Skip to main content

Network Motif Discovery Using Subgraph Enumeration and Symmetry-Breaking

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4453))

Abstract

The study of biological networks and network motifs can yield significant new insights into systems biology. Previous methods of discovering network motifs – network-centric subgraph enumeration and sampling – have been limited to motifs of 6 to 8 nodes, revealing only the smallest network components. New methods are necessary to identify larger network sub-structures and functional motifs.

Here we present a novel algorithm for discovering large network motifs that achieves these goals, based on a novel symmetry-breaking technique, which eliminates repeated isomorphism testing, leading to an exponential speed-up over previous methods. This technique is made possible by reversing the traditional network-based search at the heart of the algorithm to a motif-based search, which also eliminates the need to store all motifs of a given size and enables parallelization and scaling. Additionally, our method enables us to study the clustering properties of discovered motifs, revealing even larger network elements.

We apply this algorithm to the protein-protein interaction network and transcription regulatory network of S. cerevisiae, and discover several large network motifs, which were previously inaccessible to existing methods, including a 29-node cluster of 15-node motifs corresponding to the key transcription machinery of S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baskerville, K., Paczuski, M.: Subgraph ensembles and motif discovery using a new heuristic for graph isomorphism (2006), http://www.arxiv.org:q/bio/0606023

  2. Costanzo, M.C., Crawford, M.E., Hirschman, J.E., Kranz, J.E., Olsen, P., Robertson, L.S., Skrzypek, M.S., Braun, B.R., Hopkins, K.L., Kondu, P., Lengieza, C., Lew-Smith, J.E., Tillberg, M., Garrels, J.I.: Ypd(tm), pombepd(tm), and wormpd(tm): model organism volumes of the bioknowledge(tm) library, an integrated resource for protein information. Nucleic Acids Res. 29, 75–79 (2001)

    Article  Google Scholar 

  3. Dobrin, R., Beg, Q.K., Barabási, A.-L., Oltvai, Z.N.: Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinformatics 5, 10 (2004)

    Article  Google Scholar 

  4. Han, J.-D.J., Bertin, N., Hao, T., Goldberg, D.S., Berriz, G.F., Zhang, L.V., Dupuy, D., Walhout, A.J.M., Cusick, M.E., Roth, F.P., Vidal, M.: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995), 88–93 (2004)

    Article  Google Scholar 

  5. Jaimovich, A., Elidan, G., Margalit, H., Friedman, N.: Towards an integrated protein-protein interaction network: a relational markov network approach. J. Comp. Bio. 13, 145–164 (2006)

    Article  MathSciNet  Google Scholar 

  6. Jeong, H., Mason, S., Barabási, A.-L., Oltvai, Z.N.: Centrality and lethality of protein networks. Nature 411 (2001)

    Google Scholar 

  7. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.-L.: The large-scale organization of metabolic networks. Nature 407 (2000)

    Google Scholar 

  8. Kalir, S., McClure, J., Pabbaraju, K., Southward, C., Ronen, M., Leibler, S., Surette, M.G., Alon, U.: Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292(5524), 2080–2083 (2001)

    Article  Google Scholar 

  9. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics, Evaluation Studies 20(11), 1746–1758 (2004)

    Google Scholar 

  10. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Topological generalizations of network motifs. Phys. Rev. E, 70:031909 (2004)

    Google Scholar 

  11. Lee, T.I., Young, R.A.: Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137 (2000)

    Article  MATH  Google Scholar 

  12. Mangan, S., Alon, U.: Structure and function of the feed-forward loop network motif. PNAS 100(21), 11980–11985 (2003)

    Article  Google Scholar 

  13. Mangan, S., Zaslaver, A., Alon, U.: The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. 334(2), 197–204 (2003)

    Article  Google Scholar 

  14. McKay, B.D.: Practical graph isomorphism. In: Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing, vol. I, Winnipeg, Man., 1980, pp. 45–87 (1981), http://cs.anu.edu.au/~bdm/nauty/

  15. McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26, 306–324 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Middendorf, M., Ziv, E., Wiggins, C.H.: Inferring network mechanisms: the Drosophila melanogaster protein interaction network. PNAS 102(9), 3192–3197 (2005)

    Article  Google Scholar 

  17. Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)

    Article  Google Scholar 

  18. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  19. Przytycka, T.M.: An important connection between network motifs and parsimony models. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 321–335. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Ronen, M., Rosenberg, R., Shraiman, B.I., Alon, U.: Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. U S A 99(16), 10555–10560 (2002)

    Article  Google Scholar 

  21. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 31(1), 64–68 (2002)

    Article  Google Scholar 

  22. JUNG Framework Development Team: Jung: The java universal network/graph framework (2005)

    Google Scholar 

  23. Ullman, J.R.: An algorithm for subgraph isomorphism. J. Assoc. Comp. Mach. 23(1), 31–42 (1976)

    MATH  Google Scholar 

  24. Vazquez, A., Dobrin, R., Sergi, D., Eckmann, J.-P., Oltvai, Z.N., Barabasi, A.-L.: The topological relationship between the large-scale attributes and local interaction patterns of complex networks. PNAS 101(52), 17940–17945 (2004)

    Article  Google Scholar 

  25. Zaslaver, A., Mayo, A.E., Rosenberg, R., Bashkin, P., Sberro, H., Tsalyuk, M., Surette, M.G., Alon, U.: Just-in-time transcription program in metabolic pathways. Nature Genetics 36(5), 486–491 (2004)

    Article  Google Scholar 

  26. Ziv, E., Koytcheff, R., Middendorf, M., Wiggins, C.: Systematic identification of statistically significant network measures. Phys. Rev. E 71, 16110 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terry Speed Haiyan Huang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Grochow, J.A., Kellis, M. (2007). Network Motif Discovery Using Subgraph Enumeration and Symmetry-Breaking. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71681-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71680-8

  • Online ISBN: 978-3-540-71681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics