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Abstract. The ring signature allows a signer to leak secrets anony-
mously, without the risk of identity escrow. At the same time, the ring
signature provides great flexibility: No group manager, no special setup,
and the dynamics of group choice. The ring signature is, however, vulner-
able to malicious or irresponsible signers in some applications, because
of its anonymity. In this paper, we propose a traceable ring signature
scheme. A traceable ring scheme is a ring signature except that it can re-
strict “excessive” anonymity. The traceable ring signature has a tag that
consists of a list of ring members and an issue that refers to, for instance,
a social affair or an election. A ring member can make any signed but
anonymous opinion regarding the issue, but only once (per tag). If the
member submits another signed opinion, possibly pretending to be an-
other person who supports the first opinion, the identity of the member
is immediately revealed. If the member submits the same opinion, for
instance, voting “yes” regarding the same issue twice, everyone can see
that these two are linked. The traceable ring signature can suit to many
applications, such as an anonymous voting on a BBS. We formalize the
security definitions for this primitive and show an efficient and simple
construction in the random oracle model.

1 Introduction

A ring signature scheme allows a signer to sign a message while preserving
anonymity behind a group, called a “ring,” which is selected by the signer. A
verifier can check the validity of the signature, but cannot know who generated
it among all possible ring members. In addition, two signatures generated by
the same singer are unlinkable. Namely, it is infeasible for the verifier to deter-
mine whether the signatures are generated by the same signer. This notion was
first formally introduced by Rivest, Shamir, and Tauman [24], and since then,
this topic has been studied extensively in [19,6,1,17,16,4], for instance. The ring
signature is related to the notion of group signature, due to [10]. In the group
signature, however, there is a group manager that has the power to revoke the
anonymity of any signer if necessary. The group manager must also establish
a special type of key assignment to create a group, and hence it is difficult to
change the group dynamically. Some people say that the group manager is too
strong because he can even revoke the anonymity of a honest signer. On the
other hand, a ring signature scheme has no group manager, no special setup,
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and allows ad-hoc group formation. In addition, a ring signature scheme is free
from the risk of identity escrow.

Anonymity is not always good, however. While the group signature has too
strong a traceability characteristic, an ordinary ring signature scheme has noth-
ing at all to restrict anonymity. In this paper, we consider a ring signature
scheme with a “gentle” anonymity restriction, which only prohibits “excessive”
anonymity in some applications. Informally, we consider “one-more unforgeabil-
ity” and “double-spending traceability” in the context of a ring signature.

Initially, these two notions appeared in the context of a blind signature scheme
and a restricted blind signature scheme, as in [7] and [9], respectively. In the blind
signature scheme, a user interacts with a signer a number of times and has the
signer sign a blind message (In this stage, the signer may know the identity of the
user, but not know the contents of the message). After the user transformed it to
a “blind” signature, it cannot be traced to the user even by the signer. However,
the user who obtained the blind signature from the signer cannot generate a
“one-more” new signature. This property is called one-more unforgeability. The
restricted blind signature has an additional property called double-spending, so
that if a user “spends” a signature twice, he can be traced later [9,22,5]. Such a
property can be used in the “off-line” anonymous e-cash systems. Note that the
identity of a honest user is not threatened, even by the signer.

We incorporate these properties into the ring signature by introducing formal
security requirements.

1.1 Our Contribution: Formalization and Construction

In this paper, we introduce the concept of a traceable ring signature. It preserves
the flexibility of the ring signature: No group manager, no special setup for
sharing secrets among members in a group, and the dynamics of group choice.
It implies that the identity of a signer is never escrowed by a special person or
group. A traceable ring signature has a tag L = (issue, pkN ), where pkN is the
set of public keys of the ring members and issue refers to, fo r instance, an id of
an election or some social issue. A ring member can sign a message using his own
secret key and the verifier can verify the signature on the message with respect
to tag L, but cannot know who generated the signature among all the possible
ring members in L. If the signer signed the same message again with the same
tag, everyone can see that the two signatures are linked, whereas if he signed
a different message with the same tag, then not only is it evident that they
are linked, but the anonymity of the signer is revoked. Informally, the security
requirements we provide for this primitive are as follows:

– Public Traceability - Anyone who creates two signatures for different
messages with respect to the same tag can be traced, where the trace can
be done only with pairs of message/signature pairs and the tag.

– Tag-Linkability (One-more unforgeability) - Every two signatures gen-
erated by the same signer with respect to the same tag are linked, that is, the
total number of signatureswith respect to the same tag cannot exceed the total
number of ring members in the tag, if every any two signatures are not linked.
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– Anonymity - As long as a signer does not sign on two different messages
with respect to the same tag, the identity of the signer is indistinguishable
from any of the possible ring members. In addition, any two signatures gen-
erated with respect to two distinct tags are always unlinkable. Namely, it is
infeasible for anyone to determine whether they are generated by the same
signer.

– Exculpability - A honest ring member cannot be accused of signing twice
with respect the same tag — Namely, an adversary cannot produce a trace-
able ring signature such that, along with one generated by the target, it
can designate the target member in the presence of the publicly traceable
mechanism. This should be infeasible even after the attacker has corrupted
all ring members but the target.

The above security goals must be preserved under the so-called adversarially-
chosen key and sub-ring attack, which Bender, Katz, and Morselli have formally
addressed in [4]. In addition, our security model follows [4] in the sense that
the role of PKI is minimal, namely it only maintains the global public-key list
properly, which implies that malicious PKI can’t harm a honest signer.

On one hand, our security goals are related to those of the group signature [3].
We stress that the standard unforgeability requirement (as in an ordinary ring
signature) is unnecessary for the traceable ring signature because the combined
requirements for tag-linkability and exculpability imply unforgeability. We dis-
cuss this issue later.

We show how to construct an efficient and conceptually-simple traceable ring
signature scheme on an ordinary Abelian group, on which the DDH and discrete
logarithm problems are hard, by using the Fiat-Shamir transformation.

1.2 Applications

There are several applications for the traceable ring signature.
An anonymous voting on a BBS - Suppose that some group of people is

discussing some issue on a bulletin board via the Internet and wish to vote
anonymously among themselves on that issue. They could write to the bulletin
board anonymously; however, they do not want to engage a trusted party or
establish a heavy setup protocol just for this vote. In addition, it is expected
that some people in the group won’t vote. An ordinary ring signature cannot be
used here because it cannot restrict a member to only one vote. A traceable ring
signature however can be applied to this case 1.

1 We are aware of the fact that public traceability makes any anonymous signature
primitive lose the deniability property as discussed in Sec. 2.3. However, it is some-
times more problematic to establish a trusted authority in some realistic situation.
In case of pursuiting deniability, we can incorporate the technique of a receipt-free
voting scheme [21] into a traceable ring signature scheme. In that case, a trusted
party is necessary but only for the receipt-freeness. The other security properties
of the traceable ring signature mentioned above hold true even against a dishonest
trusted party.
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An unclonable group identification “without the group manager” - Recently,
Damg̊ard, Dupont, and Pedersen proposed the notion of the unclonable group
identification [12]. The traceable ring signature can be applied to this application.
The original unclonable group identification requires a group manager, but the
traceable ring signature does not.

A traceable ring signature scheme is “functionally” related to a restricted blind
signature. Hence, it can be applied to a very primitive “off-line” anonymous e-
cash system.

Another possible application is, for instance, k-times anonymous authentica-
tion [25]. Any traceable ring signature scheme can be efficiently transformed into
a traceable ring signature scheme with k-times anonymity defined as in [25], but
see also Sec. 6.2.

1.3 Related Works

Linkable ring signatures [17,27,18,26,2] are closely related to the traceable ring
signature. A linkable ring signature scheme is a ring signature scheme with the
property that two signatures generated by the same signer with respect to the
same ring can be linked, although it doesn’t need satisfy the anonymity revo-
cation property. The earlier papers about linkable ring signatures [17,18] didn’t
consider a realistic threat that a dishonest signer makes a honest signer accused
of “double-spending” (The schemes in [17,18] are vulnerable to the attack. See
Sec. 3, where our first-step protocol is substantially the same as the schemes in
[17,18]). The recent papers [27,2] take care of this problem, which makes the
security conditions more complicated. Our security definitions of the traceable
ring signature works also on the linkable ring signature, if the tracing algorithm
is appropriately modified, which implies that the unforgeability requirement is
unnecessary also for a linkable ring signature scheme2. Recently, Tsang and Wei
proposed a short linkable ring signature [26], based on a short group identifi-
cation from [13], which allows for a shorter length of communication than our
proposed scheme as the number of the ring members grows huge. Their scheme
is, however, not a ring signature in our sense, because a trusted party must set
up the parameter of an accumulator and the scheme is vulnerable to a dishonest
trusted party3. In addition, it doesn’t seem to provide public traceability. To our
knowledge, only the proposal in [27] seems to be able to incorporate into itself
the anonymity revocation property, but our scheme is simpler and more efficient
than that scheme.

The restricted blind signature [9,22,5,20], including its variant [25], is func-
tionally related to the traceable ring signature. In the restricted blind signature,
however, the user must interact with the signer (corresponding to the group
manager) to obtain a blind signature, which corresponds to a special setup with
the group manager. This setup may seem somehow similar to the registration

2 In [2], this implication has been suggested.
3 The accumulater used in [26] is based on factoring where an RSA modulus n is a

system parameter, while the factoring should be kept secret.
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to PKI. In particular, the k-times anonymous authentication [25] is closer, be-
cause it allows a user to use the “blind signature” permanently (similar to a
public-key), once he obtained it from the signer. However, the (restricted) blind
signature, including the k-times anonymous authentication, cannot allow ad-hoc
group formation. After the signer issues the blind signatures to the user, an ar-
bitrary subgroup including the user cannot be selected as a ring and the services
cannot be exclusively restricted to the subgroup.

Recently, Damg̊ard, Dupont, and Pedersen proposed unclonable group iden-
tification [12]. It is functionally very close to the k-times anonymous authentica-
tion in the sense that after a user obtains a “coin” from the group manager, he
can utilize it permanently. However, it does not allow for ad-hoc group formation,
either.

A traceable signature scheme [15] is a group signature scheme with traceability
(in particular, from a signature to a user), but it requires a group manager.

2 Traceable Ring Signature: Definitions

2.1 Notations and Syntax

For probabilistic algorithm A, we write y ← A(x1, . . . , xn) to denote the ex-
periment of running A for given (x1, . . . , xn), selecting r uniformly from an
appropriate domain, and assigning the result of this experiment to the vari-
able y, i.e., y := A(x1, . . . , xn; r). For probability spaces, X1, . . . , Xk, and k-
ary predicate φ, we write Pr[x1 ← X1; x2 ← X2; · · · : φ(x1, . . . , xk)] to denote
the probability that the predicate φ(x1, . . . , xk) is true after the experiments,
“x1 ← X1; x2 ← X2; · · · ”, are executed in that order. Let ε, τ : N → [0, 1](⊂ R)
be positive [0, 1]-valued functions. We say that ε(k) is negligible in k if, for any
constant c > 0, there exists a constant, k0 ∈ N, such that ε(k) < (1/k)c for any
k > k0. We say that τ(k) is overwhelming in k if ε(k) � 1 − τ(k) is negligible in
k. For ordered finite set S, we denote by aS vector (ai)i∈S . For n ∈ N, we often
write N to denote an ordered set (1, . . . , n).

We refer to an ordered public key set pkN = (pk1, . . . , pkn) as a ring. We
define a traceable ring signature scheme as indicated below.

Syntax. A traceable ring signature scheme is a tuple of algorithms, Σ =
(Gen,Sig,Ver,Trace), such that, for k ∈ N, the following is true.

– Gen: A probabilistic polynomial-time (in k) algorithm that takes security
parameter k ∈ N and outputs a public/secret-key pair (pk, sk).

– Sig: A probabilistic polynomial-time (in k) algorithm that takes a secret
key, ski, where i ∈ N , tag L = (issue, pkN ), and message m ∈ {0, 1}∗, and
that outputs signature σ.

– Ver: A deterministic polynomial-time (in k) algorithm that takes tag L =
(issue, pkN), message m ∈ {0, 1}∗, and signature σ, and outputs a bit.
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– Trace: A deterministic polynomial-time (in k) algorithm that takes tag L =
(issue, pkN), and two message/signature pairs, {(m, σ), (m′, σ′)}, and out-
puts one of the following strings: “indep,” “linked,” or pk, where pk ∈ pkN .

For simplicity, we often write (pkN , skN ) ← Gen(1k) to denote the ex-
periment of (pki, ski) ← Gen(1k) for i ∈ N and assigning (pkN , skN ) :=
(pki, ski)i∈N .

As an ordinary signature scheme, a traceable ring signature scheme must
satisfy the following correctness conditions: For every k ∈ N, every n ∈ N,
every i ∈ N := {1, . . . , n}, every issue ∈ {0, 1}∗, and every m ∈ {0, 1}∗, if
(pkN , skN ) ← Gen(1k), and σ ← Sigski

(L, m), where L = (issue, pkN), it holds
with an overwhelming probability (in k) that Ver(L, m, σ) = 1.

Public Traceability - A traceable ring signature scheme requires that the
following condition must hold: For every k ∈ N, every n ∈ N, every i, i′ ∈ N :=
{1, . . . , n}, every issue ∈ {0, 1}∗, and every m, m′ ∈ {0, 1}∗, if (pkN , skN ) ←
Gen(1k), σ ← Sigski

(L, m), where L = (issue, pkN ), and σ′ ← Sigski′ (L, m′),
it holds with an overwhelming probability (in k) that

Trace(L, m, σ, m′, σ′) =

⎧
⎨

⎩

“indep” if i �= i′,
“linked” else if m = m′,

pki otherwise .

In addition, if m �= m′, Trace never output “linked.” Public traceability is a cor-
rectness condition, that is, it does not assure that the opposite holds. However, if
a traceable signature scheme has tag-linkability (along with public traceability),
Trace(L, m, σ, m′, σ′) = “indep” implies that these two signatures are generated
by different signers. If it has exculpability, Trace(L, m, σ, m′, σ′) = pki implies
that they are signed by the same signer i. Note that Trace(L, m, σ, m, σ′) =
“linked” doesn’t mean that they are always generated by the same signer (be-
cause anyone can make a “dead” copy of any signature).

2.2 Security Definitions

In this section, we describe the formal security definitions for the traceable ring
signature. We give three requirements: tag-linkability, anonymity, and exculpa-
bility. As mentioned earlier, the “standard unforgeability” requirement is unnec-
essary for the traceable ring signature. We discuss this issue later in Sec. 2.3.

The tag-linkability is significantly different from the other two requirements
in the sense that it is to defend the system, not the users. Hence, we assume all
users (signers) are potential cheaters, which leads to the model that a central
adversary generates all the public/secret keys for the users. On the other hand,
anonymity and exculpability are to protect user(s) from the rest of players,
including the system provider and the adversarial users. In these settings, an
adversary is given the target public key(s) and allowed to append a polynomial
number (in total) of new public keys to the global public-key list in any timing.
Possibly, these public-keys can be related to the given target key(s). We assume
that the global public-key list is maintained properly: A public-key should be
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referred to only one user and vice versa. The adversary is basically allowed to
choose an arbitrary subring in the global public-key list, when it accesses the
signing oracle(s) with respect to the target user(s). We call such an attack the
adversarially-chosen-key-and-sub-ring attack, which Bender, Katz, and Morselli
have formally addressed in [4]. In our security model, as in [4], the role of PKI
is minimal, namely it only maintains the global public-key list properly, which
implies that security requirements hold true against malicious PKI.

We give the formal definitions of the security requirements as follows.

Tag-Linkability - Let F be an adversary modeled as a probabilistic algorithm.
It takes security parameter k ∈ N and outputs L = (issue, pkN ) and (n +
1) message/signature pairs, {(m(1),σ(1)), . . ., (m(n+1),σ(n+1))}, where pkN =
(pk1, . . . , pkn). We define the advantage of F against Σ to be

Advforge
Σ (F )(k) � Pr[ExptF (k) = 1]

where ExptF (k) are:

1.
(
L, {(m(1),σ(1)), . . ., (m(n+1),σ(n+1))}

)
← F (1k);

2. Return 1 iff
– Ver(L, m(i), σ(i)) = 1 for all i ∈ {1, . . . , n + 1}, and
– Trace(L, m(i), σ(i), m(j), σ(j)) = “indep” for all i, j ∈ {1, . . . , n + 1},

where i �= j.

Definition 1. We say that Σ is tag-linkable if for any probabilistic polynomial-
time (in k) algorithm F , Advforge

Σ (F )(k) is negligible in k.

Anonymity - Let D be an adversary modeled as a probabilistic algorithm.
Let (pk0, pk1) be the two target public keys, where (pk0, sk0) and (pk1, sk1) are
generated by Gen(1k). Let b ∈ {0, 1} be a random hidden bit. D starts the
game with target (pk0, pk1). D may do the following things polynomial number
of times in an arbitrary order: D may append new public keys to the global
public-key list and may access three signing oracles, Sigskb

, Sigsk0
, and Sigsk1

,
where

– Sigskb
is the challenge signing oracle with respect to skb for signing (L, m),

and
– Sigsk0

(resp. Sigsk1
) is the signing oracle with respect to sk0 (resp. sk1) for

signing (L, m).

Here we assume that L should include both pk0, pk1; that is, pk0, pk1 ∈ pkN for
L = (issue, pkN ). In addition, the following condition must hold:

– If (L, m) and (L, m′) are two queries of D to the challenge signing oracle
Sigskb

, then m = m′.
– If (L, m) is a query of D to Sigskb

and (L̃, m̃) is a query of D to Sigsk0
or

Sigsk1
, then L �= L̃.
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Finally, D outputs a bit b′. We define the advantage of D against Σ as

Advanon
Σ (D)(k) � Pr

⎡

⎣
(pk0, sk0), (pk1, sk1) ← Gen(1k);
b ← {0, 1};
b′ ← DSigskb

,Sigsk0
,Sigsk1 (pk0, pk1)

: b = b′

⎤

⎦ − 1
2
.

Definition 2. We say that Σ is anonymous if, for every probabilistic polynomial-
time (in k) adversary D, the advantage Advanon

Σ (D)(k) is negligible in k.

Remark 1. Our anonymity definition corresponds to Definition 3 in [4], which
is not the strongest among their three definitions. It is, however, impossible
for a traceable ring signature scheme to satisfy the strongest definition in [4],
because the strongest definition requires that an adversary cannot distinguish
which target generated the signature even when the adversary is given one of
the target secrets; namely, all but one secret key in the ring is exposed. This
condition and the public traceability cannot hold simultaneously.

Exculpability - Let A be a probabilistic algorithm as an adversary. Let pk
be the target public key where (pk, sk) is generated by Gen(1k). A starts the
game with the target pk. A may do the following things a polynomial number
of times in an arbitrary order. A may append new public keys to the global
public-key list and may ask the signing oracle with respect to sk, Sigsk, to sign
any (L̃, m̃), where L̃ = ( ˜issue, pkÑ ), only with the restriction that pk ∈ pkÑ .
Finally, A outputs two pairs, (L, m, σ) and (L, m′, σ′), where L = (issue, pkN).
Here they should satisfy pk ∈ pkN , Ver(L, m, σ) = 1, and Ver(L, m′, σ′) = 1.
In addition, it must hold that at least one of (L, m, σ) or (L, m′, σ′) is not linked
to any (L, m̂, σ̂) in the query/answer list between A and Sigsk

4. It is, however,
allowed that one of them is linked to one in the query/answer list.

We say that A entraps a player with respect to pk if Trace(L, m, σ, m′, σ′) =
pk. We define the advantage of A against Σ, to be Adventrap

Σ (A)(k) �

Pr

⎡

⎣ (pk, sk) ← Gen(1k);
(L, m, σ), (L, m′, σ′) ← ASigsk(pk) : Trace(L, m, σ, m′, σ′) = pk

⎤

⎦ .

