysis
method presented in [21].

4 Probabilistic Verification

4.1 Reachability Analysis

Given the set of safe states B = {x ∈ X : x7 − x6 < 1}, we consider the
verification problem of computing the probability that the system execution from
an arbitrary (safe) initial state will exit the safe set indicating the beginning
stages of sugar cataract development. We denote ∂B and B̄ = B ∪ ∂B the
boundary and the completion of B respectively. Consider the stopping time
τ = inf{t ≥ 0 : s(τ−) ∈ ∂B} which is the first hitting of the boundary ∂B. Let
x be an initial state in B, then we define the function V : B̄ → R by

V (x) =

{

Ex[I(x(τ−)∈∂B)], x ∈ B

1, x ∈ ∂B
.

The function V (x) can be interpreted as the probability that a trajectory starting
at x will reach the boundary ∂B of the safe set, i.e. the probability that the
system is unsafe and sugar cataract formation may begin.

The value function V that characterizes the safety of sugar cataract formation
can be described as the viscosity solution of a Hamilton-Jacobi-Bellman (HJB)
equation. This function is similar to the value function for the exit problem of a



standard stochastic diffusion, but the running and terminal costs depend on the
function itself. This dependence captures the effects of the discrete dynamics to
the value function for the exit problem.

First, assuming that B ⊂ X, we define a bounded function c : B̄ → R+

continuous in x such that

c(x) =

{

1, if x ∈ ∂B

0, otherwise
.

The next proposition presents the HJB equation for the problem. The proof is
a straightforward application of the results presented in [21] to the SHS of the
sugar cataract development.

Proposition 1. Define LV (x) = λ(x)V (y)R(x, y) and ψV (x) = c(x)+V (y)R(x, y).
Then, V is the unique viscosity solution of the equation

HV

(

x, V,DxV,D
2
xV

)

= 0 in B

with boundary conditions

V (q, x) = ψV (q, x) on ∂B

where

HV

(

x, V,DxV,D
2
xV

)

= b(x)DxV +
1

2
tr(a(x)D2

xV ) + λ(x)V + LV (x).

4.2 Numerical Methods Based on Dynamic Programming

One of the advantages of characterizing reachability properties using viscosity
solutions is that for computational purposes we can employ numerical algorithms
based on discrete approximations. We use an approximation method based on
finite differences and we present an iterative algorithm based on dynamic pro-
gramming for computing the solution. The main characteristic of the approach
is that the solution based on the discrete approximations converges to the one
for the original stochastic hybrid system as the discretization becomes finer.

We employ the finite difference method presented in [24] to compute locally
consistent Markov chains (MCs) that approximate the SHS while preserving
local mean and variance. We consider a discretization of the state space charac-
terized by the approximation parameter h > 0 representing the distance between
neighboring points. By abuse of notation, we denote the sets of boundary and
interior points in the state space X as ∂Xh and Xh respectively. By the bound-
ness assumption, the approximating MC will have finitely many states which are
denoted by ξh

n, n = 1, 2, . . . , N .
Consider the continuous evolution of the SHS between jumps and assume

that the state is x. The local mean and variance given the SDE (2) on the
interval [0, δ] are

E[x(δ) − x] = b(x(t))δ + o(δ)

E[(x(δ) − x)(x(δ) − x)T ] = a(x(t))δ + o(δ).



Let {ξh
n} describe the MC onXh with transition probabilities denoted by ph

D(x, x′).
A locally consistent MC must satisfy

E[∆ξh
n] = b(x)∆th(x) + o(∆th(x))

E[(∆ξh
n − E[∆ξh

n])(∆ξh
n − E[∆ξh

n])T ] =

a(x(t))∆th(x) + o(∆th(x))

where ∆ξh
n = ξh

n+1 − ξh
n, ξ

h
n = x and ∆th(x) are appropriate interpolation inter-

vals (or the “holding times”) for the MC.
The diffusion transition probabilities ph

D(x, x′) and the interpolation intervals
can be computed systematically from the parameters of the SDE (details can be
found in [24]). To incorporate the effect of the transition rate in the approximat-
ing MC, consider the jumps with transition rate λ(x) and reset map R(x, x′).
Suppose that the state has just changed ξh

n = x. The probability that a jump
will occur on [t, t+ δ) conditioned on the past data can be approximated by

P [x jumps on [t, t+ δ)|x(s), w(s), s ≤ t] = λ(x)δ + o(δ).

Therefore, with probability 1 − λ(x)∆th(x) − o(∆th(x)) the next state is de-
termined by the diffusion probabilities ph

D and with probability λ(x)∆th(x) +
o(∆th(x)) there is a jump and the next state is determined by the reset map
R(x, x′). Therefore, the transition probabilities are defined by

ph(x, x′) = (1 − λ(x)∆th(x) − o(∆th(x)))ph
D(x, x′)+

(λ(x)∆th(x) + o(∆th(x)))R(x, x′) (3)

Let B̄h = X̄h ∩ B̄ and denote by ni the jump times and νh the stopping time
representing that ξh

n ∈ Xh\Bh. We consider a terminal state∆ and we extend the
state space of the MC to X̃h = X̄h∪{∆}. The transition probabilities are defined
so that p̃h(x,∆) = 1 if x ∈ Xh \ Bh, p̃h(∆,∆) = 1, and p̃h(x, x′) = ph(x, x′)
otherwise. This means that when the state reaches the unsafe set, it transitions
to ∆ and stays there for ever. Consider the function c̃ : X̃h → R+ with c̃(∆) = 1
and c̃(x) = 0 for every x and the value function

Ṽ h(x) = Ex[

∞
∑

n=0

c̃(ξn)]. (4)

Clearly, this sum is well-defined, bounded. By applying the results in [21], we
can show that the function Ṽ h can be computed using value iteration assum-
ming appropriate initial conditions. and that the solution based on the discrete
approximations converges to the one for the original stochastic hybrid system as
the discretization becomes finer.

Proposition 2. (1) Let Ṽ h
0 (x) = 0 for every x, then the iteration

Ṽ h
n+1(x) =

[

∑

x′

p̃h(x, x′)Ṽ h
n (x′)

]

(5)



converges pointwise and monotonically to Ṽ h = V h.
(2) Consider the value function V (x) for the SHS, then limy→x,h→0 Ṽ

h(y) =
V (x) uniformly in B̄.

Analysis of the computational complexity of value iteration algorithms is
based on the contraction properties of the iteration operator. Although, the it-
eration operator used for verification of SHS corresponds to an undiscounted
criterion, we have shown that the iteration operator restricted to an appropri-
ate set is a contraction mapping with respect to some weighted infinity norm.
Based on the contraction property, we can conclude that the iteration defined
by equation (5) converges to the desired value function in a number of steps that
is polynomial in the number of states N of the discrete approximating process
{sh

n, n = 1, . . . , N} and the number of bits used to represent the parameters of
the process. Details can be found in [22].

5 Experimental Results

In this section we analyze the safety probability for the SHS sugar cataract
model presented in Section 3. The chemical concentration ranges used are pre-
sented in Table 2, and the resolution of each range is presented in Table 4. We
chose the resolution parameters to be similar to the resolution that measurement
equipment can achieve in actual experiments. For example, the concentration of
sorbitol can be experimentally measured with sub microMolar resolution.

Reactant Resolution Step (µM)

NADH 1.0
E − NADH 1.0

NAD+ 0.5
E − NAD+ 0.5

sorbitol dehydrogenase (E) 0.008
fructose (F) 100
sorbitol (S) 100

Table 4. Chemical species MDP resolution for experiments

The resolution parameters for the sugar cataract system result in an MDP
with approximately two billion states. Storing the values at each state alone
requires several gigabytes of memory, so we developed a parallel value iteration
implementation to improve the performance of the algorithm. The value iter-
ation algorithm is still guaranteed to converge in a parallel implementation as
long as updated values are used periodically [6]. Parallel dynamic programming
algorithms are well-defined and easy to implement [6]. Our MDP has a regular
structure which improves the efficiency of the value iteration algorithm and al-
lows us to implement a fairly straitforward partitioning technique for the parallel
implementation.



Fig. 1. Projection of the value function

To partition the problem for multiple processors we select five of the seven
dimensions of the MDP to divide in half. Each processor only analyzes half of the
total range for each of five divided ranges and the entire range for the other two
dimensions. The two range divisions in five dimensions create 25 = 32 range com-
binations that must be considered. The processors are each specifically assigned
a combination of the ranges to ensure that the entire range for each dimen-
sion is computed, and all range values are arranged to minimize communication.
Processors with neighboring range values regularly update their neighbors to
ensure the value iteration converges.

To visualize our results we can plot projections of the data for different
concentrations of the chemicals involved. Specifically, these projections show
the safety probability for entire range of sorbitol and fructose levels for certain
values of the five other variables. Multiple selections of the five other variables
are chosen to show a more comprehensive view of the data.

Figure 1 shows a projection of the value function along the safety boundary
where x1 = 1.0, x2 = 20.0, x3 = 1.0, x4 = 0.005, and x5 = 0.1. Near the
boundary of the safe and unsafe regions, the value function varies significantly
depending on the projection variables chosen. This implies that certain chemical
concentrations are more prone to developing cataracts than others. This data
could possibly be used to help better predict sugar cataracts by demonstrating
where the safest and most unsafe concentrations exist. It could also give guidance
for choosing the most effective or economical treatment to avoid the cataract
development.

The Advanced Computing Center for Research and Education (ACCRE) at
Vanderbilt University provides the parallel computing resources for our exper-
iments (www.accre.vanderbilt.edu). The computers form a cluster of 348 JS20
IBM PowerPC nodes running at 2.2 GHz with 1.4 Gigabytes of RAM per ma-
chine. We use C++ as the implementation language because ACCRE supports
Message Passing Interface (MPI) compilers for C++. We use the MPI standard
for communication between processors because it provides an efficient protocol
for message passing middleware for distributed memory parallel computers. The



sugar cataract experiment took approximately 20 hours on the 32 processors.
Currently, the bottlenecks of this approach are the memory size and speed.

6 Conclusions

Biochemical system modeling and analysis are important but challenging tasks
which hold promise to unlock secrets of complicated biochemical systems. SHS
are an ideal modeling paradigm for biochemical systems because they incorpo-
rate probabilistic dynamics into hybrid systems to capture the inherent stochas-
tic nature of the biochemical systems. The sugar cataract development problem
is excellent example of a system that is modeled effectively using the presented
modeling methods. Our dynamic programming analysis technique provides veri-
fication results for realistic systems using parallel computing techniques to lessen
the effect of the curse of dimensionality.
Acknowledgements

We would like to thank Howard Salis and Yiannis Kaznessis from the Uni-
versity of Minnesota for their help with this project.

References

1. R. Alur, C. Belta, F. Ivanicic, V. Kumar, M. Mintz, G. Pappas, H. Rubin, J. Schug,
Hybrid Modeling and Simulation of Biomolecular Networks, Hybrid Systems: Com-

putation and Control, LNCS 2034, pp. 19-33, 2001.
2. S. Amin, A. Abate, M. Prandini, J. Lygeros, S. Sastry, Reachability Analysis for

Controlled Discrete Time Stochastic Hybrid Systems, Hybrid Systems: Computation

and Control 2006, LNCS 3927, pp. 49-63, 2006.
3. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, A. Triona, An Alternative to Gille-

spie’s Algorithm for Simulating Chemical Reactions, Computational Methods in Sys-

tems Biology 2005, Edinburgh, 2005.
4. R. Barbuti, S. Cataudella, A. Maggiolo-Schettini, P. Milazzo, A. Triona, A Prob-

abilistic Model For Molecular Systems, Fundamenta Informaticae XX, IOS Press,
1-15, 2005.

5. M. Bernadskiy, R. Sharykin, and R. Alur, Structured Modeling of Concurrent Sto-
chastic Hybrid Systems, FORMATS’04, LNCS 3253, pp. 309-324, 2004.

6. D. Bertsekas, J. Tsitsiklis, Parallel and Distributed Computation: Numerical Meth-
ods, Prentice-Hall, 1989.

7. M. Bujorianu, J. Lygeros, Theoretical Foundations of General Stochastic Hybrid
Systems: Modeling and Optimal Control, In Proc. of 43rd IEEE Conf. on Decision

and Control, 2004.
8. M. Bujorianu, J. Lygeros, Reachability Questions in Piecewise Deterministic Markov

Processes, Hybrid Systems: Computation and Control 2003, LNCS, vol. 2623, pp.
126-140, 2003.

9. Y. Cao, H. Li, L. Petzold, Efficient formulation of the stochastic simulation algo-
rithm for chemically reacting systems, J. Chem. Phys., 121, 4059, 2004.

10. M. Davis, Markov Models and Optimization, Chapman and Hall, 1993.
11. M. Elowitz, A. Levine, E Siggia, P. Swain, Stochastic Gene Expression in a Single

Cell, Science 297, 1183, 2002.



12. R. Ghosh, C. Tomlin, Symbolic Reachable Set Computation of Piecewise Affine
Hybrid Automata and its Application to Biological Modeling: Delta-Notch Protein
Signalling, Systems Biology, 1:170-183, 2004.

13. D. Gillespie, A General Method for Numerically Simulating the Stochastic Time
Evolution of Coupled Chemical Reactions. J Comp. Phys., 22:403-434, 1976.

14. E. Haseltine, J. Rawlings, Approximate simulation of coupled fast and slow reac-
tions for stochastic chemical kinetics, J Chem. Phys., 117, 6959, 2002.

15. J. Hespanha, Stochastic Hybrid Systems: Application to Communication Networks,
Hybrid Systems: Computation and Control 2004, LNCS, vol. 2993, pp. 387-401, 2004.

16. J. Hespanha, A. Singh. Stochastic Models for Chemically Reacting Systems Using
Polynomial Stochastic Hybrid Systems, Int. J. on Robust Control, Special Issue on

Control at Small Scales, 15:669689, 2005.
17. J. Hu, M. Prandini, and S. Sastry, Probabilistic Safety Analysis in Three Dimen-

sional Aircraft Flight, Proc. of 42nd IEEE Conf. on Decision and Control, pp.
5335-5340, 2003.

18. J. Hu, W. Wu, and S. Sastry, Modeling Subtilin Production in Bacillus subtilis
Using Stochastic Hybrid Systems, Hybrid Systems: Computation and Control 2004,
LNCS, vol. 2993, pp. 417-431, 2004.

19. C. Morton-Firth, Stochastic Simulation of Cell Signaling Pathways. PhD Thesis.
University of Cambridge, 1998.

20. X. Koutsoukos, Optimal Control of Stochastic Hybrid Systems Based on Locally
Consistent Markov Decision Processes, Int. J. of Hybrid Systems, 4, 301-318, 2004.

21. X. Koutsoukos and D. Riley, Computational Methods for Reachability Analysis of
Stochastic Hybrid Systems, Hybrid Systems: Computation and Control 2006 LNCS
3927, pp. 377-391, 2006.

22. X. Koutsoukos and D. Riley, Computational Methods for Verification of Stochastic
Hybrid Systems, submitted.

23. M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, J. Heath, E. Gaffney,
Simulation and Verification for Computational Modeling of Signaling Pathways.
Proceedings of the Winter Simulation Conference, to appear Dec 2006.

24. H. Kushner, P. Dupuis, Numerical Methods for Stochastic Control Problems in
Continuous Time, Springer, 2001.

25. J. Lygeros, On reachability and minimum cost optimal control, Automatica, 40(6),
917-927, 2004.

26. I. Marini, L. Bucchioni, P. Borella, A. Del Corso, U. Mura, Sorbitol Dehydroge-
nase from Bovine Lens: Purification and Properties, Archives of Biochemistry and

Biophysics, 340:383-391, 1997.
27. I. Mitchell, A. Bayen, and C. Tomlin, A Time-Dependent Hamilton-Jacobi Formu-

lation of Reachable Sets for Continuous Dynamic Games, IEEE Trans. on Automatic

Control, 50(7), 947-957, 2005.
28. I. Mitchell, J. Templeton, A Toolbox of Hamilton-Jacobi Solvers for Analysis of

Nondeterministic Continuous and Hybrid Systems, Hybrid Systems: Computation

and Control 2005, LNCS, vol. 3414, pp. 480-494, 2005.
29. M. Prandini, O. Watkins, Probabilistic Aircraft Conflict Detection, HYBRIDGE,

IST-2001-32460, 2005.
30. M. Puterman, Markov Decision Processes-Discrete Stochastic Dynamic Program-

ming, Wiley: Hoboken, New Jersey, 2005.
31. H. Salis and Y. Kaznessis, Accurate hybrid stochastic simulation of a system of

coupled chemical or biochemical reactions, The Journal of Chemical Physics, v122,
pp. 54-103, 2005.


