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Abstract. Peer-to-Peer networks are comprised of multiple indepen-
dently administered computers (peers) that cooperate via a common
protocol in order to achieve a goal common to the peers. Helping the
user find relevant information in a P2P network is the subject of the
field of Peer-to-Peer IR.

In order to be successful, a P2P-IR system needs to be adaptive in several
respects. It has to adapt both to the user and to its environment. Within
this article we detail the motivations and challenges of P2P-IR, as well
as the ways in which P2P-IR systems adapt and where improvement is
needed in order to achieve adaptive multimedia retrieval.

1 Introduction

Peer-to-Peer networks consist of multiple independently administered computers
(peers) that cooperate with each other serving a goal that is common to the peers.
The word peer indicates that the participants in the P2P network have equal
rights and opportunities. In true P2P networks, there are no central components.

It is common grounds that there is the need to discover the network’s re-
sources in order to make use of a P2P network. This motivates the research into
retrieval in P2P networks. For a couple of years, the focus lay on exact search
in P2P networks, however, there is a growing interest in similarity search, i.e.
information retrieval (IR) in P2P networks [25, 18, 16].

What is the motivation of such networks? In fact, currently, there is a growing
proportion of self-generated media. Services like myspace.com, blogger.com or
flickr.com all offer users the opportunity to put their opinion and their feelings
into media objects, upload them to the site and then serve it to the world and
have the result viewed and annotated for search by friends and strangers alike.
In other words, there is a growing amount of data generated by end users for
the use by end users.

On the other hand, Google and competitors offer search for the mainstream
and increasingly also for specialized communities. However, there are limits to
the current crawler-based system: a growing number of users is reluctant to give
their personal data to huge data-collecting enterprises. At the same time crawlers
reach their limit in the sense that many site owners of small sites complain that



too much of their traffic is due to visits of web site crawlers for search engines.
This puts a limit to the freshness of data accessible via web search engines.

P2P-IR offers the promise of freshness of index data. Moreover, there is the
hope that as each machine in the P2P network is responsible for comparatively
few documents, there is the possibility to use sophisticated query processing
methods that might be too costly for classical search engines such as Google,
Yahoo or MSN search.

However, looking more closely, there are several challenges to P2P search.
All of them are, in fact, linked to the need for adaptivity. We identify four main
aspects of adaptation that a P2P-network has to perform. One of them is IR
specific, the other three are P2P specific:

IR specific: P2P-IR inherits the adaptation problems from IR
User query behavior: The system has to adapt to the user and his in-

formation need, or more precisely to his perception of usefulness and
relevance of media objects in the given query situation.

P2P specific: These adaptation problems are common to P2P systems.
User online behavior: Experience shows [11] that users of P2P networks

have strongly differing behavior with respect to how long they stay online
and how much data they share.
The word churn describes the fact that the population of a P2P network
is constantly changing. We are speaking of the P2P network and its
participants, but these words do not describe a P2P network well. There
is as much the population of a P2P network as there is the population of
a huge railway station (think: Paris, Gare de l’Est): The overwhelming
majority of a railway station’s population will be part of this population
less then a quarter of an hour. However, some very few people will work
at the station all day. Similarly, many measurement studies (e.g. [11])
in P2P networks report that many (up to ≈ 80%!) peers joining a P2P
network stay less than one minute in the network. Evidently a P2P
network has to adapt to this churn of population.
An important insight is that the churn present in P2P networks calls for
restricted goals of availability. In the context of multimedia retrieval, it
might be feasible to replicate indexing data, but it will be infeasible to
replicate the actual documents [2].

Peer system properties: There are peers with widely differing computing
power (e.g. from a 200MHz portable device to a 4GHz Pentium D) and
network bandwidth (e.g. from a mediocre 40kbit/s telephone connection
to 16Mbit/s DSL lines). P2P networks need to find the right compro-
mise between fairly balancing the load and making network participation
impossible for users of legacy equipment.

Attacks: Finally, participating peers can be contributors or attackers. In
contrast to client/server networks where there is one data provider and
many data consumers. If a client tries to alter a server’s data, it is easy
to tell who is the attacker and who is attacked. In P2P networks ser-
vice consumers (i.e. peers) are on the same side of the fence as service



providers (also peers), so there is no easy way to tell if a contribution is
legitimate or not.

In fact, all of the adaptation challenges have to do with diversity. Adapting
to users means adapting to their differences. The same, P2P systems seek to
adapt to heterogeneity of the P2P system and its environment. As we will see in
the following, in some situations one can even make use of the heterogeneity.

1.1 Structure of the paper

In the following we will consider image Query by visual Example (QbvE) as an
example for multimedia-retrieval, a variety of Content-Based Image Retrieval.
While we are aware that QbvE is not the only way of querying multimedia data,
we do assume that this way of query processing is representative and the basis
for many more complex and more powerful query paradigms.

In classical QbvE, images are indexed by extracting a feature vector from
each image and indexing the resulting collection of vectors for search. A query is
processed by transforming the query into a feature vector q and by ranking the
image in the collection by the distance δ(q, v) of each feature vector v to q. The
best-ranked document is the document whose feature vector has the smallest
distance to the query. Typically, only k documents are of interest.

In other words, the image query is mapped onto a ranked k-Nearest-Neighbor
(k-NN) query between feature vectors.

However, there is an additional complication. Typically QbvE systems try
to improve query performance by solliciting feedback from the user. Typically,
the user can mark documents as relevant or irrelevant to the query. The system
reacts by either modifying q, or by modifying the distance measure δ. Especially
the latter poses challenges to the indexing structure.

There is a large number of diverse approaches to performing such k-NN
queries in P2P networks. Roughly, they can be sorted into three groups, namely

1. Replication in unstructured networks,
2. Approaches based on distributed hash tables, and
3. Routing by data summaries and source selection.

In the following we will describe these approaches, and we will describe how
they realize adaptivity. Please note that while we find this classification use-
ful, many systems use combinations of these approaches. Freenet, for example,
performs replication as well as summary-based routing.

2 Replication in unstructured networks

Despite the existence of sophisticated techniques for using unstructured P2P
networks (such as [22, 27]), the term unstructured networks typically is associated
with the first generation of the Gnutella P2P protocol [6]. In a classical Gnutella
network, peers are connected via TCP/IP connections. Each peer is connected



with a small number of neighbors. Each peer steadily discovers new neighbors
in case its current neighbors leave the system. When receiving a query either
from a user or from other peers, the receiving peer forwards the query to all
its neighbors, except for the source of the query. On receiving the results it will
forward these results to the source of the query, i.e. either to another peer or to
the querying user. The querying user then can choose documents to download.

This method is simple and robust. However, it quite quickly hit the first
scalability barrier. Every node receives every query. Nodes with a slow network
connection eventually end up doing nothing but forwarding queries, and they
are not able to serve or to request documents any more.

2.1 Adaptation to system diversity and to user online behavior

A first attempt at reducing the communication load is to limit the reach of
queries via a so-called Time To Live (TTL), effectively forwarding the query to
just a (random) subset of the peers. However, this method still treats all peers
equal and does not cater for the heterogeneity of the system.

The current method of choice is to introduce so-called super nodes or super
peers [27]. These peers are more powerful and reliable than the average peer
and take more responsabilities in the network: Each super peer is responsible
for a set of normal peers. When a normal peer connects to a super peer, it will
send a replicate of all its indexing data to the super peer. Subsequent queries
will be handled by the super peer1. The normal peer just comes into play if it
can contribute to the query result. This way, normal peers are shielded from
the majority of the query traffic. To summarise: super peers act as servers for
normal peers, and as classical Gnutella peers among each other.

Super peer architectures make use of the heterogeneity in P2P networks.
There are peers that have more bandwidth than others, and there are peers that
stay longer in the network than others. In fact, the peer online time distribution
is such that it is safe to assume that a peer that has stayed an hour within the
network will stay much longer in the network. So, the network elects peers as
super peers that have stayed online a long time and that are willing to serve as
super peers. Here heterogeneity helps making the choice.

2.2 Adaptation to the index data

In replication based networks, the algorithm makes sure that a query reaches all
super peers. As all super peers combined contain all indexing data, each super
peer just has to act like a non-P2P server: it processes the query locally and
forwards a ranking to the querier.

Obviously, ranked similarity queries that can be processed in one centralized
server can also be processed in P2P network with a super-peer architecture.

1 Some systems only ship peer data summaries instead of the full indexing data.



2.3 Adaptation to the querying user

From the above follows that also complex relevance feedback queries can be
processed using super-peer methods. In fact, this seems like an opportunity for
building adaptive systems that support complex, interactive query processes.

However, when one looks at the actual query times needed to process a query
in a Gnutella network, they are in the region of tens of seconds up to several
minutes. The high latency between issuing and completing a query step is the
main weakness of this type of architecture and currently makes it unsuitable for
interactive query processes that use relevance feedback.

3 Distributed indexing structures

Distributed indexing structures try to get away from query processing that in-
volves looking at all data points. As indicated by its name, the approach is similar
to the approach of non-distributed indexing structures: The network maintains
a structural invariant in the presence of peers joining and leaving. The data
to be indexed is inserted at the proper position in the indexing structure. On
processing a query, an algorithm finds the nodes that contain the index data
needed.

The main advantage of distributed indexing structures is that they are con-
ceptually very close to non-distributed indexing structures. Their main disad-
vantage in the P2P setting is that peers entering the network have to upload
their index data up-front when entering the network.

Most current distributed indexing structures are based on Distributed Hash
Tables (DHTs). DHTs are one of the main architectural advances of current P2P
research with respect to the initial Gnutella architecture.

In contrast to super-peer architectures that do not provide any guarantee of
search quality, DHTs consisting of N peers are able to determine in O(log N)
hops2 if a data item is present in the network or not. The price for this precise
knowledge is high: The large majority of DHTs does not support similarity
search: The operations supported are the insertion of key/value pairs and the
retrieval of a value given a key. The most prominent DHTs with these properties
are Chord [24], Pastry [20] and Kademlia [14]. The latter has been successfully
fielded in a large-scale consumer application: eDonkey.

Most DHTs identify each node using a long bit string without semantic mean-
ing. In addition to identifying nodes such that they can be recognized even after
a change of IP address, the identifier determines the position of the node relative
to other nodes in the DHT. Media object keys in DHTs are also bit sequences
of the same lengths as peer IDs. The P2P algorithm now assigns to each peer
within the network a region in the space of possible bit sequences for which the
peer will be responsible. When inserting a key/value pair into a DHT, a routing

2 A hop is a step of indirection. If A sends a message to C via B, the message is routed
over two hops.



algorithm will find the node responsible for the key and assign the key/value
pair to it.

Chord, for example has a ring topology. Each peer has two neighbors, one
with a smaller (right), one with a bigger ID (left). Each peer is responsible for
keys that are smaller than or equal to its ID and bigger than the ID of its right
neighbor. Using this architecture one would be able to find a given key in linear
time. In order to achieve a speedup, each node maintains O(log N) connections
across the ring, the fingers. Judicious use of these fingers enables each peer to
look up any key in O(log N) time.

CAN DHTs (Content-addressable networks, [19]) work differently. Here the
space of possible IDs are multi-dimensional real-valued vectors. Typically each
vector component is limited to the interval [0; 1). In CAN each peer is respon-
sible for a rectangular region in key space. While in a classic CAN each peer is
only connected to peers that are responsible for the regions neighboring its own
key space, there exist modifications of CANs that build small-world networks
on top of the classical CAN structure, obtaining O(log N) lookup time [8]. In
contrast to Chord, CAN is able to perform efficient similarity search on vectors.
However, due to the curse of dimensionality [26, 1], this ability is limited to small
dimensionalities.

Both Chord and CAN have been used as building blocks for the design
of IR-applications. In the following we will shortly describe two applications:
PRISM [21], a Chord-based system, and pLSI [25], a CAN-based system.

PRISM indexes each vector x by placing x on a small number of nodes in a
Chord DHT. Using the resulting distributed indexing structure, it can process
k-Nearest-Neighbor (k-NN queries for high-dimensional vectors).

The placement of each vector in PRISM is calculated using distances to a
fixed set of reference vectors. When processing a query, the node issuing the
query q calculates the set of nodes where q would be placed and searches for
similar vectors there, sending the nodes q as the query. The main innovation of
PRISM is the algorithm for finding the nodes on which to place the data vectors.

In order to index a vector x, the distance of x to a number nr of refer-
ence vectors ri (i ∈ {1, . . . , nr}) is calculated, yielding δ := (δ1, δ2, . . . , δnr ) :=
(δ(x, r1), . . . , δ(x, rnr )). Typically, δ has fewer dimensions than x. Now, one
straightforward way to proceed would be to index δ via a distributed vector in-
dexing structure. The authors of PRISM, however, go a different way. In PRISM,
the ri are ranked by their similarity. The result of this ranking is a list of indices
ι = (ι1, . . . , ιnr ) such that rι1 is the reference vector closest to x, rι2 the second
closest and so on.

Then, pairs of indices are formed. The pair formation is a fitting parameter,
the original PRISM paper suggests {ι1, ι1} (i.e. storing the a pair consisting
of twice the index of the best match) {ι1, ι2}, (the reference point index of the
best match and the second best match), {ι2, ι3}, {ι1, ι3}, {ι1, ι4}, {ι2, ι5}, {ι2, ι4},
{ι3, ι4}, {ι1, ι5}, {ι4, ι5}, {ι3, ι5} for their dataset. From each of the pairs a Chord
key is calculated, and this key is used for inserting the vector x into the Chord
ring.



Query processing works by finding out which peers would receive the query
vector q if it was a new data item and forwarding the query vector to these peers.
This involves again the calculation of index pairs, which we will call query pairs
in the following. In order to reduce query processing cost, the query processor
can choose to contact only nodes pertaining to only a subset of the query pairs.
Doing this also reduces recall, one has to find a useful tradeoff.

pLSI pLSI [25] follows another approach that is more classical. Here Latent
Semantic Indexing, i.e. a singular value decomposition [7] is performed in order
to reduce the dimensionality of the vectors to be indexed. At the same time, the
SVD achieves an ordering of the dimension by their importance. The remaining
(still) high dimensional vectors are cut into low-dimensional slices. Each slice
and the ID of the document it pertains to is entered as a key/document id (i.e.
scliec/document id) pair into into a CAN. On receiving a query from its user,
a peer cuts up the query vector into slices and then queries the CAN, starting
with the most important dimensions. Results for several slices of each vector will
be combined. As in PRISM we can process k-NN queries using pLSI.

3.1 Adaptation system diversity and to user online behavior

In terms of adaptation to system diversity and user online behavior, DHT-based
systems inherit their properties from DHTs.

DHTs have the advantage of being provably efficient, and they can be tested
in a data-independent manner. This property has made them a subject of ex-
tensive research. One focus of this research has been making DHTs churn re-
sistant [23], and to introduce load balancing where the load balancing that is
inherent to the DHT algorithms does not suffice [10].

DHTs perform replication of key/value pairs in order to ensure high avail-
ability. Obviously, if there is much index data (i.e. the values of the key/value
pairs) stored in the network, the continuous replication alone will generate much
traffic.

Example: Consider an inverted file index, in which each document of Nd,p =
1000 documents per peer is represented by m = 1000 vector components. As-
sume r = 20 fold replication. Consider that 5% of the peers is leaving ev-
ery five minutes. In (very conservative) estimations we would count each vec-
tor component to be stored as 4bytes. In our hypothetic but realistic setting,
0.05 ·Nd,p ·m · r · 4 = 4Mbyte would have to be shipped per peer every five min-
utes just to maintain the network. In other words, a peer participating 8 hours
a day would have to send 10GB/month over the network just for participating.

Load balancing can be performed by having peers that hold too many keys
distribute some of their keys to their neighbors.

Adaptation to differing processing power and network latency can be per-
formed e.g. by sending each query to several nodes in the DHT. Query answering
in DHT is a multi-step process in which the querying peer queries its neighbors
for suitable next nodes that are closer to the wanted key. By sending the query to
several nodes at the same time, the querier can choose the answer of the fastest



answering node for continuing the query process. By this, DHTs tend to sollicit
more strongly nodes that are more performant.

3.2 Adaptation to the index data

In contrast to replication-based systems, DHT-based IR systems make use of the
structure and distribution of the data they are indexing in order to create an
efficient data structure. Our preliminary experiments (see Fig. 1) suggest that
e.g. in PRISM the dimensionality of the features indexed matters, and that this
influences the number of reference points that are to be chosen depending on
the data.