Definition 3. We say that Σ is exculpable if, for any probabilistic polynomial-
time adversary A, Adventrap

Σ (A)(k) is negligible in k.

Remark 2. In relation to the adaptively-chosen insider corruption at-
tack: One might think that the exculpability definition could be stronger when
there are not only one but polynomially-many targets and the adversary can
adaptively request the corruption of the target signers and finally attack one
of the remaining uncorrupted targets. However, it is obvious that if an trace-
able ring signature satisfies this version of exculpability, then it also satisfies

4 It implies two-fold. Our definition doesn’t care for strong unforgeability. In addition,
A is allowed to output a signature originally forged by himself with a copy (or linked
one) from the query/answer list.
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the improved definition, because the number of the ring members are at most
polynomial (in security parameter k).

2.3 Discussion

As mentioned earlier, the standard unforgeability requirement (as defined in an
ordinary ring signature) is inessential for a traceable ring signature scheme. We
define unforgeability as the inability of an adversary that takes all public-key pkN

and, after having access to the signing oracle with (L, m, i), outputs (L′, m′, σ′),
L′ = (issue ′, pkN ′) and N ′ ⊂ N , such that (L′, m′) never asked to the signing
oracle. Here, for query (L, m, i), where L = (issue, pkN ) and i ∈ N ⊂ N , the
signing oracle returns Sigski

(L, m). We then have the following result.

Theorem 1. If a traceable ring signature scheme is tag-linkable and exculpable,
then it is unforgeable.

Proof. Suppose for contradiction that there is an adversary A′ against unforge-
ability. Let (L, m, σ) be the output of A′, where L = (issue, pkN ). Then, consider
n independent pairs {(L, m(1),σ(1)), . . ., (L, m(n),σ(n))}, such that m(i) �= m
and Ver(L, m(i), σ(i)) = 1 for all i ∈ {1, . . . , n}. If every n + 1 pairs are inde-
pendent, then it contradicts tag-linkability. Therefore, there is an i ∈ {1, . . . , n}
such that Trace(L, m, σ, m(i), σ(i)) = pk ∈ pkN , because m(i) �= m (Remem-
ber that Trace never outputs “linked” if m(i) �= m). This case, however, con-
tradicts the exculpability requirement, because we can construct adversary A
against exculpability, by using A′ as a black box oracle as follows. For sim-
plicity, we assume, without loss of generality, that A takes all public-keys as
the targets, as discussed in Remark 2. A feeds all public-keys to A′. For any
query of A′, A asks the signing oracle the answer and returns it to A′. A′ finally
outputs (L, m, σ), where L = (issue, pkN ). Then, A asks for n queries and ob-
tains (L, m(1),σ(1)), . . ., (L, m(n),σ(n)), where m(i) �= m for all i. Since there is
an i such that Trace(L, m, σ, m(i), σ(i)) = pk ∈ pkN , A outputs (L, m, σ) and
(L, m(i), σ(i)), which contradicts exculpability. ��

We note that a traceable ring signature always provides efficient confirmation
and disavowal protocols (where we don’t assume that these protocol are zero-
knowledge). If a member of the ring wants to prove that a signature has been
generated by himself, he can make another signature for a different message
with the same tag, which would reveal his identity. Similarly, if a member of
the ring wants to prove that a signature has not been generated by himself,
he can submit another signature for an arbitrary message with the same tag,
which shows that the second one is independent of the previous one. In some
application it is undesirable, but any anonymous authentication primitive with
public traceability (or linkability) cannot avoid this property.

3 Towards Our Scheme

Although our proposal is not very complicated, we construct our scheme step by
step to understand more easily the concept behind our design.
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Let us keep in mind the undeniable signature scheme proposed by Chaum [8]:
Letting yi = gxi ∈ G be a public key of player i, the Chaum’s undeniable
signature on message M is σi = H(M)xi ∈ G, where H denotes a hash function.
Now let M = issue||pkN where pkN = (pk1, . . . , pkn) are a vector of n public-
keys. Pick up at random (n − 1) elements, σj ’s, from G, where j �= i. Then, set
a NP-language

L � {(yN , h, σN )) | ∃ i ∈ N such that logg(yi) = logh(σi).},

where h = H(issue||yN ) and σN = (σ1, . . . , σn).
Then, consider a zero-knowledge based signature (using secret xi) on this

language. It is well-known that such a signature can be constructed by applying
the technique of Cramer et al. [11] (one-out-of n honest-verifier zero-knowledge)
to the Fiat-Shamir technique. The signature on m is then (σN , p), where p =
(c, z) is a (non-interactive) proof on L and c = H(σN , a, m), where a is computed
by p. We call this our first-step construction.

Suppose now that this scheme is applied to anonymous voting on BBS, where
each user can write on BBS anonymously. Let L = (issue, pkN ), where issue
denotes the vote id number and pkN corresponds to the authorized voters. Each
voter simply sends message “yes” or “no” along with signature (σN , p) to a
bulletin board via a sender-anonymous channel (such as the Internet in practice).
If proof p is sound, a cheating player, say i, could not vote twice because it turns
out σi = σ′

i = hxi , which takes the risk of revealing his identity.
However, this construction does not work well when an adversary is one of the

voters. The problem is that an adversarial player, say j, can entrap an innocent
player, say i, or at least void the first vote, with a significant probability. Player
j waits for someone to send the first vote, say (“yes,′′ (σN , p)), to the bulletin
board. After seeing this signature, he generate a valid signature (σ′

N , p′) on
message “no,” using secret key xj , following a valid signing procedure, except
that he sets σ′

i = σi and σ′
k �= σk for all k �= i. He then sends (“no,′′ σ′

N , p′) to the
board. If the first vote is really generated by player i, player i cannot deny the
second vote, because the second vote is a valid signature potentially generated
by player i. At least, player i would lose his first vote, because he cannot prove
which of two votes are valid.

Our solution is to make signer i fix every σj , j �= i, depending on (L, m) and
σi. More precisely, each point (j, logh(σj)) is forced to be on the line defined by
(i, logh(σi)) and (0, logh(H(L, m))). Intuitively, to generate a signature that will
pass verification, player i must set σi = hxi , while to entrap player j, he must
set at the same time that (j, logh(σj)) lies on the line defined by (i, logh(σi))
and (0, logh(H(L, m))), which seems intractable. On the other hand, suppose
that signer i generates two signatures, σN and σ′

N , on m and m′, m �= m′,
with respect to the same tag L. Every (j, logh (σj)) derived from the first σN

lies on the line defined by (i, logh (σi)) and (0, logh(H(L, m))), whereas every
(j, logh (σ′

j)) derived from the second σ′
N does on the line defined by (i, logh (σi))

and (0, logh(H(L, m′))). Since the first line intersects with the second line at
(i, logh(σi)) and these are not the same line (because H(L, m) �= H(L, m′)), it



Traceable Ring Signature 191

holds that σi = σ′
i and σj �= σ′

j for all j �= i, which implies that the identity
of the cheating player is traced. We formally prove in Sec. 5 that this approach
successfully works. Interestingly, this scheme is more efficient than the first-step
construction described above in terms of communication traffic.

4 An Efficient Traceable Ring Signature Scheme

In this section, we describe our proposal.
Let G be a multiplicative group of prime order q and let g be a generator of

G. Let H : {0, 1}∗ → G, H ′ : {0, 1}∗ → G, and H ′′ : {0, 1}∗ → Zq be distinct
hash functions (modeled as random oracles in the security statements below).
These above are public parameters. The key generation for player i is as follows:
Player i picks up random element xi in Zq and computes yi = gxi. The public
key of i is pki = {g, yi, G} and the corresponding secret key is ski = {pki, xi}.
The player i registers his public-key to PKI. We denote by N = {1, . . . , n} an
ordered list of n players. We let pkN = (pk1, . . . , pkn) be an ordered public-key
list for set N . Let issue be an arbitrary string in {0, 1}∗.

Signing protocol: To sign message m ∈ {0, 1}∗ with respect to tag L =
(issue, pkN ), using the secret-key ski, proceed as follows:

1. Compute h = H(L) and σi = hxi , using xi ∈ Zq.

2. Set A0 = H ′(L, m) and A1 =
(

σi

A0

)1/i

.

3. For all j �= i, compute σj = A0A
j
1 ∈ G. Notice that every (j, logh(σj)) is on

the line defined by (0, logh(A0)) and (i, xi), where xi = logh(σi).
4. Generate signature (cN , zN) on (L, m), based on a (non-interactive) zero-

knowledge proof of knowledge for the relation derived from language

L � {(L, h, σN)) | ∃ i′ ∈ N such that logg(yi′) = logh(σi′).},

where σN = (σ1, . . . , σn), as follows:
(a) Pick up random wi ← Zq and set ai = gwi , bi = hwi ∈ G.
(b) Pick up at random zj, cj ← Zq, and set aj = gzjy

cj

i , bj = hzjσ
cj

j ∈ G for
every j �= i.

(c) Set c=H ′′(L, A0, A1, aN , bN )whereaN=(a1, . . . , an) and bN=(b1, . . . , bn).
(d) Set ci = c −

∑
j �=i cj (mod q) and zi = wi − cixi (mod q). Return

(cN , zN ), where cN = (c1, . . . , cn) and zN = (z1, . . . , zn), as a proof
of L.

5. Output σ = (A1, cN , zN) as the signature on (L, m).

Verification protocol: To verify signature σ = (A1, cN , zN ) on message m
with respect to tag L, check the following:

1. Parse L as (issue, pkN ). Check g, A1 ∈ G, ci, zi ∈ Zq and yi ∈ G for all
i ∈ N . Set h = H(L) and A0 = H ′(L, m), and compute σi = A0A

i
1 ∈ G for

all i ∈ N .
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2. Compute ai = gziyci

i and bi = hziσci

i for all i ∈ N .
3. Check that H ′′(L, m, A0, A1, aN , bN) ≡

∑
i∈N ci (mod q), where aN =

(a1, . . . , an) and bN = (b1, . . . , bn).
4. If all the above checks are successfully completed, accept, otherwise reject.

Tracing protocol: To check the relation between (m, σ) and (m′, σ′), with
respect to the same tag L where σ = (A1, cN , zN) and σ′ = (A′

1, c
′
N , z′N ), check

the following:

1. Parse L as (issue, pkN ). Set h = H(L) and A0 = H ′(L, m), and compute
σi = A0A

i
1 ∈ G for all i ∈ N . Do the same thing for σ′ and retrieve σ′

i, for
all i ∈ N .

2. For all i ∈ N , if σi = σ′
i, store pki in TList, where TList is initially an

empty list.
3. Output pk if pk is the only entry in TList; “linked” else if TList = pkN ;

“indep” otherwise (i.e., TList = ∅ or 1 < #TList < n).

5 Security

In this section, we give security proofs for our traceable ring signature scheme.
Before proving tag-linkability for our scheme, we prove the following useful

lemmas. We consider adversary A against our signature scheme above. A is given
1k and allowed to access the random oracles, H ′ and H ′′, at most qH′ and qH′′

times, respectively. Here it is not necessary that A is polynomial-time bounded.
Then, we have the following lemmas.

Lemma 1. Suppose that A outputs valid pair (L, m, σ).

1. The probability that #{i ∈ N | logh(σi) = logg(yi)} < 1 is at most qH′′
q ,

whereas
2. The probability that #{i ∈ N | logh(σi) = logg(yi)} > 1 is at most qH′

q ,

where the probability is taken over the choices of H ′, H ′′ and the inner coin tosses
of A.

Proof. Case 1 (#{i ∈ N | logh(σi) = logg(yi)} < 1): Ver(L, m, σ) = 1 implies
that ai = gziyci

i ∈ G and bi = hziσci

i ∈ G for i ∈ N , which means that
logg(ai) = zi + ci · logg(yi) and logh(bi) = zi + ci · logh(σi) for i ∈ N . Note
that if logg(yi) �= logh(σi), ci is determined. Hence, Case 1 implies that all
ci’s, where i ∈ N , are uniquely determined. Since H ′′ is a random oracle, for
any given (L, m, A0, A1, aN , bN ), the probability that H ′′(L, m, A0, A1, aN , bN)
=

∑
i∈N ci (mod q), is at most q−1. Therefore, for any A with at most qH′′

queries to random oracle H ′′, the probability of Case 1 is at most qH′′
q .

Case 2 (#{i ∈ N | logh(σi) = logg(yi)} > 1): Since σi = A0A
i
1 ∈ G for

i ∈ N , every point (i, logh(σi)), i ∈ N , is on line y = logh(A1)x + logh(A0).
Case 2 implies that at least two points, (i, logg(yi))’s, are on the line, which
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means, when pkN are fixed, the line is determined, so logh(A0) and logh(A1)
are determined. However, we also need logh(A0) = logh(H ′(L(issue, pkN ), m)),
where H ′(L, m) is determined independently of the above line, because H ′ is a
random oracle. Actually, the probability that logh(H ′(L, m)) = logh(A0) is at
most q−1 for given (L, m). Hence, for any adversary A with at most qH′ number
of queries to random oracle H ′, the probability of Case 2 is at most qH′

q . ��

Lemma 2. Suppose A is defined above and it outputs (L, m(1), σ(1)) and
(L, m(2), σ(2)), such that Trace(L, m(1), σ(1), m(2), σ(2)) = “indep”. Let TList
be the list defined above in our tracing protocol. Then, the probability that 1 <

#TList is q2
H′
2q , where the probability is taken over the choices of H ′ and the

inner coin tosses of A.

Proof. By 1 < #TList, the line defined by σ(1) intersects with the line defined
by σ(2) at least at two points, which means that the two lines coincide. Hence,
A

(1)
0 = H ′(L, m(1)) and A

(2)
0 = H ′(L, m(2)), because logh A

(1)
0 = logh A

(2)
0 where

h = H(L). Therefore, the advantage of A is bounded by the probability that A

can find a collision of outputs of H ′, which is q2
H′
2q . ��

Theorem 2 (Tag-Linkability). Our proposed scheme is tag-linkable in the
random oracle model.

Proof. Suppose for contradiction that there is adversary F that takes 1k and suc-
cessfully outputs tag L = (issue, pkN ) and {(m(1), σ(1)), . . . , (m(n+1), σ(n+1))}.

Based on lemma 2, Trace(L, m(i), σ(i), m(j), σ(j)) = “indep,” for all i, j, means

that, (with an overwhelming (i.e., 1 − q2
H′
2q ) probability), σ

(i)
k �= σ

(j)
k holds, for

all i, j, k, where 1 ≤ i, j ≤ n + 1, i �= j, and 1 ≤ k ≤ n. On the contrary, by
Case 1 of Lemma 1, for every i, where 1 ≤ i ≤ n+1, there exist k ∈ N such that
logg(yk) = logh(σ(i)

k ) (with at least (1− (n+1)qH′′
q ) probability). Since 1 ≤ k ≤ n,

there exist i, j, k such that σ
(i)
k = σ

(j)
k , which contradicts the assumption (if the

advantage of F exceeds max( q2
H′
2q , (n+1)qH′′

q )).
Therefore, the probability that F can forge the proposed scheme above is at

most max( q2
H′
2q , (n+1)qH′′

q ), where qH′ and qH′′ denotes the number of queries of
F to random oracles, H ′ and H ′′, respectively. ��

Before proceeding other theorems, we define a protocol, commonly used in some
of the following proofs.

Procedure of SimNIZK.
On input: (L, m, h, A0, A1).
Output: (cN , zN ).

1. For all i ∈ N , pick up at random zi, ci ←U Zq, and set ai = gziyci

i , bi =
hziσci

i ∈ G, where σi = A0A
i
1.

2. Set H ′′(L, m, A0, A1, aN , bN ) as c :=
∑

i∈N ci, where aN = (a1, . . . , an) and
bN = (b1, . . . , bn). If H ′′(L, m, A0, A1, aN , bN ) has been already booked as a
different value in query/answer list QH′′ , then output “failure,” otherwise
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3. Output (cN , zN ), where cN = (c1, . . . , cn) and zN = (z1, . . . , zn).

We now show the following theorem.

Theorem 3 (Anonymity). Our proposed scheme is anonymous under the de-
cisional Diffie-Hellman assumption in the random oracle model.

Proof. Suppose that there is an adversary D with advantage ε, which means that,
by definition, D can correctly guess b with probability ε + 1

2 . We now construct
an algorithm A to solve the decisional Diffie-Hellman problem. Let (g1, g2, u, v)
be a given instance, where g1, g2, u, v ∈ G. When (g1, g2, u, v) is a DDH tuple,
logg1

(u) = logg2
(v) holds. We construct A as follows:

1. A is given instance (g1, g2, u, v).
2. A picks up at random b ← {0, 1}.
3. A sets g := g1, yb := u and, picking up at random t ∈ Zq, y1−b := ybg

t.
4. A feeds y0, y1 to D.
5. In case D submits a fresh query to random oracles, H ′ and H ′′, A picks up

random elements in G and Zq respectively, to reply with. Then, A stores the
query/answer pairs in the lists, QH′ and QH′′ , respectively.

6. In case D submits a fresh query to random oracle H , A picks up at random
r1, r2 ← Zq and returns g1

r1g2
r2 . Then, A stores the value as well as (r1, r2)

in query/answer list QH .
In this simulation, if A picks up the same gr1

1 gr2
2 again, namely, H(L) =

H(L′) happens for L �= L′, A aborts. However, such an event happens at
most qH

q , which is negligible in k, where qH denotes the total number of
queries of D to H .

7. In case D submits a query (L, m) to Sigskb
, A sets gr1

1 g2
r2 as h := H(L) and

σb := ur1vr2 , picking up at random r1, r2 ∈ Zq. Then, A picks up a random
element A0 as H ′(L, m). If H(L) and H ′(L, m) have been already stored in
QH and QH′ , respectively, A uses these stored values. A sets A1 and σN , by
using A0 and σb. Then, A simulates a NIZK proof on language

L � {(L, h, σN)) | ∃ i′ ∈ N such that logg(yi′) = logh(σi′).},

following procedure SimNIZK described above to get (cN , zN ), where cN =
(c1, . . . , cn) and zN = (z1, . . . , zn). If SimNIZK succeeds, A returns σ =
(A1, cN , zN) to D, otherwise A halts.

8. In case D submits a query (L, m) to Sigsk0
, if b = 0 do the same thing as in

Step 7. Otherwise, A sets gr1
1 g2

r2 as h := H(L) and σ0 := ur1vr2(gr1
1 gr2

2 )t,
picking up at random r1, r2 ∈ Zq. Then, A picks up a random element A0 as
H ′(L, m). If H(L) and H ′(L, m) have been already stored in QH and QH′ ,
respectively, A uses these stored values. A sets A1 and σN , by using A0 and
σ0. Then, A simulates a NIZK proof on language

L � {(L, h, σN)) | ∃ i′ ∈ N such that logg(yi′) = logh(σi′).},

following procedure SimNIZK described below to get (cN , zN ), where cN =
(c1, . . . , cn) and zN = (z1, . . . , zn). If SimNIZK succeeds, A returns σ =
(A1, cN , zN) to D, otherwise A halts.
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9. In case D submits a query (L, m) to Sigsk1
, do the same thing as in Step 8.

10. Finally, D outputs b′. If b = b′, A output 1, otherwise A flips a coin b′′ ∈ {0, 1}
to output.

The advantage of A against the DDH problem is defined as

Pr[A(g1, g2, u, v) = 1 | (g1, g2, u, v) ∈ DDH] − Pr[A(g1, g2, u, v)
= 1 | (g1, g2, u, v) �∈ DDH].

We say that A succeeds in simulation if no collision happens in simulating
random oracle H and SimNIZK succeeds in simulating proofs for all queries
of D to the signing oracles. SimNIZK fails in generating a proof with at most
probability qH′′

q , where qH′′ denotes the total number of queries of D to H ′′.
Hence, the probability that SimNIZK fails at least once in this game is bounded
by qSig·qH′′

q , where qSig denotes the total number of queries of D to the signing
oracles.

We evaluate the following probabilities on the condition that A succeeds in
simulation.

Notice that if (g1, g2, u, v) is a DDH tuple and a reply of the signing oracles,
Sigskb

, Sigsk0
, and Sigsk1

, is identical to the real signature using skb, sk0, and
sk1, respectively (on the condition that SimNIZK succeeds in simulating a
proof).

On the other hand, if it is a random tuple, hidden bit b is perfectly independent
of the adversary’s view.

Hence, we have Pr[b = b′|(g1, g2, u, v) ∈ DDH] = ε + 1
2 by assumption and

Pr[b = b′|(g1, g2, u, v) �∈ DDH] = 1
2 .

Therefore, Pr[A(g1, g2.u, v) = 1|(g1, g2, u, v) ∈ DDH] = Pr[b = b′|(g1, g2, u, v)
∈ DDH] + Pr[b �= b′|(g1, g2, u, v) ∈ DDH] · Pr[b′′ = 1|(g1, g2, u, v) ∈ DDH ∧ b �=
b′] =

(
ε + 1

2

)
+

(
1 −

(
ε + 1

2

))
· 12 = ε

2 + 3
4 .

On the other hand, Pr[A(g1, g2, u, v) = 1|(g1, g2, u, v) �∈ DDH] = Pr[b =
b′|(g1, g2, u, v) �∈ DDH] + Pr[b �= b′|(g1, g2, u, v) �∈ DDH] · Pr[b′′ = 1|(g1, g2, u, v)
�∈ DDH ∧ b �= b′] = 1

2 + 1
2 · 1

2 = 3
4 .

Based on this estimation, the advantage of A is 1
2 ·ε, if A succeeds in simulation.

Therefore, the advantage of A is bounded by

1
2

· ε − qH

q
− qSig · qH′′

q
.

To suppress the advantage of A to be negligible in k, ε must be negligible
in k. ��
Before proceeding to the exculpability statement, we prove the following lemma.
Let A be an adversary against exculpability for our scheme. Let qH′ , qH′′ denote
the total number of queries to the random oracles, H ′, H ′′, respectively. Here it is
not necessary that A is polynomial-time bounded. Then, we have the following.

Lemma 3. When A entraps player i, the probability that logh(σi) �= logg(yi) is

at most (n−1)(n−2)q2
H′

2q + qH′′
q . The probability is taken over the choices of H ′, H ′′

and the inner coin tosses of A.
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Proof. Assume that logh(σi) �= logg(yi). Based on lemma 1, if Ver(L, m, σ) = 1,
the probability that #{i ∈ N | logh(σi) = logg(yi)} < 1 is at most qH′′

q . Hence, for
σ and σ′ that A outputs, there are j, k ∈ N , with an overwhelming probability,
such that logh(σj) = logg(yj) and logh(σ′

k) = logg(yk), which implies that

logh(yj) = logh(A1) · j + logh(A0) (1)
logh(yk) = logh(A′

1) · k + logh(A′
0). (2)

Since logh(σi) �= logg(yi), it holds that j, k �= i.
By assumption, line y = logh(A1) · x + logh(A0) intersects with line y =

logh(A′
1) · x + logh(A′

0) at x = i. Hence, we have

logh(A1) · i + logh(A0) = logh(A′
1) · i + logh(A′

0). (3)

By (1), (2), and (3), we have

A · logh(A0) + B · logh(A′
0) = C, (4)

where A, B, C are fixed when i, j, k, logg(yj) and logg(yk) are fixed. Remember
that A0 = H ′(L, m) and A′

0 = H ′(L, m′) must hold, where L = (issue, pkN).
Note that H ′(L, m), H ′(L, m′) are fixed after i, j, k, logg(yj) and logg(yk) are

fixed. Hence, the probability that A0 and A′
0 satisfy (4) is at most q2

H′
2q , because

H ′ is a random oracle.
The probability that A0, A

′
0 satisfy (4) is the same in every j, k ∈ N −{i}, j �=

k; Hence, the probability that logh(σi) �= logg(yi) is at most (n−1)(n−2)q2
H′

2q + qH′′
q .

��
When adversary A entraps player i, there are two possibilities: One is the case
that A really forges the signature of player i (possibly, after seeing her/his real
signature). Namely, it is the case that logh(σi) = logh(σ′

i) = logg(yi). The other
case logh(σi) = logh(σ′

i) �= logg(yi), means that A does not forge the signatures
of player i but, letting σ, σ′ be generated by A, the i-th entries of them, σi and σ′

i,
are the same. This lemma implies that if A entraps player i, it is the case, with an
overwhelming probability, that A has really forged a signature of player i.

Theorem 4 (Exculpability). Our proposed scheme is exculpable under the
discrete logarithm assumption in the random oracle model.

A very rough strategy for proving the theorem is as follows: Based on lemma 3,
we know that if an adversary A against exculpability for our scheme can entraps
the target player i, then it is the case with an overwhelming probability that A
has actually forged a signature of player i, i.e., logh σi = logg yi. In addition, by
lemma 1, we realize that that it is “never” a potential signature of any other
player at the same time, i.e., logh σj �= logg yj, for j �= i (with an overwhelming
probability). This implies that by the standard rewinding, we have ci �= c′′i for
the target i, which breaks the discrete log of the target yi and leads to the
contradiction.
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Proof. Suppose that there is adversary A that takes pk and entraps the player
with respect to pk. Then, we can construct algorithm A′ that solves the dis-
crete logarithm problem. Let g, Y ∈ G be a given instance of discrete logarithm
problem. The goal of A′ is to output logg Y . We construct A′ as follows.

Without loss of generality, we assume that the id number of the target player
is i. Hence, A′ sets yi := Y and feeds pki = {yi, g} to adversary A.

A may access the random oracles, H, H ′, H ′′, and the signing oracle, at most
qH , qH′ , qH′′ and qSig times, respectively. In case A submits a fresh query to ran-
dom oracles, H ′ and H ′′, A′ picks up random elements in G and Zq respectively,
to use as a reply, maintaining the query/answer lists, QH′ and QH′′ , respectively.
In case A submits a fresh query to random oracle H , A′ picks up random v ∈ Zq

and return gv to A, maintaining query/answer list QH . In case A submits query
(L̃, m̃), to the signing oracle, A′ returns σ as follows.

1. Pick up random v ∈ Zq, to set value h̃ := H(L̃) as gv. Pick up random Ã0 as
H ′(L̃, m̃). If H(L̃) and H ′(L̃, m̃) have been already booked in QH and QH′ ,
respectively, use these stored values. Set σ̃i := yv

i .
2. Compute Ã1 and σ̃N . Then use SimNIZK on input (L̃, m̃, h̃, Ã0, Ã1).

SimNIZK returns (c̃N , z̃N) except for a negligible probability qH′′
q . If

SimNIZK fails in simulating a proof, then A′ aborts.
The probability that SimNIZK fails at least once in this game is bounded

by qSig·qH′′
q .

3. Return σ̃ = (Ã1, c̃N , z̃N ) and store the query/answer pair in the list QSig.

Finally, A outputs (L, m, σ) and (L, m′, σ′). A entraps player i with probabil-
ity ε, which is the advantage of A. Then, A′ works as follows. Since at least one of
(L, m, σ) and (L, m′, σ′) is not an entry in QSig, A′ renames the value (L, m, σ)
and rename the other (L, m′, σ′) (If both are not an entry in QSig, A′ swaps the
names at random). Then, A′ picks up a new random element c′′ ∈ Zq, where if c′′

is identical to the first H ′′(L, m, A0, A1, aN , bN), A′ halts. However, this occurs
only with probability q−1. Then, A′ runs A again on the same random coins
except that c′′ := H ′′(L, m, A0, A1, aN , bN). There is some probability that A fi-
nally outputs (L, m, σ′′) (and another pair (L, ., .)) such that σ′′ = (A1, c

′′
N , z′′N).

As studied in [23], such an event happens with probability 1
qH′′

ε, on the condi-
tion that A succeeds in the first run. Then, A′ checks that ci �= c′′i . If ci = c′′i , A′

halts, otherwise output z′′
i −zi

ci−c′′
i
, which implies that A′ outputs logg(Y ) on input

(g, Y, G), because ai = gziyci

i = gz′′
i y

c′′
i

i and yi = Y .
We now claim that the probability that ci �= c′′i is overwhelming in k: By

lemma 3, if adversary A entraps player i, it is the case with an overwhelming
probability that A has really forged the signature of player i; namely, logh(σi) =
logg(yi). On one hand, since c �= c′′, there is at least a t ∈ N , such that ct �= c′′t .
By lemma 1, however, the possibility that #{i ∈ N | logh(σi) = logg(yi)} > 1 is
at most qH′

q . Therefore, we conclude t = i because at least, logh(σi) = logg(yi).
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To sum up, the success probability of A′ is bounded by

ε2

qH′′
− 1

q
− qSigqH′′

q
− (n − 1)(n − 2)q2

H′

2q
− qH′′

q
− qH′

q
.

To suppress the advantage of A′ to be negligible in k, ε, the advantage of A,
must be negligible in k. ��

Remark 3 (On-Line Extractor). The standard rewinding strategy works well on
our scheme in the game of exculpability but it only provides a loose security
reduction. Actually, for adversary A that runs in time T with advantage ε, we
construct algorithm A′ breaking the discrete-log problem in time T ′ ≈ 2T with
probability ε′ ≈ ε2

q′′
H

in the proof of Theorem 4. Based on Fischlin’s technique [14],
we can replace, at a small efficiency cost, our non-interactive zero-knowledge part
in the signing protocol with one for which there is an on-line extractor; that is,
one can extract the secret witness from the adversary without rewinding. Here,
if A attacks the new scheme in time T with advantage ε, then there is algorithm
A′ breaking the discrete-log problem in time T ′ = O(T ) with probability ε′ ≈ ε.

6 Some Other Remarks

6.1 Threshold Version of Traceable Ring Signature

The extension of our proposal to a t-out-of-n traceable ring signature is straight-
forward. Let S be the set of t signers. First of all, each signer in S makes signature
his own σi = hxi , where h = H(L), and distributes σi to the other signers. Then,
each signer in S computes every other signature σi, i �∈ S, as point (i, logh σi) lies
on a polynomial curve of degree t, y = α(x), uniquely defined from (t+1) points,
(0, logh A0), (k1, xk1), . . . , (kt, xkt), where A0 = H ′(L, m) and S = {k1, ..., kt}.
Actually, each signer in S can locally compute σi, i �∈ S, as σi =

∏t
j=0(Aj)ij ∈ G

for all i �∈ S, where A0 = H(L, m) ∈ G, and Aj =
∏

k∈S(σk/A0)mj,k ∈ G for
j = 1, ..., t, where

⎛

⎜
⎝

m1,k1 · · · m1,kt

...
. . .

...
mt,k1 · · · mt,kt

⎞

⎟
⎠ =

⎛

⎜
⎝

k1
1 · · · k1

t

...
. . .

...
kt

1 · · · kt
t

⎞

⎟
⎠

−1

is the inverse matrix of van der Monde matrix. Notice that there exists a polyno-
mial of degree t, α(x) ∈ Zq[x], such that A0 = hα(0) ∈ G and σi = hα(i) ∈ G for
every i. Then they collaborate and generate a NIZK based signature on (L, m),
p, by applying the technique of [11], with respect to the language

L � {(L, h, σN)) | ∃ S ⊂ N such that #S ≥ t and logg(yi)=logh(σi) for i ∈ S}.

Finally, the signers output signature σ = (A1, . . . , At, p), where p = (β(x), zN )
and β(x) is a polynomial of degree (n − t) in Zq[x].
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6.2 k-Times Anonymity on the Same Tag

Any traceable ring signature scheme can be efficiently transformed into a trace-
able ring signature scheme with k-times anonymity in the sense of [25], where the
k-times anonymity means that a signer is allowed to sign messages with respect
to the same tag at most k times without being traced. It is simply obtained by
regarding (i,Sigsk((L, i), m)) as a signature on m, with respect to tag L, where
the verifier checks if Ver((L, i), m) = 1 and 1 ≤ i ≤ k (Here the signer need not
publish i in order). It is obvious that the identity of a signer is not revealed if the
signer is enough careful not to issue the same index twice on the same tag. We,
however, remark that this implementation has a weakness in the unlinkability
property, while it satisfies the condition of the k-time anonymity defined in [25],
because whether or not the two signatures have been generated by the different
signers can be easily determined, if the two signatures have the same tag and
index. The scheme appeared in [25], too, substantially has the same problem.
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