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Abstract. Probabilistic phylogenetic models which relax the site independence
evolution assumption often face the problem of infeasible likelihood computa-
tions, for example for the task of selecting suitable parameters for the model. We
present a new approximation method, applicable for a wide range of probabilistic
models, which guarantees to upper bound the true likelihood of data, and apply
it to the problem of probabilistic phylogenetic models. The new method is com-
plementary to known variational methods that lower bound the likelihood, and
it uses similar methods to optimize the bounds from above and below. We ap-
plied our method to aligned DNA sequences of various lengths from human in
the region of the CFTR gene and homologous from eight mammals, and found
the upper bounds to be appreciably close to the true likelihood whenever it could
be computed. When computing the exact likelihood was not feasible, we demon-
strated the proximity of the upper and lower variational bounds, implying a tight
approximation of the likelihood.

1 Introduction

Most organisms share a great deal of their genetic code with other forms of life. Phy-
logenetic tree models are used to associate the genetic makeup of different organisms
according to their genetic variation. A node on phylogenetic trees corresponds to a piece
of genetic code in a single organism, and the branches and the relative branch lengths
measure the relative distance from each organisms’ genes to the others. The greater the
distance, the more the gene sequence has changed between one organism and the other.

The classical phylogenetic models of Neyman (1971) and Felsenstein (1981) make
several assumptions regarding how evolution occurs in the trees, from which the most
stringent assumption is that evolution takes place independently in different sites. Over
the years more complex probabilistic phylogenetic models have been proposed, which
relax the site independence evolution assumption. These complex models that are more
biologically realistic, such as the one by Siepel and Haussler (2003), often face the prob-
lem of infeasible likelihood computations, for example for the task of selecting suitable
parameters for the model. To overcome this problem Jojic et al. (2004) suggested to
use variational approximations that lower bound the likelihood of data, and showed that
such bounds tend to be close to the true likelihood.

In this paper, we develop tight upper bounds on the likelihood of a given data, that
are close to lower bounds so that good estimates of the likelihood become available.
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Our new approximation method is applicable for a wide range of probabilistic models,
including the discussed phylogenetic models. The method assumes a simple distribu-
tion @ which approximates the target distribution P of the model, and using Jensen’s
inequality it upper bounds the likelihood of data with a function of () and P. The sim-
plicity of @ yields a bound that can be computed efficiently.

Our method is complementary to known variational methods that lower bound the
likelihood (e.g. Jordan et al., 1999), and can use an approximating distribution () sug-
gested by these methods to bound the likelihood also from above.

We applied our method to aligned DNA sequences of various lengths from human
in the region of the CFTR gene and homologous from eight mammals, and found the
upper bounds to be appreciably close to the true likelihood whenever it could be com-
puted. When computing the exact likelihood was not feasible, we demonstrated the
proximity of the upper and lower variational bounds, implying a tight approximation of
the likelihood.

The rest of the paper is organized as follows: Section [2] briefly describes phylo-
genetic HMM models in terms of Bayesian networks or DAG models, and provides
a quick overview regarding variational techniques that lower bound the likelihood of
data. Section[3] develops our main contribution which are variational upper bounds for
probabilistic models such as Bayesian networks. The experimental results are described
in Section[l Finally, we discuss the limitations of variational methods.

2 Preliminaries

We provide background information regarding phylogenetic HMM trees, to which the
variational upper bounds suggested herein are applied (Section[2.1)), and outline known
variational lower bounds of the likelihood of data, which turn out to be close to our
upper bounds (Section 2.2)).

2.1 Phylogenetic HMM Model

We consider the Phylogenetic HMM model described by Siepel and Haussler (2003).
Since the model is given in terms of conditional probabilities, it is convenient to describe
it as a DAG model, as done by Jojic et al. (2004). We repeat the description of the model
from there with minor changes.

Given a domain of interest having a set of finite variables s = (s1,...,$,) with
a positive joint distribution p(s), a DAG model for s is a pair (G, P) where G is a
directed acyclic graph and P is a set of conditional probability distributions. A DAG
model is also often called a Bayesian network (e.g. Pearl 1988, Jensen 2001). Each
node s; in G corresponds to a variable in s, and to a distribution p(s;|pa(s;)), called
a local probability distribution, where pa(s;) are the parents of s; in the graph. The
joint distribution is given by p(s) = [[;_, p(si|pa(s;)). Consequently, the assumed
independence relationships between random variables are represented through absence
of edges in the model.

A DAG model structure that assumes that evolution takes place independently at
each nucleotide site is illustrated in Figure[Th for a simple tree with five species. The
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(b)

Fig. 1. Probabilistic phylogenetic trees expressed as DAG models. (a) The Neyman-Felsenstein
tree model that assumes independent evolution in sites. (b) The dinucleotide phylogenetic HMM
model suggested by Siepel and Haussler (2003).

unknown nucleotide in an ancestor species ¢ at site j is denoted as h%, and the observed

nucleotide of an existing species 4’ at site j' is denoted as y;'/ This is the usual model
for which Felsenstein’s algorithm for computing likelihood of data is readily applicable.
The model of Siepel and Haussler (2003) does not assume that sites are independent,
and therefore, edges that connect variables of adjacent sites are added (Figure[Ib). This
figure illustrates the phylogenetic HMM model of Siepel and Haussler (2003). In this
model, a nucleotide of species ¢ at site j depends on the nucleotide of that species at site
J — 1, and its ancestor’s nucleotides at sites ;7 — 1 and 5. This model is also called the
dinucleotide HMM model, since the two nucleotides of species i and k at site j, where k
is the ancestor species of 7, are dependent only on the two nucleotides of that species at
site 7 — 1. Additional more complex models are discussed in Siepel and Haussler (2003).

The local probability distributions of this model are determined by a continuous-time
Markov matrix @ of base substitution rates. The matrix () is of size 16 x 16, and given
evolutionary time t, which is the branch length in the tree, the conditional probabilities
p(sh, % 1|s]7 _1) are obtained from (), where £ is the ancestor species of i. This
distribution then determines the desired probabilities p(s’|s}_;, s ’f, sj_1)- Let P(t) be
the matrix of substitution probablhtles for branch length ¢. Then P(t) is given by the
solution to the differential equation }, P(t) = P(t)Q with initial conditions P(0) = I,
which is P(t) = e%*. With @ being diagonalizable as Q = SAS~!, the matrix P(t)
can be computed as P(t) = Se*S~!, where ¢/ is the diagonal matrix obtained by
exponentiating each element on the main diagonal of At.

A standard criterion to choose between two DAG models is to prefer a model with
higher log-likelihood of the data. However, for the phylogenetic HMM model described
here, computing the log-likelihood of data is not feasible, and therefore approximations
are needed. In the next section we review known approximations that give lower bounds.
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2.2 Variational Lower Bounds

The problem of computing the likelihood, P(Y = y) = >, P(Y = y,H = h)), in
DAG models is NP-hard (Cooper, 1990; Dagum & Luby, 1993), and although there are
many DAG models where exact algorithms are feasible, there are others in which the
time and space complexity makes the use of such algorithms infeasible. In these cases
fast yet accurate approximations are desired. Herein, we call the task of computing the
likelihood by the term inference.

Variational techniques such as the ones suggested by Jordan et al. (1999) are a pow-
erful tool for efficient approximate inference that offers guarantees in the form of lower
bounds. In particular, let P(X) be a joint distribution over a set of discrete variables
X with the goal to compute the marginal probability P(Y = y), where Y C X. Fur-
ther assume that this exact computation is not feasible. The idea is to replace P with
a distribution @) for which exact inference is feasible, and compute a lower bound for
P(Y = y) by using Jensen’s inequality:

o Py)=5_ Qs DI o) DU | P(Y=y. 1)
where H = X \ Y and D(-||-) denotes the KL divergence between two probability
distributions.

To obtain tight lower bounds several variational algorithms were devised that try
to find an approximating distribution ( which minimizes the KL divergence between
@ and the target distribution P ( [15I8I17/1l7]). Variational approaches such as the
mean field, generalized mean field, and structured mean field differ only with respect to
the family of approximating distributions that can be used. Such variational techniques
were applied by Jojic et al. (2004) to find lower bounds for the phylogenetic HMM
models. The lower bounds computed in the results section herein use a newer algorithm
for finding tighter lower bounds suggested by Geiger et al. (2006).

3 Variational Upper Bounds

We denote distributions by P(z) and Q(z), where @ is not necessarily a normalized
distribution. Let X be a set of variables and = be an instantiation of these variables.
Let P(z) =[], i(d;) and Q(z) = [[;—, ®:(d;) where d; is the projection of the
instantiation z to the variables in D; C X, the subsets {D;}_; can overlap, and n is
the number of sets D;. Consider the marginal probability P(Y =y) = >", P(y,h) =
> o1l ¥i(d;) where X =Y U H. We assume throughout that Q( ) is tractable in the
sense that the marginal probability Q(Y = y) is feasible to compute, while P(Y = y)
is not feasible to compute.

We now develop an upper bound for P(Y = y) as summarized in Theorems[I] &

According Jensen’s inequality, if f is a concave function and Z = {z1,...,2,} is
a set of real numbers then f(}_" , w;z;) > > i, w;f(z;), where each w; > 0 and
Z" , w; = 1. By using the concavity of the log function and Jensen’s inequality for
concave functions, we get the following upper bound:

P(Y — y) — ZBIOgHi v, (d;) — Z eZi“’i(h) logwi(di)(l/wq‘,(h)) (1)
h h
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< Z gy, w; (R W, (dg) /i) _ Z Z wl Z (1/w1(h))

h

where ) . w; (h) = 1 for every instantiation h. Note that this bound can be obtained also
by using the weighted power means 1nequahtyE] Eq.[dlholds with equality regardless of
the values of potentials ¥ if and only if

log ¥;(d;)

with) = log P(h,y)

(2)
Given a tractable distribution Q(z) = [[\_, @i (d;) we setw;(h) = llggg gz%d;)) , which
approximates the optimal but intractable choice given by Eq.[2l
With these values for w;(h), and using the identity 2" = ylof ", Eq. [ can be
written as:

IOg @ log ¥;(d;)
< @m dm log &;(d;) 3
ZZZM%MH (dm) 3)

The upper bound in Eq. Blholds with equality if ) equals P, because by replacing
all occurrences of @;(d;) with ¥;(d;) we get

log ¥;(d
) < ZZ 3, log dk) H U (d) = ;g@m(dm) =P(Y =y)

Eq. 3] remains hard to compute until the sum over h is divided into smaller
sums. To obtain a tractable bound we use the arithmetic-geometric means inequality,
711 > i log @ (di) > 1, log @k(dk)l/", where log @y (dy) > 0. To use this inequality
we set all potentials @;(d;) to be greater than 1. The resulting tractable upper bound
stemming from Eq.[3is the following:

log ¥; (d;)

1 n log<I> (d;)
PY =y < log @;( 4
( y)_nzh:i; g Hlog% 4 )n @)
Consequently, the following theorem holds.
! The weighted power mean M7, (Z) of a series of real numbers Z = {z1,...,2,} is defined

for every real 7 € R as

[Zn L WiZ } if r#£0
My(z1,...,20) =
[,z iftr=0
where wi, ..., wy, are positive real numbers such that ) 7", w; = 1. Note that M, (Z) jamat

M(Z).

The power mean inequality states that for two real numbers s, ¢, the relation s < ¢ im-
plies Mg < M}, and the upper bounds are obtained by setting s = 0, t = 1, and
zi = Wi (di) ).
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Theorem 1 (upper bound). Let H and Y be two disjoint sets of variables such that
HUY = X, and let P(x) and Q(x) be distributions that factor according to P(x) =
[T, ¥i(d;) and Q(x) = [[;_, D;(d;) where d; is the projection of the instantiation ©
to the variables in D; C X. Then the following is an upper bound on P(Y = vy),

log ¥; (d;)
1og45 (d;)

P(Y = ZZM ZHlog@ ) 5)

h\D; m

Proof: The proof is immediate from Eq.[d] where we replace the sums over 4 and h, and
divide the sum over A such that first we sum over variables in D; and then over the rest
of the variables in H. O

Assuming that M = max;{|D;|} is at most a given constant, the time needed to com-
pute the bound given in Eq.[3is linear in the number of variables in the model and pro-
portional to the time needed to compute Q(y). Therefore, the tractability of this bound
is a direct consequence of the assumption of tractable inference on distribution ).

Since the maximal size M of the sets in the model can sometime be large enough to
significantly slow computations of the upper bound, we develop a more efficient method
to compute the upper bound that does not depend on M. To do so, we use the following
lemma.

Lemma 1. Given two sets of positive real numbers X = {x1...,2,} and ¥ =
{y1...,yn} and a positive real number r, the following inequalities hold.
If0 <r <1, then

Sre(Sn) (S

() ()

= Ji = Vi =1 i

If1 <r <2 then

Forr = 1 equalities hold.

Proof: We use the Euclidean case of Holder’s inequality, stating that for two sets of pos-
itive real numbers X = {z1...,z,}andY = {y1...,yn}, and for two real numbers
p,q > 1 such that 11) + 111 =1,

1/q

n n 1/p
Z%"yiﬁ (Zﬁ) : Zy;l
i=1 i=1

For 0 < r < 1, we get using Holder’s inequality,

Sin )= (560 B

=1
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1
1, We get

() (5

=1 i i=1

Settingp = ! and ¢ =

Similarly, for 1 < r < 2, we get using Holder’s inequality,

n .73; n i 2—r ng r—1 n i (2—r)-p Yp n $$ (r—1)-q 1/q
SR =0T BT

1 1
o . andg= ", weget

() ()

iz Y -1 i =1 Y

Setting p =

O

Theorem 2 (Efficient upper bound). Let H and Y be two disjoint sets of variables
such that HUY = X, and let P(x) and Q(x) be distributions that factor according to
P(x) = [TiL, Wi(d;) and Q(w) = [}, @i(d;) where W; > 1, &; > 1and (550 < 2
for every i = 1,...,n, and where d; is the projection of the instantiation x to the
variables in D; C X. In addition, let U; denote the set of instantiations of D; for which
®,(d;) < W;(d;), and let L; denote the rest of instantiations of D,. Then the following

is an upper bound on P(Y = y),

1
PY =9y < (d; . (d; .
Y=y < Z > log®i(di) A, + Y log®;(d;) Ay, (6)
7 d;€L; d;eU;
where
log ¥; (d;) log ¥; (d;)
d log @; (d;) 1_10g<1>i(di)
A = m)
L; Z H 1qus (d)1/7 Z H log45 0 )/
h\D; m h\D; m
and
log ¥; (d;) log ¥; (d;)
d T log ®(d;) log &4 (d;)
(I, o 1 211 m
v log @, (dpm)Y/ v logd5 /

Proof: Lemmal[Ilimplies that when &;(d;) > W¥;(d;) > 1, we can replace every brack-
log ¥; (d;)
etedterm )\ p. I1,,, [Qsm (dy,) o= %04 [ log Py, (dm)l/”] in Eq.Blwith A7, and when

1 < &;(d;) < ¥;(d;), we can replace it with Ay, since }gig Ed g < 2. O

Computing each term, Ay, or Ay,,, involves only two sums of products, where each sum
factors according to distribution (). These computations can be performed by using any
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algorithm such as bucket elimination algorithm or the sum-product algorithm described
by Dechter (1999) and Kschischang, Frey & Loeliger (2001) . According to Eq. 6 only
a linear number of calls to such procedures are needed to obtain the upper bound.

If each potential ¥; and &; is multiplied by a large factor «, all the terms iogg
approach one as « grows. This reduces the accuracy gap when using Holder’s 1nequa11ty
in Eq.[6l with r = %gg ¥ In addition, note that multiplying the potentials @; by « also
serves the tightness of the arithmetic- geometric mequahty used to obtain Eq.[3] since
for each pair of potentials $; and &y, the ratio 1 og Q; approaches one as « grows. A

large enough « guarantees that k’g g’ < 2 for all sets D; and thus the applicability of

TheoremPl In our experiments we use In o = 300.

4 Approximations for Phylogenetic HMM Models

The dinucleotide phylogenetic HMM model of Siepel and Haussler (2003), described
in Section 2.1} lead to improvements over previous models in several biological tasks
such as gene finding. But, despite its enhanced power, it also requires evaluating an
intractable likelihood for the purpose of finding optimal parameters for the model. Jojic
et al. (2004) used variational techniques, similar to the ones described in Section[2.2]to
lower bound the likelihood of data, and showed that when the exact likelihood can be
computed (although with much effort), the approximations were tight.

We use the upper bounds suggested in Section [3| to compute the likelihood of phy-
logenetic trees with a small error, by bounding it tightly from above and below. First,
we show the upper bounds are close to the true likelihood when this can be computed.
Then, for larger phylogenetic trees, where computing the exact likelihood is infeasible,
we show the proximity of the lower and upper bounds. To set a tractable approximating
distribution (), we use a parameter k which determines its topology: sets that contain
variables from sites ck and ck+ 1, forc = 1,2, 3, . . ., are split into two disjoint subsets,
D;y and D;2, where D;; contains only variables in D, from site ck and D;2 contains the
rest of the variables in D;. Their respective potentials ®;(d;) therefore factor according
to @;(d;) = Pi1(di1)Pi2(d;2). In our experiments we used k& = 10 when computing
the exact likelihood was feasible and £ = 5 when the likelihood computation was in-
feasible. The lower bounds were obtained by using a recent variational algorithm called
VIP* (Geiger et al., 2006).

We repeat each upper bound computation twice, with the difference of the way po-
tentials @; are chosen. The first choice is what we call non-informative (NI), where
each potential @;(d;) = H;";l ®;;(di;) is a product of m; sub-potentials of sets
D;; C D;. A sub-potential @;;(d;;) is set to be the 1/m; power of the average
value of ¥;(d;) of all instantiations d; consistent with d;;. More formally, &;;(d;;)

1/m;
= (I C;”-I >, eCa, W(di)) / where Cy,; is the set of instantiations d; consistent
with di]‘ .
The second choice of potentials, called variational-based (VB), is based on varia-
tional algorithms, such as VIP*, that optimize the approximating distribution ) in order
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to set tight lower bounds on the likelihood. If the topology of ) given for these algo-
rithms follows the factorization suggested in Section[3] (i.e. every potential ¥; in P has
its corresponding potential @; in (), the potentials found by these optimization algo-
rithms to lower bound the likelihood can also serve to upper bound it using the method
proposed herein.

We ran the tests on data used by Siepel and Haussler (2003) that contains sequences
from human in the region of the CFTR gene and homologous from eight mammals:
chimp, baboon, cow, pig, cat, dog, mouse and rat. The sequences are aligned, and we
used portions of this alignment to obtain our results. The substitution probabilities in all
models were computed from the dinucleotide substitution matrix obtained by Jojic et al.
(2004), and the branch lengths in each tree were randomly chosen, normally distributed
around predetermined means. The first tests used two data sets, similar to those used
by Jojic et al. (2004), where each set consisted of three sequences. The sequences in
set A were taken from the cow, mouse and human genomes and were of length 30Knc,
and the sequences in set B were taken from the cow, pig and dog genomes and were of
length 20Knc. Figure Zh and 2b plot the upper bounds versus the exact log-likelihoods
of trees with different branch lengths. Lower bounds are also shown in the figure to
demonstrate the tightness level of these bounds. The average differences for the trees in
set A between the upper bounds and the exact likelihoods were 1% for the NI method
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-59500 - O Exact

36400 B UB (NI)
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Fig. 2. Upper and lower bounds on the likelihood of data of phylogenetic HMM models for sets A,
B and C with different branch lengths. (a) & (b) Bounds versus the exact likelihood for models
of sets A and B. (¢) Bounds for models of set C, for which computing the exact likelihood is
infeasible.
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Fig. 3. Accuracy and run-time as a function of parameter k of decomposing the model. (a) Accu-
racy as a function of k. (b) Run-time as a function of k.
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Fig. 4. The difference in accuracy between upper bounds computed via Eq. Bl and bounds com-
puted via Eq.

and 0.95% for the VB method, and for trees in set B the average differences were 0.97%
(NT) and 0.9% (VB).

The upper and lower bounds for an additional set of aligned sequences that contained
sequences of length 30Knc from all nine organisms (Set C) are illustrated in Figure 2.
For this set it is infeasible to compute the exact likelihood, but the proximity of the
upper and lower bounds allows us to predict the likelihood with a small error. The NI
method yielded an average of 1.64% difference from the lower bounds and the VB
method yielded an average of 1.52% from the lower bounds for the models in this set.

As shown in Figure 2] both choices of potentials (NI and VB) performed similarly,
with a small advantage of the VB method over NI in most experiments. In other exper-
iments we performed, we found that arbitrary choice of potentials often lead to signifi-
cant decrease in the tightness of the bounds (up to 45%), and therefore an algorithm is
desired to find potentials that lead to tight bounds.

The parameter k used for decomposing the tree model into parts of & sites is a trade-
off between run-time and accuracy: the larger k is the more time consuming it is to
compute the upper bounds, however, the bounds computed are also more accurate. The
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default value of k was set to 10 for trees in Set A. Figure 3] shows the results for these
trees as a function of & in terms of accuracy and in terms of run-time.

Finally, we tested the difference in accuracy between upper bounds computed via
Eq. Bl and those computed via Eq. [6l The expected run-time ratio between these two
methods is the average probability table size in the model. Since no preprocessing such
as summing over some variables was executed, the expected ratio was 81.25. As shown
in Figure [ the differences in accuracy of the upper bounds were negligible, less than
0.05% of their log value, when applied to phylogenetic trees in data set A. This implies
that when the size of the probability tables is large, Eq. [l is an attractive and efficient
alternative to Eq.

5 Discussion

Computing the likelihood of many probabilistic models is infeasible and calls for ef-
ficient approximations. Our results on phylogenetic models show that the suggested
upper bounds are appreciably tight and together with other variational methods allow
to compute the likelihood almost exactly in feasible time. We have also started using
the upper bounds to approximate other probabilistic models and believe that they can
be applied to a wide range of models and for various tasks. One additional task we ex-
plore is bounding the MAP assignment probability in order to set optimal parameters
for models where finding the exact MAP assignment is infeasible. The goodness of the
bounds heavily depends on the choice of an approximating distribution (), and more
work on choosing useful ) functions is desired, as indicated by Xing et al. (2004).

As with variational methods that offer lower bounds on the likelihood, if the de-
pendence of variables under () largely differs from their dependence under the target
distribution P, these methods yield loose bounds. When exploring probabilistic mod-
els to genetic linkage analysis, as used by Fishlson and Geiger (2002), we found that
the variational methods we used did not offer sufficiently good approximating distri-
butions for these models, and therefore did not give tight enough bounds. Geiger et al.
(2006) provided results of variational techniques on genetic linkage analysis problems
and showed that although the lower bounds followed the shape of the likelihood func-
tion, the difference from the true log-likelihood reached 20%. The difficulty in finding
good approximations to this model may lie in the level of determinism of the model: re-
laxing deterministic dependence relationships between variables reduced accuracy far
more than when relaxing mild dependence relationships. When computing the upper
bounds suggested herein for genetic linkage analysis, the results were within 10% from
the true log-likelihood.
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