Similarly, the usefulness of an LSI depends on the dimensionality of the
feature set and thus on the type of data to be indexed. The outcome of an LSI
is data dependent. So, before indexing a collection of vectors, a pLSI network
needs to perform an LSI of the data to be indexed.

The same applies when data drift over time. From time to time, a pSearch
network’s administrator (or an algorithm that is not reported, yet) will have
to decide to adjust network parameters in order to suit the new data distribu-
tion over the peers. Another method would be to perform such a readjustment
periodically, avoiding difficult, and probably faulty decisions.

3.3 Adaptation to the user

As of yet, there is no research we are aware of that considers adaptation of
DHT-based P2P-IR networks to user feedback.

Distributed inverted files are sufficiently similar to non-distributed inverted
files to be able to support the processing of relevance feedback. However, more
research is needed for evaluating if the cost of distributed processing of relevance
feedback queries is within reasonable bounds. [13] suggest that naive use of
inverted files in large networks is beyond reasonable communication cost even
when proceeding queries with few query terms.

Distributed indexing structures for non-sparse real-valued vectors, such as
PRISM and pLSI suffer from the fact that they assume one distance measure
when filling the indexing structure. We would expect that the performance de-
grades when changing that distance measure, e.g. in order to respond to user
feedback. Indeed experiments confirm slightly degrading performance. Please see
the experimental section 5 for details.

4 Routing-based approaches

FIXME: hier ist die Nomenklatur nicht klar.
As distributed indexing structures, routing-based approaches seek to get

away from considering all data vectors for each query. However, in contrast
to distributed indexing structures, summary based approaches leave the bulk of
the indexing data in the peers that hold the corresponding documents. Routing



based systems seek to improve the query performance by improving the net-
work’s topology and by creating routing tables that enable semantic routing
between peers.

Creating routing tables for semantic routing involves creation of summaries
of a peer’s collection and shipping the collection summary to the right place in
the network.

4.1 Freenet

Freenet, described in [5] performs routing by document keys. It has been ex-
tended for the use in (text) information retrieval by Kronfol [12]. To our knowl-
edge, there is no extension of Freenet for the use of multimedia data. However,
the techniques applied in Freenet have influenced other systems.

As Gnutella, Freenet is unstructured. However, Freenet queries are not for-
warded from the querying node to all its neighbors. Instead, each node contains
a routing table. The routing table contains a list of peer/document identifier
pairs. A peer/document identifier pair p/id is entered in the routing table, if p
has provided id in the past. In each node, a query will be routed to the p whose
id matches most closely the query. If there is no possibility to route the query to
a suitable next node, backtracking is performed. When the searched document is
found, the document found will be sent back along the path of the query. Peers
on this backward path of the query can choose to cache the document, and they
can choose to enter themselves as the source of the result document.

4.2 DISCOVIR

A well-published system that uses summaries and topology improvements in
order to perform Content Based Image Retrieval (CBIR) is DISCOVIR [18].
DISCOVIR indexes high-dimensional feature vectors. Each peer is summarised
via an average feature vector vp,avg and σ, the corresponding standard deviation.
This summary is used in two ways:

Privileged vs. normal links: Each peer has two classes of links. (i) Normal
links that work much like Gnutella links. (ii) Privileged links that build a
second Gnutella-like networks between peers that are similar to each other.
If they are similar to each other can be determined via their summaries.

Query filter: A peer that receives a query calculates the distance between the
query vector q and the average vector of the peer and tests if the distance
is below a threshold that is calculated relative to the standard deviation
||q − vp,avg|| < c · σ. If the query is too far away from the average vector,
the peer will not run the query on its local data. It will forward the query
as described above.

Sia et al. report improvements with respect to classical Gnutella. However,
to our knowledge, this method has not yet been tested with a realistic large-scale
data distribution over peers.



4.3 PlanetP

DISCOVIR is insatisfactory in the sense a large fraction of peers has to be
contacted in order to process a query.

In fact, the curse of dimensionality that makes the creation of successful
distributed indexing structures difficult is also the primary source of difficulty
when trying to implement multi-hop routing strategies for performing CBIR in
P2P networks. Due to the curse of dimensionality, the summaries cannot be
very selective, and thus cannot claim that a routing decision based on such a
summary is correct with a high probability. However, multi-hop routing requires
the routing decision to be correct with a very high probability.

Example: Imagine a scheme that routes a query to the peer holding the most
similar vector vt with respect to a query q. The query would be routed over 20
hops. If we assume that the routing decision is correct 99% of the time, still this
method will route 0.9920 = 80% of all queries to the correct peer. However, if we
assume routing decisions to be correct at 80% of the hops, the query will reach
the node holding vt only ≈ 1% of the time!

PlanetP reacts to these considerations by employing one-hop routing, known
in the area of distributed IR and databases as data source selection, inspired
by classical methods of distributed information retrieval [9, 4]. In PlanetP each
peer knows summaries of all other peers. Summaries are replicated via so-called
rumor spreading. Obviously this scheme is not scalable as the number of peers
to keep track of grows O(N). We have presented a scalable version of PlanetP,
Rumorama [16] whose properties will be discussed below but whose details are
out of scope here.

A PlanetP-peer receiving a query q from its user (we will call this peer the
query peer) will rank the other peers with respect to the query. The peers will
be ranked by the probability that they contribute one or more documents to the
result set of the query. After this peer ranking has been obtained, the query peer
will contact the most promising peers, sending them q. The peers contacted will
process q using their local data store and then return the results to the query
peer. The query peer will generate a combined ranking of peers.

PlanetP is specialized on text information retrieval. PlanetP uses Bloom
filters [3] as summaries. Each summary describes which index terms are present
in a given peer. Unfortunately Bloom filters are not adapted to the indexing of
densely populated high-dimensional vectors.

We have presented work about peer data summaries based on cluster his-
tograms for use in PlanetP-like networks. These summaries can be used for col-
lections of images and have been tested on 166-dimensional histograms extracted
from stock photos and consumer photos [17, 15].

In this method, first a global k-means clustering is derived over all the images
present in the network. As shown in [15], such a clustering can be calculated
efficiently, i.e. without having peers transfer their data collection. The result of
the clustering is a set of cluster centers ci. Every peer j will now assign each of
its vectors vj

k to the closest cluster center, and it will count how many vectors



are assigned to which center. Doing this, it obtains a cluster histogram hj
i that

assigns to each cluster center ci a document frequency given the peer j.
We are currently preparing a paper that presents and evaluates diverse peer

ranking methods based on cluster histograms. The simplest method is the one
described in [17] and will be presented here: When processing queries, the query
peer first finds which center ci is closest to q. We call the closest center ciq . The
query peer then will rank the peers j by decreasing histogram value hj

iq
for the

cluster center ciq
.

Adaptation to system diversity and to user online behavior The archi-
tectures presented here are very different in nature, and thus react very differ-
ently to user online behavior and system diversity.

The outcome of Freenet’s caching scheme is that popular documents are
cached at many peers in the network, and that the addresses of cached copies
will be contained in many routing tables. So, after inception of the network, the
network structure and query performance will adapt to the users need. Moreover,
peers can choose if they want to keep long or short routing tables, if they want
to enter themselves as data source, and if they want to cache documents. This
enables peers to choose their load. In addition, popular documents will be cached
all over the network and thus the load will be well-balanced.

While Freenet does not perform search on multidimensional vectors (neither
does FASD), the interest of Freenet stems from the fact that similar techniques
of gradual routing improvement are used for IR, but not for CBIR, yet.

DISCOVIR, in its pure form inherits most of the disadvantages of Gnutella.
A peer that has privileged links to peers with often-queried images will tend
to be queried often. DISCOVIR does not give possibilities to reduce the load,
except to avoid building privileged links to other peers. In this case, the peer
will be only rarely contacted.

DISCOVIR also inherits Gnutella’s advantages. The peer data summaries
are very small, they are shipped when discovering other peers, and thus a peer
entering the network gradually improves its connectivity which is in contrast
to DHT-based approaches in which there is no gradation between indexed and
non-indexed data.

PlanetP is strongly churn-resistant (as every peer knows every other peer, it
is very difficult to make the system break). However, it does not cater for system
diversity. Every peer in the network ist supposed to stay informed about all the
other peers in the network, i.e. all peers stay informed about the same number
of other peers, incurring the same maintenance load. The actual query load of a
peer depends on the summary that it is posting. If the summary makes the peer a
probable holder of many highly demanded documents, it will be contacted more
often than if it posts that it contains one single rarely demanded document.

