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Abstract. DNA analysis by microarrays is a powerful tool that allows 
replication of the RNA of hundreds of thousands of genes at the same time, 
generating a large amount of data in multidimensional space that must be 
analyzed using informatics tools. Various clustering techniques have been 
applied to analyze the microarrays, but they do not offer a systematic form of 
analysis. This paper proposes the use of Gorban’s Elastic Neural Net in an 
iterative way to find patterns of expressed genes. The new method proposed 
(Iterative Elastic Neural Net, IENN) has been evaluated with up-regulated 
genes of the Escherichia Coli bacterium and is compared with the Self-
Organizing Maps (SOM) technique frequently used in this kind of analysis. The 
results show that the proposed method finds 86.7% of the up-regulated genes, 
compared to 65.2% of genes found by the SOM. A comparative analysis of 
Receiver Operating Characteristic (ROC) with SOM shows that the proposed 
method is 11.5% more effective. 

1   Introduction 

Modern deoxiribonucleic acid (DNA) microarray technologies [1] have 
revolutionized research in the field of molecular biology by enabling the study of 
hundreds of thousands of genes simultaneously in different environments [1].  

By using image processing methods it is possible to obtain different levels of 
expression of thousands of genes simultaneously for each experiment. In this way these 
techniques generate thousands of data represented in multidimensional space. The process 
is highly contaminated with noise and subject to measurement errors, finally requiring 
experimental confirmation. To avoid repeating the whole process experimentally gene by 
gene, pattern recognition techniques are applied that make it possible to select sets of 
genes that fulfil given behavior patterns at their gene expression levels. 
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The most widely used method to determine groupings and select patterns in 
microarrays is the Self-Organizing Maps (SOM) technique [2], [3], [4]. One of the 
problems of SOM is the need to have an initial knowledge of the size of the net to 
project the data, and this depends on the problem that is being studied. On the other 
hand, since SOM is based on local optimization, it presents great deficiencies by 
restricting data projections only to its nodes. 

One of the recent methods, consensus clustering [5], uses new resampling 
techniques which should give information about the stability of the found clusters and 
confidence that they represent real structure. This method is not used  in this paper, 
but will be used and analized in a future contribution. 

The Elastic Neural Net (ENN) [6], [7] method generates a controllable net 
described by elastic forces that are fitted to the data by minimizing an energy 
functional, without the need of knowing its size a priori. This generates greater 
flexibility to adapt the net to the data, and like the SOMs it allows a reduction in 
dimensionality, that improves the visualization of the data, which is very important 
for bioinformatics applications.  

ENNs have been applied to different problems in genetics, such as analysis of base 
sequence structures (adenine, cytosine, guanine and thymine), where base triplet 
groupings are discovered [7]; automatic gene identification in the genomes of the 
mitochondria of different microorganisms [8]. But as far as we can tell, there is no 
application for finding patterns in microarrays. 

This paper proposes the use of IENN to divide clusters iteratively, together with 
the k-means method and using indices to measure the quality of the clusters, making it 
possible to select the number of groups formed in each iteration.  

To evaluate the results, data from the most widely studied microorganism, the 
bacterium Escherichia Coli (E.Coli), were used. The levels of gene expression of a set 
of 7,312 genes were analyzed by means of the microarrays technique. In this set there 
are 345 up-regulated genes that have been tested experimentally [9] and must be 
detected with the new method. The results are compared with those of the traditional 
SOM method. 

2   Method 

2.1   Theorical Foundation 

Gorban defines the Elastic Neural Net [6] as a net of nodes or neurons connected by 
elastic forces (springs), where Y = {yi, i = 1..p} is a collection of nodes, E = {E(i), i = 1..s} 
is a collection of edges, and R(i) = {E(i),E(k)} is the combination of pairs of adjacent edges 
called ribs denoted by R = {R(i), i=1..r}. Each edge E(i) starts at node E(i)(0) and ends at 
node E(i)(1). The ribs start at node R(i)(1) and end at node R(i)(2), with a central node 
R(i)(0). The data to be analyzed are xj=[xj

1,...,x
j
M]T ∈ RM, where M is the dimension of the 

multidimensional space and j =1..N is the number of data.  
The set of data closest to a node is defined as a taxon, Ki = {xj : || xj - yi || → min}.  

It is clear that there must be as many taxons as nodes. Here || xj - yi || is the norm of the 
vector (xj - yi ), and the Euclidian norm is used. This means that the taxon Ki contains 
all the vectors of the xj data whose norms with respect to node yi are the smallest. 
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Energy U(Y) between the data and the nodes is defined by (1), 
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where each node interacts only with the data of its taxon. An elastic energy between 
the nodes U(E)  is added by (2), 
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where λi are the elasticity constants that allow the net’s elasticity to be controlled. 
Additionally, a deformation energy U(R) between pairs of adjacent nodes, is also 
added by (3), 
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where μi are the deformability constants of the net. The same values of λ and μ are 
chosen for all the λi and μi. The total energy is now minimized by (4) with respect to 
the number and position of the yi nodes for different μ and λ 

 )()()( REY UUUU ++= .                                          (4) 

We used the VIDAEXPERT implementation, which can be found in Gorban et al. [6].  
In addition to the flexibility offered by the ENNs to fit the net to the data, the 

projections of the data to the net can be made over the edges and at points within the 
net’s cells, and not only over the nodes as required by the SOMs. This leads to an 
approximation that has a better fit with the real distribution of the data in a smaller 
space. This property is very important for applications in bioinformatics, where the 
specialist has better feedback from the process. The same could be said for image 
processing where the ENN seems to describe well active contours [10]. 

2.2   IENN Method 

The algorithm used to find groups of genes that have the same behavior patterns 
consists of four fundamental phases: data preprocessing, ENN application, pattern 
identification, and finally a stopping criterion and cluster selection based on the level 
of expression and inspection of the pattern that is being sought.  

Phase 1: Preprocessing 
The set of N data to be analyzed is chosen, xj = [xj

1,…,xj
M]T,  j = 1…N, where M is 

the dimension of the multidimensional space. For this application, N corresponds to 
the 7,312 genes of the E.coli bacterium and M to the 15 different experiments 
carried out on the genes, and xj is the gene expression level. The data are 
normalized in the form θj  = ln(xj – min(xj) + 1) which is used as a standard in 
bioinformatics [11]. 
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Phase 2: Elastic Neural Net (ENN) 
The package of Gorban et al. [6], which uses the following procedures, is applied: 

(a) The data to be analyzed are loaded. 
(b) The two-dimensional net is created according to an initial number of nodes and  

elastic and deformability constants λ and μ with values between 2 for rigid grids 
and 0.01 for soft grids. 

(c) The net is fitted to the data, minimizing the energy U. For that purpose the initial 
values of λ and μ are reduced three times (four pairs of parameters are required to 
be entered by the user). The decrease of λ and μ results in a net that is 
increasingly deformable and less rigid, thereby simulating annealing, allowing the 
final configuration of the ENN to correspond to an overall minimum of U or a 
value very close to it [6].  

(d) The data are projected over the net on internal coordinates. In contrast with the 
SOM, in which piecewise constant projecting of the data is used (i.e., the data are 
projected on the nearest nodes), in this method piecewise linear projecting is 
applied, projecting the data on the nearest point of the net [6]. This kind of 
projection results in a more detailed representation of the data. 

(e) Steps (c) and (d) are repeated for different initial values of the nodes, λ and μ, 
until the best resolution of the patterns found is obtained. 

Phase 3: Pattern identification 
The data are analyzed by projecting them on internal coordinates for the possible 
formation of clusters or other patterns such as accumulation of clusters in certain 
regions of the net. As a typical dependence of the data in a cluster on the dimensions 
of the multidimensional space, the average of the data for each dimension is 
calculated (cluster’s centroid for the dimension). 

For the formation of possible clusters the k-means method is used together with the 
quality index I [12], which gives information on the best number of clusters. The 
centroids of each cluster are graphed and analyzed to find possible patterns. 

Phase 4: Cluster analysis 
Once the best number of clusters is obtained, the centroids’ curves are used to detect 
and extract the possible patterns. In general, the centroid curve of a cluster may present 
the pattern sought, may be a constant, or may not show a definite trend. Also, the 
values of the curve can be in a range that is outside the interest of possible patterns 
(low levels of expression). To decide if the clusters found in a first application of the 
ENN contain clear patterns, the behavior of the centroids’ curves are analyzed. If the 
centroids’ levels are outside the range sought, the cluster is discarded; if the patterns 
sought are detected, the cluster that contains the genes sought will be obtained (in both 
cases the division process is stopped), otherwise phases 2 and 3 are repeated with each 
of the clusters and the analysis of phase 4 is carried out again, repeating the process. 

2.3   Data Collection 

The data correspond to the levels of gene expression of 7,312 genes obtained by the 
microarray technique of E.Coli [9]. These data are found in the GEO database (Gene 
Expression Omnibus) of the National Center for Biotechnology Information1. The 
                                                           
1
 http://www.ncbi.nlm.nih.gov/projects/GEO/goes 
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work of Liu et al. [9] provides the 345 up-regulated genes that were tested 
experimentally. Each gene is described by 15 different experiments (which 
correspond to the dimensions for the representation of each gene) whose gene 
expression response is measured [9] on glucose sources. Specifically there are 5 
sources of glucose, 2 sources of glycerol, 2 sources of succinate, 2 sources of alanine, 
2 sources of acetate, and 2 sources of proline. The definition of up-regulated genes 
according to [9] is given in relation to their response to the series of sources of 
glucose considering two factors: that its level of expression is greater than 8.5 on a 
log2 scale, and that its level of expression increases at least 3 times from the first to 
the last experiment on the same scale. For our evaluation we considered a less 
restrictive definition that includes the genes that have only an increasing activity of 
the level of expression with the experiments; since the definition given in [9] for up-
regulated genes contains very elaborate biological information for which a precise 
identification of the kind of gene to be detected is required.  

The original data have expression level values between zero and hundreds of 
thousands. Such an extensive scale does not offer an adequate resolution to compare 
expression levels; therefore a logarithmic normalization is carried out. In this case we 
preferred to use the natural logarithm [11] instead of the base 2 logarithm used by 
Liu, because it is a more standard measure. The limiting value for the expression level 
was calculated using our own algorithm by determining the threshold as the value that 
best separates the initial clusters (θmin). This expression level allows discarding groups 
of genes that have an average level lower than this value.  

3   Results 

First, the net’s parameters were calibrated, i.e. the size of the net was set and the 
series of pairs of elasticity (λ) and deformability (μ) parameters were selected. The 
strategy chosen consisted in evaluating different net sizes and pairs of parameters λ 
and μ for the total data set that would allow minimizing the total energy U.  

The minimum energy was obtained with a mesh of 28x28 nodes that was used 
throughout the whole process. Implementation of the ENN [6], [7] requires a set of at 
least four pairs of λ and μ parameters to carry out the process, because it adapts the 
mesh’s deformation and elasticity in a process similar to simulated annealing that 
allows approximation to overall minimums. The set of parameters that achieved the 
lowest energy values had λ with values of {1.0; 0.1; 0.05; 0.01} and μ with values of 
{2.0; 0.5; 0.1; 0.03}. For the process of minimizing the overall energy U, 1,000 
iterations were used. Then the cluster subdivision iteration process was started. 

Figure 1 shows the representation of the first division and the expression levels of 
the centroids for the two clusters selected by the index I (for this first iteration). The 
expression level value equidistant from the two clusters corresponds to θmin=5.5.  

The iteration process generates a tree where each node has branches to a number of 
subclusters found by the maximum value of the index I. In the particular case of 
E.Coli, a tree of depth five is generated. The generation of the tree is made together 
with a pruning by expression level, i.e., only those clusters that present an expression 
level greater than θmin≥5.5 are subdivided. 
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Fig. 1. First iteration of the method. a) Fitted net to original data. b) Projections on internal 
coordinates. c) Centroids and choice of the minimum expression level. 

Finally, to stop the subdivision process of the groups that have an expression level 
greater than θmin, the behavior of the expression level in the experiments was 
examined. In this case we only looked for a simple increasing pattern of the 
expression level in the centroids through the 15 experiments (the strict definition of 
up-regulated genes given in [9] was not used). Figure 2 shows the tree of subclusters 
generated by the process applied to the genes of E.Coli. 

 

Fig. 2. Prepruned subcluster generation tree. Every leaf shown contains the set of genes with 
increasing activity where the up-regulated genes to be evaluated are found. The coding of each 
node shows the sequence of the nodes through which one must go to reach each node from the 
root. 

The results show that the process chooses 1,579 genes, of which 299 correspond to 
up-regulated genes of the 345 that exist in the total data set, i.e. 86.7% of the total 
number of up-regulated genes. From the practical standpoint for the biological field, 
only 19% effectiveness has been achieved because there are 1,280 genes that are not 
up-regulated, which must be discarded using biological knowledge or by means of 
individual laboratory tests. 
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An alternative method for comparing these results is to use SOMs with the same 
data and conditions of the application with IENN. For this purpose the methodology 
proposed by Tamayo et al. [4] was followed, which suggests using SOMs in a single 
iteration, where the initial SOM mesh is fitted in such a way that at each node the 
patterns that present an increasing activity are identified. In this case the process 
shows that with a mesh of size 5x6 (30 nodes) it was possible to obtain patterns of 
increasing activity on the nodes of the SOM. The selected clusters are obtained 
directly from the patterns with increasing activity. With the SOMs 1,653 increasing 
activity genes were selected, 225 of which were up-regulated genes, and therefore in 
this case 65.2% of the 345 up-regulated genes were detected, and a practical 
efficiency of 13.6% was achieved, because 1,428 genes that do not correspond to up-
regulated genes must be discarded. 

Since in this application to the genes of E.Coli we can count on the 345 up-
regulated genes [9] identified in the laboratory, it is possible to carry out an evaluation 
considering both methods (IENN and SOM) as classifiers. Moreover, if the 
expression level θ  is considered as a classification parameter, it is possible to make 
an analysis by means of Receiver Operating Characteristic (ROC), varying the 
expression level θ  over an interval of  [4.4 - 8.9]. Figure 3 shows the ROC curves for 
IENN and SOM. 

 

Fig. 3. ROC curves for IENN and SOM 

The optimum classification value for IENN is achieved at θ∗=5.6. At this point a 
sensitivity of 86% and a specificity of 82% were reached, covering an area of 0.87 
under the ROC curve. When the same data, normalization values and expression level 
ranges were considered for SOM, an optimum classification value of θ∗=5.9 is 
obtained, achieving a sensitivity of 65%, a specificity of 84%, and an area under the 
ROC curve of 0.78. 
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4   Discussion and Conclusion 

When the results of the proposed method (which uses ENN) are compared with those 
of the traditional SOM method, it is seen that the IENN method detects 74 up-
regulated genes more than the SOM, which correspond to 21.5% of those genes. For 
practical purposes it must be considered that these genes are not recoverable in the 
case of the SOM because they are mixed up with the group of 5,659 undetected genes. 
On the other hand, the efficiency of the method that uses the ENN is better, because it 
requires discarding 1,280 genes that are not expressed, compared to the 1,428 that 
must be discarded with the SOM. Since the final objective of the experiment with 
E.Coli consists in detecting the up-regulated genes, it is possible to consider the IENN 
and SOM methods as classifiers and carry out an analysis of the merit of the 
classification by means of an ROC curve.  

When considering an overall analysis of the classifier using the expression level θ 
as a parameter, it is important to consider the area under the ROC curve. In this case 
the area for the proposed method is 0.87, compared to 0.78 for the SOM, which 
represents an 11.5% improvement. In relation to the sensitivity at the optimum 
decision level, the proposed method is 21% more sensitive than the SOM. 

The numerical advantages derived from the application of the proposed method for 
the detection of the up-regulated genes of E.Coli are clear, but there are other aspects 
that must be analyzed with the purpose of projecting these results to the search of 
genes expressed in microarrays. The IENNs present several advantages that allow 
reinforcing the proposed method of iteration divisions. On the one hand, the IENNs 
have a greater capacity for adapting the net to the data because they have a set of 
parameters that control the deformation and elasticity properties. By carrying out the 
minimization of the overall energy in stages (evaluating different combinations of 
parameters λ and μ), a process similar to annealing is induced, making it possible to 
approach the overall minimum and not be trapped in local minimums. The same 
minimization methods allow the automatic selection of parameters that are 
fundamental for the later development of the process, such as the minimum 
expression level θmin and the size of the net. 

The other important advantage of the ENNs refers to their representation capacity, 
because the use of piecewise linear projecting makes it possible to increase the 
resolution of the data projected on the space having the lowest dimensions (internal 
coordinates). In the case of the microarray analysis this better representation becomes 
more important, since a common way of working in the field of microbiology and 
genetics is based on the direct observation of the data. On the other hand, the SOMs 
only allow a projection on the nodes when using piecewise constant projecting or the 
alternative U-matrix projections [2], [3], [4], which approximate only sets of data to 
the plane but do not represent directly each data. 

A valid point that should be analyzed when comparing SOMs with IENNs is to 
consider the argument that an iteration process of divisions with SOMs can improve 
the results of the method. But the iteration process presented is based on the automatic 
selection of parameters (particularly the size of the net and the minimum expression 
level) for its later development, which is achieved by a global optimization method 
like ENN. The SOM does not allow the expression level to be determined 
automatically, and that information must come from the biological knowledge of the 
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expression levels of particular genes. The alternatives of using the minimum error of 
vector quantization of SOM as an alternative the minimum energy of ENN did not 
produce satisfactory results. 

The results of the application to the discovery of up-regulated genes of E.Coli 
show a clear advantage of the proposal over the traditional use of the SOM method.  

We chose to carry out a comparison with well established methods that are used 
frequently in the field of bioinformatics, but it is also necessary to evaluate other more 
recent alternatives such as flexible SOMs [13]. 
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