
An Effective Multi-level Algorithm Based on
Ant Colony Optimization for Bisecting Graph

Ming Leng and Songnian Yu

School of Computer Engineering and Science,
Shanghai University, Shanghai, PR China 200072

lengming@graduate.shu.edu.cn,
snyu@staff.shu.edu.cn

Abstract. An important application of graph partitioning is data clus-
tering using a graph model — the pairwise similarities between all data
objects form a weighted graph adjacency matrix that contains all nec-
essary information for clustering. The min-cut bipartitioning problem is
a fundamental graph partitioning problem and is NP-Complete. In this
paper, we present an effective multi-level algorithm based on ant colony
optimization(ACO) for bisecting graph. The success of our algorithm re-
lies on exploiting both the ACO method and the concept of the graph
core. Our experimental evaluations on 18 different graphs show that our
algorithm produces encouraging solutions compared with those produced
by MeTiS that is a state-of-the-art partitioner in the literature.

1 Introduction

An important application of graph partitioning is data clustering using a graph
model [1], [2]. Given the attributes of the data points in a dataset and the
similarity or affinity metric between any two points, the symmetric matrix con-
taining similarities between all pairs of points forms a weighted adjacency ma-
trix of an undirected graph. Thus the data clustering problem becomes a graph
partitioning problem [2]. The min-cut bipartitioning problem is a fundamental
partitioning problem and is NP-Complete [3]. It is also NP-Hard to find good
approximate solutions for this problem [4]. Because of its importance, the prob-
lem has attracted a considerable amount of research interest and a variety of
algorithms have been developed over the last thirty years [5],[6]. The survey by
Alpert and Kahng [7] provides a detailed description and comparison of vari-
ous such schemes which can be classified as move-based approaches, geometric
representations, combinatorial formulations, and clustering approaches.

Most existing partitioning algorithms are heuristics in nature and they seek
to obtain reasonably good solutions in a reasonable amount of time. Kernighan
and Lin (KL) [5] proposed a heuristic algorithm for partitioning graphs. The
KL algorithm is an iterative improvement algorithm that consists of making
several improvement passes. It starts with an initial bipartitioning and tries to
improve it by every pass. A pass consists of the identification of two subsets
of vertices, one from each part such that can lead to an improved partition if

Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp. 138–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Effective Multi-level Algorithm Based on ACO for Bisecting Graph 139

the vertices in the two subsets switch sides. Fiduccia and Mattheyses (FM) [6]
proposed a fast heuristic algorithm for bisecting a weighted graph by introducing
the concept of cell gain into the KL algorithm. These algorithms belong to the
class of move-based approaches in which the solution is built iteratively from an
initial solution by applying a move or transformation to the current solution.
Move-based approaches are the most frequently combined with stochastic hill-
descending algorithms such as those based on Simulated Annealing [8], Tabu
Search [8],[9], Genetic Algorithms [10], Neural Networks [11], etc., which allow
movements towards solutions worse than the current one in order to escape from
local minima. For example, Leng and Yu [12],[13] proposed a boundary Tabu
Search refinement algorithm that combines an effective Tabu Search strategy
with a boundary refinement policy for refining the initial partitioning.

As the problem sizes reach new levels of complexity recently, it is difficult to
compute the partitioning directly in the original graph and a new class of graph
partitioning algorithms have been developed that are based on the multi-level
paradigm. The multi-level graph partitioning schemes consist of three phases
[14],[15],[16]. During the coarsening phase, a sequence of successively coarser
graph is constructed by collapsing vertex and edge until its size is smaller than
a given threshold. The goal of the initial partitioning phase is to compute initial
partitioning of the coarsest graph such that the balancing constraint is satis-
fied and the partitioning objective is optimized. During the uncoarsening phase,
the partitioning of the coarser graph is successively projected back to the next
level finer graph and an iterative refinement algorithm is used to optimize the
objective function without violating the balancing constraint.

In this paper, we present a multi-level algorithm which integrates an effec-
tive matching-based coarsening scheme and a new ACO-based refinement ap-
proach. Our work is motivated by the multi-level ant colony algorithm(MACA)
of Koros̃ec who runs basic ant colony algorithm on every level graph in [17] and
Karypis who introduces the concept of the graph core for coarsening the graph
in [16] and supplies MeTiS [14], distributed as open source software package
for partitioning unstructured graphs. We test our algorithm on 18 graphs that
are converted from the hypergraphs of the ISPD98 benchmark suite [18]. Our
comparative experiments show that our algorithm produces excellent partitions
that are better than those produced by MeTiS in a reasonable time.

The rest of the paper is organized as follows. Section 2 provides some defi-
nitions and describes the notation that is used throughout the paper. Section
3 briefly describes the motivation behind our algorithm. Section 4 presents an
effective multi-level ACO refinement algorithm. Section 5 experimentally eval-
uates our algorithm and compares it with MeTiS. Finally, Section 6 provides
some concluding remarks and indicates the directions for further research.

2 Mathematical Description

A graph G=(V,E) consists of a set of vertices V and a set of edges E such that
each edge is a subset of two vertices in V. Throughout this paper, n and m denote

140 M. Leng and S. Yu

the number of vertices and edges respectively. The vertices are numbered from 1
to n and each vertex v ∈ V has an integer weight S (v). The edges are numbered
from 1 to m and each edge e ∈ E has an integer weight W (e). A decomposition
of a graph V into two disjoint subsets V 1 and V 2, such that V 1 ∪ V 2=V and
V 1 ∩ V 2=∅, is called a bipartitioning of V. Let S (A)=

∑

v∈A
S(v) denotes the size

of a subset A ⊆ V. Let IDv be denoted as v ’s internal degree and is equal to
the sum of the edge-weights of the adjacent vertices of v that are in the same
side of the partition as v, and v ’s external degree denoted by EDv is equal to
the sum of edge-weights of the adjacent vertices of v that are in different sides.
The cut of a bipartitioning P={V 1,V 2} is the sum of weights of edges which
contain two vertices in V 1 and V 2 respectively. Naturally, vertex v belongs at
the boundary if and only if EDv > 0 and the cut of P is also equal to 0.5

∑

v∈V
EDv.

Given a balance constraint r, the min-cut bipartitioning problem seeks a solution
P={V 1,V 2} that minimizes cut(P) subject to (1 -r)S (V)/2 ≤ S(V 1),S(V 2) ≤
(1+r)S (V)/2. A bipartitioning is bisection if r is as small as possible. The task
of minimizing cut(P) can be considered as the objective and the requirement that
solution P will be of the same size can be considered as the constraint.

3 Motivation

ACO is a novel population-based meta-heuristic framework for solving discrete
optimization problems [19],[20]. It is based on the indirect communication among
the individuals of a colony of agents, called ants, mediated by trails of a chem-
ical substance, called pheromone, which real ants use for communication. It is
inspired by the behavior of real ant colonies, in particular, by their foraging
behavior and their communication through pheromone trails. The pheromone
trails are a kind of distributed numeric information which is modified by the
ants to reflect their experience accumulated while solving a particular problem.
Typically, solution components which are part of better solutions or are used
by many ants will receive a higher amount of pheromone and, hence, will more
likely be used by the ants in future iterations of the algorithm. The collective
behavior that emerges is a form of autocatalytic behavior. The process is thus
characterized by a positive feedback loop, where the probability with which ant
chooses a solution component increases with the number of ants that previously
chose the same solution component.

The main idea of ACO is as follows. Each ant constructs candidate solutions
by starting with an empty solution and then iteratively adding solution com-
ponents until a complete candidate solution is generated. At every point each
ant has to decide which solution component to be added to its current partial
solution according to a state transition rule. After the solution construction is
completed, the ants give feedback on the solutions they have constructed by
depositing pheromone on solution components which they have used in their
solution according to a pheromone updating rule.

An Effective Multi-level Algorithm Based on ACO for Bisecting Graph 141

In [21], Langham and Grant proposed the Ant Foraging Strategy (AFS) for
k-way partitioning. The basic idea of the AFS algorithm is very simple: We have
k colonies of ants that are competing for food, which in this case represents the
vertices of the graph. At the end the ants gather food to their nests, i.e. they
partition the graph into k subgraphs. In [17], Koros̃ec presents the MACA ap-
proach that is enhancement of the AFS algorithm with the multi-level paradigm.
However, since Koros̃ec simply runs the AFS algorithm on every level � graph
Gl(Vl,El), most of computation on the coarser graphs is wasted. Furthermore,
MACA comes into collision with the key idea behind the multi-level approach.
The multi-level graph partitioning schemes needn’t the direct partitioning algo-
rithm on Gl(Vl,El) in the uncoarsening and refinement phase, but the refinement
algorithm that improves the quality of the finer graph Gl(Vl,El) partitioning
PGl

={V1
l ,V

2
l } which is projected from the partitioning PGl+1={V1

l+1,V
2
l+1} of

the coarser graph Gl+1(Vl+1,El+1).
In this paper, we present a new multi-level ant colony optimization refinement

algorithm(MACOR) that combines the ACO method with a boundary refine-
ment policy. It employs ACO in order to select two subsets of vertices V1′

l ⊂ V1
l

and V2′

l ⊂ V2
l such that { (V1

l −V1′

l)∪V2′

l , (V2
l −V2′

l)∪V1′

l }is a bisection with
a smaller edge-cut. It has distinguishing features which are different from the
MACA algorithm. First, MACA exploits two or more colonies of ants to compete
for the vertices of the graph, while MACOR employs one colony of ants to find
V1′

l and V2′

l such that moving them to the other side improves the quality of
partitioning. Second, MACA is a partitioning algorithm while MACOR is a re-
finement algorithm. Finally, MACOR is a boundary refinement algorithm whose
runtime is significantly smaller than that of a non-boundary refinement algo-
rithm, since the vertices moved by MACOR are boundary vertices that straddle
two sides of the partition and only the gains of boundary vertices are computed.

In [14], Karypis presents the sorted heavy-edge matching (SHEM) algorithm
that identifies and collapses together groups of vertices that are highly connected.
Firstly, SHEM sorts the vertices of the graph ascendingly based on the degree of
the vertices. Next, the vertices are visited in this order and SHEM matches the
vertex v with unmatched vertex u such that the weight of the edge W (v,u) is
maximum over all incident edges. In [22], Sediman introduces the concept of the
graph core firstly that the core number of a vertex v is the maximum order of a
core that contains that vertex. Vladimir gives an O(m)-time algorithm for cores
decomposition of networks and O(m· log(n))-time algorithm to compute the core
numbering in the context of sum-of-the-edge-weights in [23],[24] respectively. In
[16], Amine and Karypis introduce the concept of the graph core for coarsening
the power-law graphs. In [13], Leng present the core-sorted heavy-edge matching
(CSHEM) algorithm that combines the concept of the graph core with the SHEM
scheme. Firstly, CSHEM sorts the vertices of the graph descendingly based on
the core number of the vertices by the algorithm in [24]. Next, the vertices are
visited in this order and CSHEM matches the vertex v with its unmatched
neighboring vertex whose edge-weight is maximum. In case of a tie according to
edge-weights, we will prefer the vertex that has the highest core number.

142 M. Leng and S. Yu

In our multi-level algorithm, we adopt the MACOR algorithm during the re-
finement phase , the greedy graph growing partition (GGGP) algorithm [14] dur-
ing the initial partitioning phase, an effective matching-based coarsening scheme
during the coarsening phase that uses the CSHEM algorithm on the original
graph and the SHEM algorithm on the coarser graphs. The pseudocode of our
multi-level algorithm is shown in Algorithm 1.

Algorithm 1 (Our multi-level algorithm)

INPUT: original graph G(V,E)
OUTPUT: the partitioning PG of graph G
/*coarsening phase*/
l = 0
Gl(Vl,El)=G(V,E)
Gl+1(Vl+1,El+1)=CSHEM(Gl(Vl,El))
While (|Vl+1| > 20) do

l = l + 1
Gl+1(Vl+1,El+1)=SHEM(Gl(Vl,El))

End While
/*initial partitioning phase*/
PGl

=GGGP(Gl)
/*refinement phase*/
While (l ≥ 1) do

P
′

Gl
=MACOR(Gl,PGl

)
Project P

′

Gl
to PGl−1 ;

l = l − 1
End While
PG=MACOR(Gl,PGl

)
Return PG

4 An Effective Multi-level Ant Colony Optimization
Refinement Algorithm

Informally, the MACOR algorithm works as follows: At time zero, an initial-
ization phase takes place during which the internal and external degrees of all
vertices are computed and initial values for pheromone trail are set on the ver-
tices of graph G. In the main loop of MACOR, each ant’s tabu list is emptied
and each ant chooses (V1′

,V2′
) by repeatedly selecting boundary vertices of each

part according to a state transition rule given by Equation(1)(2), moving them
into the other part, updating the gains of the remaining vertices and etc. After
constructing its solution, each ant also modifies the amount of pheromone on the
moved vertices by applying the local updating rule of Equation(3). Once all ants
have terminated their solutions, the amount of pheromone on vertices is mod-
ified again by applying the global updating rule of Equation(4). The process is
iterated until the cycles counter reaches the maximum number of cycles NCmax,
or the MACOR algorithm stagnates.

An Effective Multi-level Algorithm Based on ACO for Bisecting Graph 143

The pseudocode of the MACOR algorithm is shown in Algorithm 2. The
cycles counter is denoted by t and Best represents the best partitioning seen
so far. The initial values for pheromone trail is denoted by τ0=1/ε, where ε is
total number of ants. At cycle t, let τv(t) be the pheromone trail on the vertex v
and tabuk(t) be the tabu list of ant k, Bestk(t) represents the best partitioning
found by ant k and the current partitioning of ant k is denoted by Pk(t), the ant k
also stores the internal and external degrees of all vertices and boundary vertices
independently which be denoted as IDk(t), EDk(t) and boundaryk(t) respectively.
Let allowedk(t) be denoted as the candidate list which is a list of preferred vertices
to be moved by ant k at cycle t and is equal to {V − tabuk(t)}

⋂
boundaryk(t).

Algorithm 2 (MACOR)

INPUT: initial bipartitioning P, maximum number of cycles NCmax

balance constraint r, similarity tolerance ϕ, maximum steps smax

OUTPUT: the best partitioning Best, cut of the best partitioning cut(Best)
/*Initialization*/
t = 0
Best = P
For every vertex v in G = (V, E) do

IDv =
∑

(v,u)∈E∧P [v]=P [u]
W (v,u)

EDv =
∑

(v,u)∈E∧P [v] �=P [u]
W (v,u)

Store v as boundary vertex if and only if EDv > 0;
τv(t) = τ0

End For
/*Main loop*/
For t = 1 to NCmax do

For k = 1 to ε do
tabuk(t) = ∅

Store Pk(t) = P and Bestk(t) = P independently;
Store IDk(t), EDk(t), boundaryk(t) of G = (V, E) independently;
For s = 1 to smax do

Decide the move direction of the current step s;
If exists at least one vertex v ∈ allowedk(t) then

Choose the vertex v to move as follows

v =

{
arg max

v∈allowedk(t)
[τv(t)]

α ·
[
ηk
v (t)

]β if q ≤ q0

w if q > q0

(1)

Where the vertex w is chosen according to the probablity

pk
w(t) =

⎧
⎪⎨

⎪⎩

[τw(t)]α·[ηk
w(t)]β

�

u∈allowedk(t)

[τu(t)]α·[ηk
u (t)]β

if w ∈ allowedk(t)

0 otherwise
(2)

144 M. Leng and S. Yu

Else
Break;

End If
Update Pk(t) by moving the vertex v to the other side;
Lock the vertex v by adding to tabuk(t);
original cut Minus its original gain as the cut of Pk(t);
Update IDk

u(t), EDk
u(t), gain of its neighboring vertices u and

boundaryk(t);
If (cut(Pk(t)) < cut(Bestk(t)) and P k(t) satisfies constraints r) then

Bestk(t) = Pk(t)
End If

End For /*s ≤ smax*/
Apply the local update rule for the vertices v moved by ant k

τv(t) ← (1 − ρ) · τv(t) + ρ ·
τk
v (t) (3)

Adjust q0 if similarity((V1′
,V2′

)k, (V1′
,V2′

)(k-1)) ≥ ϕ;
End For /*k ≤ ε*/
If min

1≤k≤ε
cut(Bestk(t)) < cut(Best) then

Update Best and cut(Best);
End If
Apply the global update rule for the vertices v moved by global-best ant

τv(t) ← (1 − ξ) · τv(t) + ξ ·
τgb
v (4)

For every vertex v in G = (V, E) do
τv(t+1) = τv(t)

End For
End For /*t ≤ NCmax*/
Return Best and cut(Best)

In the MACOR algorithm, a state transition rule given by Equation(1)(2) is
called pseudo-random-proportional rule, where q is a random number uniformly
distributed in [0. . . 1] and q0 is parameter (0 ≤ q0 ≤ 1) which determines the
relative importance of exploitation versus exploration. If q ≤ q0 then the best
vertex, according to Equation(1), is chosen(exploitation), otherwise a vertex is
chosen according to Equation(2)(exploration). To avoid trapping into stagnation
behavior, MACOR adjusts dynamically the parameter q0 based on the solutions
similarity between (V1′

,V2′
)k and (V1′

,V2′
)(k-1) found by ant k and k-1. In

Equation(1)(2), α and β denote the relative importance of the pheromone trail
τv(t) and visibility ηk

v(t) respectively, ηk
v(t) represents the visibility of ant k on

the vertex v at cycle t and is given by:

ηk
v(t) =

⎧
⎨

⎩

√
1.0 + EDk

v(t) − IDk
v(t) if (EDk

v(t) − IDk
v(t)) ≥ 0

√
1.0/(IDk

v(t) − EDk
v(t)) otherwise

(5)

An Effective Multi-level Algorithm Based on ACO for Bisecting Graph 145

In Equation(3), ρ is a coefficient and represents the local evaporation of
pheromone trail between cycle t and t+1 and the term
τk

v (t) is given by:

τk
v (t) =

{
cut(Bestk(t))−cut(P)

cut(P)·ε if v was moved by ant k at cycle t
0 otherwise

(6)

In Equation(4), ξ is a parameter and represents the global evaporation of
pheromone trail between cycle t and t+1 and the term
τgb

v is given by:

τgb
v =

{
cut(Best)−cut(P)

cut(P) if v was moved by global-best ant
0 otherwise

(7)

5 Experimental Results

We use the 18 graphs in our experiments that are converted from the hypergraphs
of the ISPD98 benchmark suite [18] and range from 12,752 to 210,613 vertices.
Each hyperedge is a subset of two or more vertices in hypergraph. We convert
hyperedges into edges by the rule that every subset of two vertices in hyperedge
can be seemed as edge. We create the edge with unit weight if the edge that
connects two vertices doesn’t exist, else add unit weight to the weight of the
edge. Next, we get the weights of vertices from the ISPD98 benchmark. Finally,
we store 18 edge-weighted and vertex-weighted graphs in format of MeTiS [14].
The characteristics of these graphs are shown in Table 1.

Table 1. The characteristics of 18 graphs to evaluate our algorithm

benchmark vertices hyperedges edges
ibm01 12752 14111 109183
ibm02 19601 19584 343409
ibm03 23136 27401 206069
ibm04 27507 31970 220423
ibm05 29347 28446 349676
ibm06 32498 34826 321308
ibm07 45926 48117 373328
ibm08 51309 50513 732550
ibm09 53395 60902 478777
ibm10 69429 75196 707969
ibm11 70558 81454 508442
ibm12 71076 77240 748371
ibm13 84199 99666 744500
ibm14 147605 152772 1125147
ibm15 161570 186608 1751474
ibm16 183484 190048 1923995
ibm17 185495 189581 2235716
ibm18 210613 201920 2221860

146 M. Leng and S. Yu

We implement the MACOR algorithm in ANSI C and integrate it with the
leading edge partitioner MeTiS. In the evaluation of our multi-level algorithm,
we must make sure that the results produced by our algorithm can be easily com-
pared against those produced by MeTiS. We use the same balance constraint r
and random seed in every comparison. In the scheme choices of three phases of-
fered by MeTiS, we use the SHEM algorithm during the coarsening phase, the
GGGP algorithm during the initial partitioning phase that consistently finds
smaller edge-cuts than other algorithms, the boundary KL (BKL) refinement
algorithm during the uncoarsening and refinement phase because BKL can pro-
duce smaller edge-cuts when coupled with the SHEM algorithm. These measures
are sufficient to guarantee that our experimental evaluations are not biased in
any way.