Rumorama, a hierarchical variant of PlanetP enables balancing of the mainte-
nance load. Rumorama introduces a Pastry-like hierarchy on top of the PlanetP
network. Peers are enabled to choose with how many friend nodes they want to



exchange summaries. Still, a structured multicast algorithm enables considering
summaries of all peers when processing the query.

4.4 Adaptation to the index data

As the indexing data in DHT-based approaches, summaries need to be tailored
to the data types that are indexed. For some types of summaries there is also
the need to recompute and redistribute the summaries depending on changes in
the data collection.

4.5 Adaptation to the user

Both DISCOVIR and PlanetP are expected to suffer performance losses when
the distance measure changes, as the summaries are adapted to a given distance
measure. This is described in the following section.

5 Experiments

In Fig. 1 we show two experiments performed using the source selection based
method described in [15] and using PRISM. By changing the distance measure
at query time, we also simulated a relevance feedback query.

For our experiments on PRISM we re-implemented PRISM in a simulator. As
we were interested rather in number of distance calculations than in the number
of peers contacted3. We used a non-tuned simple PRISM version with randomly
chosen reference vectors.

Experiments on PRISM were performed with a 1 million image flickr.com
crawl. For our experiments on the source selection based method we also used
a simulator, but with a 50’000 image flickr.com crawl. Data distribution over
peers matters when using this method. We took the approach to model each
peer’s data by the data corresponding to one flickr user. This way, the 50’000
images were distributed unevenly over ≈2’600 peers. From all images in both
collections we extracted 166-D color histograms using 18× 3× 3 HSV color bins
and 4 grey levels, as described in [15].

All curves in Fig. 1 plot the fraction of 20-NN found plotted against the
amount of data points considered (i.e. distance calculations) per query. Curves
reaching 1 more quickly correspond to better performance.

Note that in this experiment our non-tuned simple PRISM version actually
performs worse than scanning the whole collection once. Please note that the
results for PRISM measured here are much worse than the results presented
in [21] using 80-D features, suggesting that dimensionality matters and that

3 This makes sense as the number of peers contacted in PRISM depends largely on
the amount of load balancing that is performed. If there is little load balancing, few
peers are contacted and PRISM rather behaves like a super peer scheme using large
super peers.



careful tuning for an application can greatly improve results. In these present
experiments, the source selection method performs better than PRISM.

In order to get a first impression on the behavior of both methods when
changing the distance measure used for query processing with respect to the
distance measure used for indexing, we simulated a changing distance measure
due to user feedback by not evaluating the distance over the complete vectors,
but just the distance by projecting both query and document vector on the first
20 components. The query with the changed distance measure was evaluated on
the unchanged indexing data. The source selection method [15] takes a severe
performance hit under these conditions. Our cluster-based variant of PlanetP
needed to evaluate up to three times as many distances δ with the modified
distance measure with respect to the original distance measure. PRISM also
takes a performance hit, but much less so. However, source selection still performs
better than PRISM, and still performs better than random search.
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Fig. 1. Comparing PRISM and cluster-based summaries.

These experiments support our intuition that both summary-based methods
and distributed indexing structures will have to undergo deeper tests if they are
supporting adaptive multimedia retrieval. In order to be useful, the benchmarks
applied need to be application driven and need to take the data distribution over
peers into account.

6 Conclusion

We have presented examples for the main types of P2P architectures for the use
in Multimedia Information Retrieval. We have chosen QbvE with relevance feed-
back as example application. Then we have described the adaptivity properties
of some example systems.



Summarizing, one can state that P2P systems have reached an impressive
state of the art in terms of load balancing and adaptation to churn. P2P systems
can adapt well to challenging scenarios in which users stay only shortly in the
network.

There is a useful baseline: Super-peer architectures easily enable any kind of
k-NN queries. Their downside is that for processing a Super-peer query, all super
peers need to be contacted. Other architectures, based on DHTs or on routing
approaches seek to restrict the number of peers that need to be contacted for
processing a query. However, their use for relevance feedback query processing
is unclear. None of the methods described here has been tested for relevance
feedback queries. We feel that this is an interesting open area of research.
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