Skip to main content

Reconstructing the Phylogeny of Mobile Elements

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4453))

  • 1564 Accesses

Abstract

The study of mobile element evolution yields valuable insights into the mechanism and history of genome rearrangement, and can help answer questions about our evolutionary history. However, because the mammalian genome contains millions of copies of mobile elements exhibiting a complex evolutionary history, traditional phylogenetic methods are ill-suited to reconstructing their history. New phylogenetic reconstruction algorithms which exploit the unique properties of mobile elements and handle large numbers of repeats are therefore necessary to better understand both mobile elements’ evolution and our own.

We describe a randomized algorithm for phylogenetic reconstruction that scales easily to a million or more elements. We apply our algorithm to human and chimpanzee Alu and L1 elements, and to SINE elements from 61 species, finding 32 new L1, 111 new SINE, and over 1000 new Alu subfamilies. Our results suggest that the history of mobile elements is significantly more complex than we currently understand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watkins, W., et al.: Genetic Variation Among World Populations: Inferences From 100 Alu Insertion Polymorphisms. Genome Res. 13(7), 1607–1618 (2003)

    Article  Google Scholar 

  2. Batzer, M.A., Deininger, P.L.: Alu repeats and the human genomic diversity. Nature rev. genet. 3, 370–379 (2002)

    Article  Google Scholar 

  3. Hedges, D.J., Batzer, M.A.: From the margins of the genome: mobile elements shape primate evolution. BioEssays 27(8), 785–794 (2005)

    Article  Google Scholar 

  4. Smit, A., Hubley, R., Green, P.: RepeatMasker (2006), http://www.repeatmasker.org/

  5. Ostertag, E.M., Kazazian, H.H.: LINEs in mind. Nature 435, 890–891 (2005)

    Article  Google Scholar 

  6. Bailey, J.A., Liu, G., Eichler, E.E.: An Alu transposition model for the origin and expansion of human segmental duplications. Am. J. Hum. Genet. 73, 823–834 (2003)

    Article  Google Scholar 

  7. Zhou, Y., Mishra, B.: Quantifying the mechanisms for segmental duplications in mammalian genomes by statistical analysis and modeling. PNAS 102(11), 4051–4056 (2005), doi:10.1073/pnas.0407957102

    Article  Google Scholar 

  8. Han, K., Xing, J., Wang, H., Hedges, D.J., Garber, R.K., Cordaux, R., Batzer, M.A.: Under the genomic radar: the stealth model of Alu amplification. Genome Res. 15, 655–664 (2005)

    Article  Google Scholar 

  9. Jurka, J.: Evolutionary impact of human Alu repetitive elements. Current Opinion in Genetics & Development 14(6), 603–608 (2004)

    Article  Google Scholar 

  10. Cordaux, R., Hedges, D.J., Batzer, M.A.: Retrotransposition of Alu elements: how many sources? Trends Genet. 20(10), 464–467 (2004)

    Article  Google Scholar 

  11. Price, A.L., Eskin, E., Pevzner, P.A.: Whole genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res. 14, 2245–2252 (2004)

    Article  Google Scholar 

  12. Salem, J.A., Ray, D.A., Xing, J., Callinan, P.A., Myers, J.S., Hedges, D.J., Garber, R.K., Witherspoon, D.J., Jorde, L.B., Batzer, M.A.: Alu elements and hominid phylogenetics. PNAS 100(22), 12787–12791 (2003)

    Article  Google Scholar 

  13. Felsenstein, J.: PHYLIP (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle (2004)

    Google Scholar 

  14. Thomas, J., Touchman, J., Blakesley, R., Bouffard, G., Beckstrom-Sternberg, S., Margulies, E., Blanchette, M., Siepel, A., Thomas, P., McDowell, J., et al.: Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424, 788–793 (2003)

    Article  Google Scholar 

  15. Meila, M., Heckerman, D.: An experimental comparison of several clustering and initialization methods. Technical Report MSR-TR-98-06, Microsoft Research (1998)

    Google Scholar 

  16. Chickering, D.M., Heckerman, D.: Efficient Approximations for the Marginal Likelihood of Bayesian Networks with Hidden Variables. Machine Learning 29(2-3), 181–212 (1997)

    Article  MATH  Google Scholar 

  17. Cover, T.M., Thomas, J.A.: The elements of information theory. Plenum Press, New York (1991)

    Google Scholar 

  18. Goebel, B., Dawy, Z., Hagenauer, J., Mueller, J.C.: An approximation to the distribution of finite sample size mutual information estimates. In: IEEE International Conference on Communications (ICC), Seoul, South Korea, IEEE Computer Society Press, Los Alamitos (May 2005)

    Google Scholar 

  19. Friedman, N., Ninio, M., Pe’er, I., Pupko, T.: A Structural EM Algorithm for Phylogentic Inference. J. Comp. Biol. (2001)

    Google Scholar 

  20. Jurka, J.: Repbase Update: A database and an electronic journal of repetitive elements. Trends Genet. 9, 418–420 (2000)

    Article  Google Scholar 

  21. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  Google Scholar 

  22. Hubert, L., Arabie, P.: Comparing partitions. J. Classification 2, 193–218 (1985)

    Article  Google Scholar 

  23. Zietkiewicz, E., Richer, C., Sinnett, D., Labuda, D.: Monophyletic Origin of Alu Elements in Primates. J. Mol. Evol. 47(2), 172–182 (1998)

    Article  Google Scholar 

  24. Gilbert, N., Labuda, D.: Evolutionary Inventions and continuity of CORE-SINEs in mammals. J. Mol. Biol. 298, 365–377 (2000)

    Article  Google Scholar 

  25. Miller, W., Capy, P. (eds.): Retrotransposon mapping in molecular systematics. In: Mobile genetic elements. Humana (2004)

    Google Scholar 

  26. Bashir, A., Ye, C., Price, A.L., Bafna, V.: Orthologous repeats and mammalian phylogenetic inference. Genome Res. 15(7), 998–1006 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terry Speed Haiyan Huang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

O’Rourke, S., Zaitlen, N., Jojic, N., Eskin, E. (2007). Reconstructing the Phylogeny of Mobile Elements. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71681-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71680-8

  • Online ISBN: 978-3-540-71681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics