Skip to main content

Optimal Design Centring Through a Hybrid Approach Based on Evolutionary Algorithms and Monte Carlo Simulation

  • Conference paper
Book cover Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4431))

Included in the following conference series:

  • 2195 Accesses

Abstract

In many situations a robust design could be expensive and decision-makers need to evaluate a design that is not robust, that is, a design with a probability of satisfying the design specifications (or yield) less than 100 %. In this paper we propose a procedure for centring a design that maximises the yield, given predefined component tolerances. The hybrid approach is based on the use of Evolutionary Algorithms, Interval Arithmetic and procedures to estimate the yield percentage. The effectiveness of the method is tested on a literature case. We compare the special evolutionary strategy (1+1) with a genetic algorithm and deterministic, statistical and interval-based procedures for yield estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hendrix, E.M., Mecking, C.J., Hendriks, T.H.B.: Finding Robust Solutions for Product Design Problems. European Journal of Operational Research 92, 28–36 (1996)

    Article  MATH  Google Scholar 

  2. Hadjihassan, S., Walter, E., Pronzato, L.: Quality Improvement via Optimisation of Tolerance Intervals During the Design Stage. In: Kearfott, R.B., Kreinovich, V. (eds.) Applications of Interval Computations, Kluwer Publishers, Dordrecht (1996)

    Google Scholar 

  3. Li, M., et al.: A multi-objective genetic algorithm for robust design optimization. In: GECCO Proceedings, pp. 771–778 (2005)

    Google Scholar 

  4. Jin, Y., Branke, J.: Evolutionary Optimization in Uncertain Environments - A Survey. IEEE Transactions on Evo. Comp. 9(3) (2005)

    Google Scholar 

  5. Tsutsui, S., Ghosh, A.: Genetic Algorithms with a Robust Solution Searching Scheme. IEEE Transaction on Evolutionary Computation 1(3), 201–208 (1997)

    Article  Google Scholar 

  6. Loughlin, D.H., Ranjithan, S.: The Neighborhood constraint method: A Genetic Algorithm-Based Multiobjective Optimization Technique. In: Bäck, T. (ed.) Proceedings of the Seventh International Conference on Genetic Algorithms, July 1997, pp. 666–673. Morgan Kaufmann, San Mateo (1997)

    Google Scholar 

  7. Rocco, C.: A hybrid approach based on evolutionary strategies and interval arithmetic to perform robust designs. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 623–628. Springer, Heidelberg (2005)

    Google Scholar 

  8. Moore, R.: Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1979)

    MATH  Google Scholar 

  9. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  10. Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker Inc., New York (1992)

    MATH  Google Scholar 

  11. Schwefel, H.P., Back, T.: Evolution Strategies I: Variants and their computational implementation. In: Periaux, J., Winter, G. (eds.) Genetic Algorithm in Engineering and Computer Science, John Wiley & Sons, Chichester (1995)

    Google Scholar 

  12. Kursawe, F.: Towards Self-Adapting Evolution Strategies. In: Tzeng, G., Yu, P. (eds.) Proc. Of the Tenth International Conference on Multiple Criteria Decision Making, Taipei (1992)

    Google Scholar 

  13. Michalewicz, Z.: Genetic Algorithms + Structures Dates = Evolution Programs. Second Edition. Springer, Heidelberg (1994)

    Google Scholar 

  14. Spence, R., Singh, S.: Tolerance Design of Electronic Circuits. Addison-Wesley, Wokingham (1988)

    Google Scholar 

  15. Saltelli, A., Chang, K., Scott, M.: Sensitivity Analysis. John Wiley & Sons, Chichester (2000)

    MATH  Google Scholar 

  16. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, London (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Pierluissi, L., Rocco S., C.M. (2007). Optimal Design Centring Through a Hybrid Approach Based on Evolutionary Algorithms and Monte Carlo Simulation. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71618-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71618-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71589-4

  • Online ISBN: 978-3-540-71618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics