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Abstract. Certificateless Public Key Cryptography (CL-PKC) has very
appealing features, namely it does not require any public key certification
(cf. traditional Public Key Cryptography) nor having key escrow problem
(cf. Identity-Based Cryptography). However, it does suffer to the Denial-
of-Decryption (DoD) Attack called by Liu and Au [1], as its nature is
similar to the well known Denial-of-Service (DoS) Attack. Based on CL-
PKC, they introduced a new paradigm called Self-Generated-Certificate
Public Key Cryptography (SGC-PKC) that captured the DoD Attack
and proposed a first scheme derived from a novel application of Wa-
ter’s Identity-Based Encryption scheme. In this paper, we propose a new
SGC-PKE scheme that does not depend on the bilinear pairings, which
make it be more efficient and more short public keys than Liu and Au’s
scheme. More importantly, our scheme reaches Girault’s trusted level 3
(cf. Girault’s trusted level 2 of Liu and Au’s scheme), the same level as
is enjoyed in a traditional PKI.

Keywords: Certificateless Public Key Cryptography, Self-Generated-
Certificate Public Key Cryptography, Self-Certified-Key.

1 Introduction

In traditional Public Key Cryptography (PKC), each user selects his own private
key and computes the corresponding public key, which is published. If a user
wants to send an encrypted message to other user, he needs to know the user’s
public key. However, it is easy to suffer from the man-in-the-middle attack. To
address this threat, there is a need to provide an assurance to the user about the
relationship between a public key and the identity (or authority) of the holder of
the corresponding private key. In a traditional Public Key Infrastructure (PKI),
this assurance is delivered in the form of certificate, essentially a signature by
a Certification Authority (CA) on a public key. However, a PKI faces with
many challenges in the practice, such as revocation, storage and distribution of
certificates.
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Identity-Based Public Key Cryptography (ID-PKC), first proposed by Shamir
[13], tackles the problem of authenticity of keys in a different way to traditional
PKI. In ID-PKC, a user’s public key is derived directly from certain aspects
of its identity, for example, an IP address belonging to a network host, or an
e-mail address associated with a user. Private keys are generated for entities
by a trusted third party called a Private Key Generator (PKG). In this way,
the certificate is provided implicitly due to the fact that the user will not have
the ability of performing any cryptographic operations, if he hasn’t obtained a
correct private key associated with the published identity. The only disadvantage
of ID-PKC is an unconditional trust to the PKG, which results that PKG can
impersonate any user, or decrypt any ciphertext.

In order to solve for the above problem, Certificateless Public Key Cryp-
tography (CL-PKC) was introduced by Al-Riyami and Paterson [2,3]. It is a
new paradigm which lies between Identity-Based Cryptography and traditional
Public Key Cryptography. The concept is to eliminate the inherent key-escrow
problem of Identity-Based Cryptography (IBC). At the same time, it preserves
the attractive advantage of IBC which is the absence of digital certificates (issued
by Certificate Authority) and their important management overhead. Different
from IBC, the user’s public key is no longer an arbitrary string. Rather, it is
similar to the public key used in the traditional PKC generated by the user. A
crucial difference between them is that the public key in CL-PKC does not need
to be explicitly certified as it has been generated using some partial private key
obtained from the trusted authority called Key Generation Center (KGC). Note
here that the KGC does not know the user’s private keys since they contain se-
cret information generated by the users themselves, thereby removing the escrow
problem in IBC.

It seems that CL-PKC can solve the problem of explicit certification. Never-
theless it suffers Denial-of-Decryption (DoD) Attack called by Liu and Au [1].
Suppose Alice wants to send an encrypted message to Bob. She takes Bob’s
public key and his identity (or personal information) as input to the encryp-
tion function. However, Carol, the adversary, has replaced Bob’s public key by
someone’s public key. Although Carol cannot decrypt the ciphertext, Bob also
cannot decrypt the message while Alice is unaware of this. This is similar to
Denial of Service (DoS) Attack in the way that the attacker cannot gain any
secret information but precluding others from getting the normal service.

Liu and Au [1] propose a new paradigm called Self-Generated-Certificate Pub-
lic Key Cryptography (SGC-PKC) to defend the above attack while preserving
all advantages of Certificateless Public Key Cryptography. Similar to CL-PKC,
every user is given a partial secret key by the KGC and generates his own secret
key and corresponding public key. In addition, he also needs to generate a cer-
tificate using his own secret key. The purpose of this self-generated certificate is
similar to the one in traditional PKC. That is, to bind the identity (or personal
information) and the public key together. The main difference is that, it can be
verified by using the user’s identity and public key only and does not require
any trusted party. It is implicitly included in the user’s public key. If Carol uses
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her public key to replace Alice’s public key (or certificate), Bob can be aware of
this and he may ask Alice to send him again her public key for the encryption.

Related Work. Al-Riyami and Paterson [2,3] introduced Certificateless Public
Key Cryptography and proposed a CL-encryption scheme and a CL-signature
scheme. Some concrete efficient implementations were proposed in [8,9]. In ad-
dition, some generic construction were proposed in [7,5,6].

In [4], Baek et al. proposed a CL-encryption scheme without pairing, which
was related to the early works on the self-certified keys [10,11]. However, their
scheme can’t be converted to SGC-PKE directly and only reaches Girault’s
trusted level 2. We modify their scheme to get a new CL-encryption scheme
without pairing. Our scheme can be converted to SGC-PKE directly and reaches
Girault’s trusted level 3, which makes our scheme more appealing. Our works
are related to the works on Self-Certificate-PKI [12].

Liu and Au proposed the first SGC-PKE scheme in [1], which defends the
DoD attack that exists in CL-PKE. However, their scheme is based on a CL-
encryption scheme and a CL-signature scheme that are using the same set of
public parameters and user key generation algorithm. In addition, their scheme
has long public keys due to their CL-PKC derived from a novel application of
Water’s Identity-Based Encryption scheme and only reaches Girault’s trusted
level 2. All there make their scheme impractical.

Contribution. In this paper, we propose a SGC-PKE scheme without pairing
and prove that it is secure in a fully adaptive adversarial model, provided that
the standard Computational Diffie-Hellman (CDH) problem is hard. Compared
with the first scheme, our scheme is more efficient, has short public keys and
reaches Girault’s trusted level 3, which makes our scheme more practical.

Organization. The rest of the paper is organized as follow. We give some de-
finitions in Section 2. We propose a CL-encryption scheme in Section 3. The
proposed SGC-PKE scheme is presented in Section 4. We compare our SGC-
PKE scheme to Liu and Au’s scheme in Section 5. Finally a concluding remark
is given in Section 6.

2 Definition

In this section we first introduce our model of CL-PKE and its security definition.
Next, we recall the security definition of SGC-PKE defined by Liu and Au [1].

2.1 Certificateless Public Key Encryption

Our model of CL-PKE is similar to that of Baek et al. [4]. Only slight difference
lies in our model. However, it is the crucial point that makes our scheme reach
Girault’s trusted level 3 and is easy to be converted to SGC-PKE. Below, we
formally describe our model of CL-PKE.
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Definition 1 (Certificateless Public Key Encryption). A generic Certifi-
cateless Public Key Encryption scheme, denoted by Π, consists of the following
algorithms:

- Setup: is a probabilistic polynomial time (PPT) algorithms run by a Key
Generation Center (KGC), given a security parameter k as input, outputs a
randomly chosen master secret mk and a list of public parameter param.
We write (mk, param) = Setup (k).

- UserKeyGeneration: is PPT algorithm, run by the user, given a list of
public parameters param as inputs, outputs a secret key sk and a public
key pk. We write (sk, pk) = UserKeyGeneration (param).

- PartialKeyExtract: Taking param, mk, a user’s identity ID and pk re-
ceived from the user, the KGC runs this PPT algorithm to generate a partial
private key DID and a partial public key PID. We write (PID, DID) = Par-
tialKeyExtract (param, mk, ID, pk).

- SetPrivateKey: Taking param, DID and sk as input, the user runs this
PPT algorithm to generate a private key SKID. We write SKID = SetPri-
vateKey (param, DID, sk).

- SetPublicKey: Taking param, PID and pk as input, the user runs this PPT
algorithm to generate a public key PKID. We write PKID = SetPublicKey
(param, PID, pk).

- Encrypt: Taking a plaintext M, list of parameters param, a receiver’s iden-
tity ID and PKID as inputs, a sender runs this PPT algorithm to create a
ciphertext C. We write C = Encrypt (param, ID, PKID, M ).

- Decrypt: Taking param, SKID, the ciphertext C as inputs, the user as a
recipient runs this deterministic algorithm to get a decryption δ, which is
either a plaintext message or a “Reject” message. We write δ = Decrypt
(param, SKID, C ).

For correctness, as usual we require that Decrypt (param, SKID, C ) = M
whenever C = Encrypt (param, ID, PKID, M ).

The function of UserKeyGeneration algorithm is the same as the SetSe-
cretValue algorithm in Baek’s definition. However, note that the UserKey-
Generation algorithm in our definition must run precede the PartialKeyEx-
tract algorithm, compared with the PartialKeyExtract algorithm can run
precede SetSecretValue algorithm in Baek’s definition. We emphasize that
this is the crucial point to make our scheme desirable.

Security Model. According to the original scheme in [2], there are two types of
adversaries. Type I adversary does not have the KGC’s mater secret key but it
can replace public keys of arbitrary identities with other public keys of its own
choices. It can also obtain partial and full secret keys of arbitrary identities.

Type II adversary knows the master secret key (hence it can compute partial
secret key by itself). It is still allowed to obtain full secret key for arbitrary
identities but is not allowed to replace public keys at any time.
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Definition 2 (IND-CCA Security). A Certificateless Public Key Encryption
scheme Π is IND-CCA secure if no PPT adversary A of Type I or Type II has
a non-negligible advantage in the following game played against the challenger:

1. The challenger takes a security parameter k and runs the Setup algorithm.
It gives A the resulting system parameters param. If A is of Type I, the
challenger keeps the master secret key mk to itself, otherwise, it gives mk
to A.

2. A is given access to the following oracles:
- Public-Key-Request-Oracle: on input a user’s identity ID, it com-

putes (sk, pk) = UserKeyGeneration (param) and (PID, DID) =
PartialKeyExtract (param, mk, ID, pk). It then computes PKID =
SetPublicKey (param, PID, pk) and returns it to A.

- Partial-Key-Extract-Oracle: on input a user’s identity ID and pk, it
computes (PID, DID) = PartialKeyExtract (param, mk, ID, pk) and
returns it to A. (Note that it is only useful to Type I adversary.)

- Private-Key-Request-Oracle: on input a user’s identity ID, it com-
putes (sk, pk) = UserKeyGeneration (param) and (PID, DID) =
PartialKeyExtract (param, mk, ID, pk). It then computes SKID =
SetPrivateKey (param, DID, sk) and returns it to A. it outputs ⊥ if
the uesr’s public key has been replaced (in the case of Type I adversary.)

- Public-Key-Replace-Oracle: (For Type I adversary only) on input
identity and a valid public key, it replaces the associated user’s public
key with the new one.

- Decryption-Oracle: on input a ciphertext and an identity, returns the
decrypted plaintext using the private key corresponding to the current
value of the public key associated with the identity of the user.

3. After making oracle queries a polynomial times, A outputs and submits
two message (M0, M1), together with an identity ID∗ of uncorrupted secret
key to the challenger. The challenger picks a random bit β ∈ {0, 1} and
computers C∗, the encryption of Mβ under the current public key PKID∗

for ID∗. If the output of the encryption is ⊥, then A immediately losses the
game. Otherwise C∗ is delivered to A.

4. A makes a new sequence of queries.
5. A outputs a bit β

′
. It wins if β

′
= β and fulfills the following conditions:

- At any time, ID∗ has not been submitted to Private-Key-Request-
Oracle.

- In Step (4), C∗ has not been submitted to Decryption-Oracle for the
combination (ID∗, PKID∗) under which Mβ was encrypted.

- If it is Type I, ID∗ has not been submitted to both Public-Key-Replace-
Oracle before Step (3) and Partial-Key-Extract-Oracle at some step.

Define the guessing advantage of A as AdvIND-CCACLE (A) = |Pr[β
′

= β] − 1
2 |.

A Type I adversary AI breaks a IND-CCA secure CL-PKE scheme Π with
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(t, qpar, qpub, qprv, qD, ε) if and only if the guessing advantage of AI that accesses
qpar times Partial-Key-Extract-Oracle, qpub times Public-Key-Request-
Oracle, qprv times Private-Key-Request-Oracle and qD times Decryption-
Oracle is greater than ε within running time t. The scheme Π is said to be
(t, qpar, qpub, qprv, qD, ε)-IND-CCA secure against Type I adversary if there is no
attacker AI that breaks IND-CCA secure scheme Π with (t, qpar , qpub, qprv, qD, ε).
There is the similar definition about Type II adversary.

2.2 Self-Generated-Certificate Public Key Encryption

The definition of SGC Encryption is the same as the definition of CL-encryption
given in Definition 1, except for SetPublicKey in which the user generates a
certificate using his own secret key.

For security, in addition to IND-CCA, we require the scheme to be DoD-Free,
which is formally defined as follow as a game played between the challenger
and a PPT adversary (DoD Adversary), which has the same power of a Type I
adversary defined in CL-encryption.

Definition 3 (DoD-Free Security). A SGC Encryption scheme is DoD-Free
secure if no PPT adversary A has a non-negligible advantage in the following
game played against the challenger:

1. The challenger takes a security parameter k and runs the Setup algorithm.
It gives A the resulting systems parameters param. The challenger keeps
the master secret key mk to itself.

2. A is given access to Public-Key-Request-Oracle, Partial-Key-Extract-
Oracle, Private-Key-Request-Oracle and Public-Key-Replace-
Oracle.

3. After making oracle queries a polynomial times, A outputs a message M∗,
together with an identity ID∗ to the challenger. The challenger computes
C∗, the encryption of M∗ under the current public key PKID∗ for ID∗. If
the output of the encryption is ⊥, then A immediately losses the game.
Otherwise it outputs C∗.

4. A wins if the following conditions are fulfilled:
- The output of the encryption in Step (3) is not ⊥.
- Decrypt (param, SKID∗ , C∗) = M∗.
- At any time, ID∗ has not been submitted to Partial-Key-Extract-

Oracle.

Define the advantage of A as AdvDoD-FreeSGCE (A) = Pr[A wins]

3 Our CL-PKE Scheme Without Pairing

Our scheme modifies from the first CL-PKE Scheme without pairing [4].



482 J. Lai and W. Kou

3.1 Construction

Setup(k): Generate two large primes p and q such that q|p − 1. Pick a gener-
ator g of Z

∗
p. Pick x ∈ Z

∗
q uniformly at random and compute y = gx. Choose

hash functions H1 : {0, 1}∗ × Z
∗
p × Z

∗
p → Z

∗
q , H2 : {0, 1}l0 × {0, 1}l1 → Z

∗
q and

H3 : Z
∗
p → {0, 1}l, where l = l0 + l1 ∈ N . Return param =(p, q, g, y, H1, H2, H3)

and mk =(p, q, g, x, H1, H2, H3).
UserKeyGeneration(param): Pick z ∈ Z

∗
q at random and compute μ = gx.

Return (sk, pk) =(z, μ).
PartialKeyExtract (param, mk, ID, pk): Pick s ∈ Z

∗
q at random and com-

pute w = gs and t = s + xH1(ID, w,pk) = s + xH1(ID, w, μ), Return (PID, DID)
=(w, t).
SetPrivateKey (param, DID, sk): Set SKID = (sk, DID) = (z, t). Return
SKID.
SetPublicKey (param, PID, pk): Set PKID = (pk, PID) = (μ, w). Return
PKID.
Encrypt (param, ID, PKID, M ) where the bit-length of M is l0: Parse PKID

as (μ, w), Pick σ ∈ {0, 1}l1 at random, and compute r = H2(M, σ). Compute
C = (c1, c2) such that c1 = gr;c2 = H3((μwyH1(ID,w,μ))r) ⊕ (M‖σ).
Decrypt (param, SKID, C ): Parse C as (c1, c2) and SKID as (z, t). Compute
M‖σ = H3((c1)z+t) ⊕ c2. If gH1(M,σ) = c1, return M. Else return “Reject”.

Due to gz+t = gz · gt = μgs+xH1(ID,w,μ) = μwyH1(ID,w,μ), it can be easily seen
that the above decryption algorithm is consistent.

Note that in PartialKeyExtract algorithm, it includes pk generated by the
user as input. It is the same binding technique used by the original certificateless
encryption scheme [2,3] which raises our scheme to trust level 3 in the trust
hierarchy of [10]. Now, with the binding technique in place, a KGC who replaces
an entity’s public key will be implicated in the event of a dispute: the existence
of two working public keys for an identity can only result from the existence of
two partial private keys binding that identity to two different public keys; only
the KGC could have created these two partial private keys. Thus this binding
technique makes the KGC’s replacement of a public key apparent and equivalent
to a CA forging a certificate in a traditional PKI.

3.2 Security Analysis

The security proofs of our scheme is similar to the first CL-PKE Scheme without
Pairing [4]. Basically, the main idea of the security proofs given in this section
is to have the CDH attacker B simulate the “environment” of the Type I and
Type II attackers AI and AII respectively until it can compute a Diffie-Hellman
key gab of ga and gb using the ability of AI and AII .

For the attacker AI , B sets ga as a part of the challenge ciphertext and gb as
a KGC’s public key. On the other hand, for the attacker AII , B set ga as a part
of the challenge ciphertext but uses gb to generate a public key associated with
the challenge identity.
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The following two theorems show that our scheme is IND-CCA secure in the
random oracle, assuming that the CDH problem is intractable. We will give the
proofs of Theorem 2 and omit the certification process of Theorem 1 due to the
similarity of Theorem 2.

Theorem 1. TheCL-PKEscheme is (t, qH 1, qH 2, qH 3, qpar, qpub, qprv, qD, ε)-IND-
CCA secure against the Type I attacker AI in the random oracle assuming the CDH
problem is (t

′
, ε

′
)-intractable, where ε

′
> 1

qH2
( 2ε

e(qprv+1) − qH2
2l1 − qDqH2

2l1 − qD

q ) and

t
′
> t + 2(qpar + qpub + qprv)tex + 2qDqH2qH3tex + 3tex where tex denotes the time

for computing exponentiation in Z
∗
p.

Theorem 2. TheCL-PKEscheme is (t, qH1 , qH2 , qH3 , qpub, qprv, qD, ε)-IND-CCA
secure against the Type II attacker AII in the random oracle assuming the CDH
problem is (t

′
, ε

′
)-intractable, where ε

′
> 1

qH2
( 2ε

e(qprv+1) − qH2
2l1 − qDqH2

2l1 − qD

q ) and

t
′

> t + 2(qpub + qprv)tex + 2qDqH2qH3tex + 3tex where tex denotes the time for
computing exponentiation in Z

∗
p.

Proof. Assume there is a Type II adversary AII exists. We are going to construct
another PPT B that make uses of AII to solve the CDH problem with probability
at least ε

′
and in the time at most t

′
.

B is given (p, q, g, ga, gb) as an instance of the CDH problem. In order to use
AII to solve for the problem, B needs to simulates a challenger and all oracles
for AII . B does it in the following way.

Setup. B picks x ∈ Z
∗
q uniformly at random and computes y = gx, then sets

param =(p, q, g, y, H1, H2, H3) and mk =(p, q, g, x, H1, H2, H3). Finally gives
AII param and mk.

We suppose that H1, H2, H3 are random oracles [14]. Adversary AII may
make queries of all random oracles at any time during its attack. B handles as
follows:
H1 queries: On receiving a query (ID, w, μ) to H1:

1. If 〈(ID, w, μ), e〉 exists in H1List, return e as answer.
2. Otherwise, pick e ∈ Z

∗
q at random, add 〈(ID, w, μ), e〉 to H1List and return

e as answer.

H2 queries: On receiving a query (M, σ) to H2:

1. If 〈(M, σ), r〉 exists in H2List, return r as answer.
2. Otherwise, pick r ∈ Z

∗
q at random, add 〈(M, σ), r〉 to H2List and return r

as answer.

H3 queries: On receiving a query k to H3:

1. If 〈k, R〉 exists in H3List, return R as answer.
2. Otherwise, pick R ∈ {0, 1}l at random, add 〈k, R〉 to H3List and return R

as answer.
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Phase 1. AII can issue the following oracle queries.
Public-Key-Request: On receiving a query ID:

1. If 〈ID, (μ, w), coin〉 exists in PublicKeyList, return PKID = (μ, w) as
answer.

2. Otherwise, pick coin ∈ {0, 1} at random, so that Pr[coin = 0] = δ. (δ will
be determined later.)

3. If coin = 0, pick z, s ∈ Z
∗
q at random and compute μ = gz, w = gs, and t =

s + xH1(ID, w, μ); add 〈ID, (z, t)〉 to PrivateKeyList and 〈ID, (μ, w), coin〉
to PublicKeyList; return PKID = (μ, w) as a answer.

4. Otherwise (if coin = 1), pick z, s ∈ Z
∗
q at random and compute μ = gz, w =

(gb)s; add 〈ID, (z, ?)〉 to PrivateKeyList and 〈ID, (μ, w), coin〉 to PublicK-
eyList; return PKID = (μ, w) as a answer.

Private-Key-Request: On receiving a query ID:

1. Run Public-Key-Request on ID to get a tuple 〈ID, (μ, w), coin〉 ∈ Pub-
licKeyList.

2. If coin = 0, search PrivateKeyList for a tuple 〈ID, (z, t)〉 and return
SKID = (z, t) as answer.

3. Otherwise, return “Abort” and terminate.

Decryption queries: On receiving a query (ID, PKID, C ), where C = (c1, c2)
and PKID = (μ, w):

1. Search PublicKeyList for tuple 〈ID, (μ, w), coin〉. If coin = 0, search Pri-
vateKeyList for a tuple 〈ID, (z, t)〉. (Note that 〈ID, (μ, w), coin〉 must exist
in PublicKeyList and when coin=0, 〈ID, (z, t)〉 exist in PrivateKeyList.)
Then set SKID = (z, t) and run Decrypt (param, SKID, C ). Finally, return
the result of Decrypt algorithm.

2. Otherwise (if coin = 1), run H1 query to get a tuple 〈(ID, w, μ), e〉. If there
exist 〈(M, σ), r〉 ∈ H2List and 〈k, R〉 ∈ H3List such that c1 = gr, c2 =
R ⊕ (M‖σ) and k = (μwye)r, return M and “Reject” otherwise.

Challenge. AII then output two message (M0, M1) and a challenge identity ID∗.
B run Public-Key-Request taking ID∗ as input to get a tuple 〈ID∗, (μ∗, w∗),
coin〉 ∈ PublicKeyList.

1. If coin = 0 return “Abort” and terminate.
2. Otherwise, do the following:

(a) Search PrivateKeyList for a tuple 〈ID∗, (z∗, ?), s∗〉.
(b) Pick σ∗ ∈ {0, 1}l1, c∗2 ∈ {0, 1}l and β ∈ {0, 1} at random.
(c) Set c∗1 = ga and e∗ = H1(ID∗, w∗, μ∗).
(d) Define a = H2(Mβ , σ∗) and H3((μ∗w∗ye∗

)a). (Note that B does not know
“a”, (μ∗w∗ye∗

)a = (ga)z∗ · (gab)s∗ · (ga)xe∗
.

3. Return C∗ = (c∗1, c
∗
2) as a target ciphertext.
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Phase 2. B repeats the same method it used in Phase 1.

Guess. Finally, AII output a guess β
′
. Now B choose a tuple 〈k, R〉 form the

H3List and outputs ( k
(ga)z∗ ·(ga)xe∗ )1/s∗

as the solution the the CDH problem.

Analysis : From the construction of H1, it is clear that the simulation of H1

is perfect. As long as AII does not query (Mβ, σ∗) to H2 nor (μ∗w∗ye∗
)a to

H3, the simulations of H2 and H3 are perfect. By AskH∗
3 we denote the event

that (μ∗w∗ye∗
)a has not been queried to H3. Also, by AskH∗

2 we denote the
event that (Mβ , σ∗) has been queried to H2. If happens then B will be able
to solve the CDH problem by choosing a tuple 〈k, R〉 form the H3List and
computing ( k

(ga)z∗ ·(ga)xe∗ )1/s∗
with the probability at least 1

qH3
. Hence we have

ε
′ ≥ 1

qH3
Pr[AskH∗

3].
It is easy to notice that if B does not abort, the simulations of Public-

Key-Request, Private-Key-Request and the simulated target ciphertext is
identically distributed as the real one from the construction.

Now, we evaluate the simulation of the decryption oracle. If a public key
PKID has been produced under coin = 0, the simulation is perfect as B knows
the private key SKID corresponding to PKID. Otherwise, simulation errors may
occur while B running the decryption oracle simulator specified above. Let De-
cErr be this event. We compute the probability of this event: Suppose that
(ID, PKID, C ), where C = (c1, c2) and PKID = (μ, w), has been issued as a
valid decryption query. Even if C is valid, there is a possibility that C can
be produced without querying (μwye)r to H3, where e = H1(ID, w, μ) and
r = H2(M, σ). Let Valid be an event that C is valid. Let AskH3 and AskH2
respectively be events that (μwye)r has been queried to H3 and (M, σ) has been
queried to H2 with respect to C = (c1, c2) = (gr, H3((μwyH1(ID,w,μ))r)⊕(M‖σ))
and PKID = (μ, w), where r = H2(M, σ) and e = H1(ID, w, μ). We then have
Pr[DecErr] = qDPr[Valid|¬AskH3]. But

Pr[Valid|¬AskH3] ≤ Pr[Valid ∧ AskH2|¬AskH3]
+ Pr[Valid ∧ ¬AskH2|¬AskH3]

≤ Pr[AskH2|¬AskH3]
+ Pr[Valid|¬AskH2 ∧ ¬AskH3]

≤ qH2

2l1
+

1
q

So, Pr[DecErr] ≤ qDqH2
2l1 + qD

q .
Now,the event (AskH∗

3 ∨ (AskH∗
2|¬AskH∗

3)∨DecErr)|¬Abort denoted by
Good, where Abort denotes an event that B aborts during the simulation. The
probability ¬Abort that happens is given by δqprv (1− δ) which is maximized at
δ = 1 − 1/(qprv − 1). Hence we have Pr[¬Abort] ≤ 1

e(qprv+1) , where e denotes
the base of the natural logarithm.
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If Good does not happen, it is clear that AII does not gain any advantage
greater than 1/2 to guess β due to the randomness of the output of the random
oracle H3. Namely, we have Pr[β

′
= β|¬Good] ≤ 1

2 .
By definition of ε, we then have

ε < |Pr[β
′
= β] − 1

2
|

= |Pr[β
′
= β|¬Good]Pr[¬Good] + Pr[β

′
= β|Good]Pr[Good] − 1

2
|

≤ |1
2
Pr[¬Good] + Pr[Good] − 1

2
|

≤ 1
2
Pr[Good]

≤ 1
2Pr[¬Abort]

(Pr[AskH∗
3] + Pr[AskH∗

2|¬AskH∗
3] + Pr[DecErr])

≤ e(qprv + 1)
2

(qH3ε
′
+

qH2

2l1
+

qDqH2

2l1
+

qD

q
)

Consequently, we obtain ε
′
> 1

qH2
( 2ε

e(qprv+1) − qH2
2l1 − qDqH2

2l1 − qD

q ). The running

time of the CDH attacker B is t
′
> t + 2(qpub + qprv)tex + 2qDqH2qH3tex + 3tex

where tex denotes the time for computing exponentiation in Z
∗
p.

4 Our SGC-PKE Scheme Without Pairing

We give our Self-Generated-Certificate (SGC) encryption scheme without pair-
ing based on the above Certificateless encryption scheme. The most algorithms
are the same as the algorithms of Certificateless encryption scheme, except for
SetPublicKey and Encrypt.

In order to distinguish the algorithm of CL-encryption, we will add the prefix
“CL.” to the corresponding algorithms. For example, we use “CL.Setup” to
denote the encryption algorithm of the CL-encryption scheme. The proposed
SGC-encryption scheme is described as follow:

Setup: Same as CL.Setup, outputs parameters param = (p, q, g, y = gx, H1,
H2, H3) and master secret key mk = (p, q, g, x, H1, H2, H3).
UserKeyGeneration: Same as CL.UserKeyGeneration, outputs (sk, pk)
= (z, gz).
PartialKeyExtract: We modify CL.PartialKeyExtract slightly. Taking
param, mk, ID and pk as input, it outputs (PID, DID) = (w = gs, t = s +
xH1(ID, w ∗ pk) = s + xH1(ID, wμ)). In order to make this changes, it must
modify the domain of hash function H1 : {0, 1}∗ × Z

∗
p → Z

∗
q .

SetPrivateKey: Same as CL.SetPrivateKey, outputs SKID = sk+DID =
z + t.
SetPublicKey: Except for taking param, PID and pk as input, it includes ID
and SKID as inputs. Chooses a new hash function H0 : {0, 1}∗ ×Z

∗
p ×Z

∗
p ×Z

∗
p →
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Z
∗
q , then computes PK1

ID = pk∗PID = μw and PK2
ID = pk∗PID∗yH1(ID,pk,PID) =

μwyH1(ID,μ,w) = gz+t = gSKID . Next, it does the following performances to sign
the user’s identity ID and PK1

ID, PK2
ID using the user’s private key SKID and

Schnorr’s signature scheme [15]. (1) choose a random r ∈ Z
∗
q , (2) compute

R = grmod p, and (3) set the signature to be (R, σ), where σ = r + SKID ∗
H0(ID, PK1

ID, PK2
ID, R). Finally, returns PKID = (PK1

ID, PK2
ID, (R, σ)).

Encrypt: Parses PKID as (PK1
ID, PK2

ID, (R, σ)). If PK2
ID �= PK1

ID ∗ yH1(ID,PK1
ID)

or gσ �= R ∗ (PK2
ID)H0(ID,PK1

ID,PK2
ID,R), it returns ⊥, else outputs CL.Encrypt(

param, ID, PKID, M ).
Decrypt: Same as CL.Decrypt, outputs a plaintext M for a valid ciphertext
C, or “Reject” otherwise.

Security Analysis
The IND-CCA security depends on our CL-encryption scheme (defined in Sec-
tion 3). In addition to IND-CCA, we require the scheme to be DoD-Free. Here
we analyze the DoD-Free Security.

Theorem 3. The SGC-encryption scheme proposed in this section in secure
against DoD adversary, assuming that the Schnorr’s signature scheme is secure
against the adaptively chosen message attack in the random oracle model [16].

Proof. Assume there is a DoD adversary A exists. We are going to construct
another PPT B that makes use of A to break the Schnorr signature scheme.

B is now the schnorr’s signature adversary. Note that in fact, the PartialKey
Extract algorithm in our SGC-encryption scheme signs the user’s identity ID
using the schnorr’s signature scheme. So using his signing-oracle, B can answer
all oracle queries for A. After a polynomial number of oracle queries, A outputs
a message M∗ and an identity ID∗. A wins if the following conditions fulfill:

1. The public key PKID∗ of ID∗ is valid.
2. Decrypt(param, SKID∗ , C∗) �= M∗ where C∗= Encrypt (param, ID∗,

PKID∗ , M∗).
3. A does not query the Partial-Key-Extract-Oracle for ID∗.

If the public key of ID∗ has not been replaced, due to correctness we always
have Decrypt(param, SKID∗ , C∗) = M∗. Condition (2) implies the public key
of ID∗ has been replaced. Together with condition (1) and (3), it implies that
σ∗ = (PK1

ID∗ , PK2
ID∗) is a successful forgery for ID∗. B outputs it.

5 Comparison to Previous Work

Our scheme is the second SGC-encryption scheme. In this section, we compare
the scheme we have presented to the first scheme in [1].

1. Our scheme has more short public keys due to their scheme based on the
Water’s Identity-Based Encryption scheme [17].
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2. Our scheme is more efficient due to our scheme without pairing computa-
tion. In spite of the recent advances in implementation technique, the pairing
computation is still considered as expensive compared with “standard” op-
erations such as modular exponentiations in finite fields.

3. Our scheme reaches Girault’s trusted level 3 (same as the traditional PKI),
but their scheme only reaches Girault’s trusted level 2 (a cheating KGC
could replace an entity’s public key bye one for which it knows the secret
value without fear of being identified).

4. Their scheme is IND-CCA− (the challenger is forced to decrypt ciphertexts for
which the public key has been replaced) and DoD-Free secure in the standard
model. Our scheme is IND-CCA and DoD-Free secure in the random oracle
model.

6 Concluding Remarks

We have presented the first SGC-encryption scheme that does not depend on the
pairing. We have proven in the random oracle that the scheme is IND-CCA and
DoD-Free secure, relative to the hardness of the standard CDH problem and DL
problem.

However, we can only achieve security in the random oracle although our
scheme has many appealing properties. It is still an open problem to design a
CL-PKC and SGC-PKC scheme without pairing that is secure in the standard
model.
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