Table 2. Min-cut bipartitioning results with up to 2% deviation from exact bisection

benchmark MeTiS(α) our algorithm(β) ratio(β:α) improvement
MinCut AveCut MinCut AveCut MinCut AveCut MinCut AveCut

ibm01 517 1091 259 531 0.501 0.487 49.9% 51.3%
ibm02 4268 11076 1920 5026 0.450 0.454 55.0% 54.6%
ibm03 10190 12353 4533 5729 0.445 0.464 55.5% 53.6%
ibm04 2273 5716 2221 3037 0.977 0.531 2.3% 46.9%
ibm05 12093 15058 8106 9733 0.670 0.646 33.0% 35.4%
ibm06 7408 13586 2111 5719 0.285 0.421 71.5% 57.9%
ibm07 3219 4140 2468 3110 0.767 0.751 23.3% 24.9%
ibm08 11980 38180 10500 13807 0.876 0.362 12.4% 63.8%
ibm09 2888 4772 2858 3905 0.990 0.818 1.0% 18.2%
ibm10 10066 17747 5569 7940 0.553 0.447 44.7% 55.3%
ibm11 2452 5095 2405 3423 0.981 0.672 1.9% 32.8%
ibm12 12911 27691 5502 13125 0.426 0.474 57.4% 52.6%
ibm13 6395 13469 4203 6929 0.657 0.514 34.3% 48.6%
ibm14 8142 12903 8435 10114 1.036 0.784 -3.6% 21.6%
ibm15 22525 46187 17112 25102 0.760 0.543 24.0% 45.7%
ibm16 11534 22156 8590 12577 0.745 0.568 25.5% 43.2%
ibm17 16146 26202 13852 18633 0.858 0.711 14.2% 28.9%
ibm18 15470 20018 15494 18963 1.002 0.947 -0.2% 5.3%

average 0.721 0.589 27.9% 41.1%

The quality of partitions produced by our algorithm and those produced by
MeTiS are evaluated by looking at two different quality measures, which are
the minimum cut (MinCut) and the average cut (AveCut). To ensure the sta-
tistical significance of our experimental results, two measures are obtained in
twenty runs whose random seed is different to each other. For all experiments,
we allow the balance constraint up to 2% deviation from exact bisection by set-
ting r to 0.02, i.e., each partition must have between 49% and 51% of the total
vertices size. We also set the number of vertices of the current level graph as the

An Effective Multi-level Algorithm Based on ACO for Bisecting Graph 147

value of parameter smax. Furthermore, we adopt the experimentally determined
optimal set of parameters values for MACOR, α=2.0, β=1.0, ρ=0.1, ξ=0.1,
q0=0.9, ϕ=0.9, NCmax=80, ε=10.

Table 2 presents min-cut bipartitioning results allowing up to 2% deviation
from exact bisection and Fig. 1 illustrates the MinCut and AveCut comparisons
of two algorithms on 18 graphs. As expected, our algorithm reduces the AveCut
by 5.3% to 63.8% and reaches 41.1% average AveCut improvement. Although
our algorithm produces partition whose MinCut is up to 3.6% worse than that of
MeTiS on two benchmarks, we still obtain 27.9% average MinCut improvement
and between -3.6% and 71.5% improvement in MinCut. All evaluations that
twenty runs of two algorithms on 18 graphs are run on an 1800MHz AMD
Athlon2200 with 512M memory and can be done in two hours.

Fig. 1. The MinCut and AveCut comparisons of two algorithms on 18 graphs

6 Conclusions

In this paper, we have presented an effective multi-level algorithm based on
ACO. The success of our algorithm relies on exploiting both the ACO method
and the concept of the graph core. We obtain excellent bipartitioning results
compared with those produced by MeTiS. Although it has the ability to find
cuts that are lower than the result of MeTiS in a reasonable time, there are
several ways in which this algorithm can be improved. For example, we note that
adopting the CSHEM algorithm alone leads to poorer experimental results than

148 M. Leng and S. Yu

the combination of CSHEM with SHEM. We need to find the reason behind it
and develop a better matching-based coarsening scheme coupled with MACOR.
In the MinCut evaluation of benchmark ibm14 and ibm18, our algorithm is 3.6%
worse than MeTiS. Therefore, the second question is to guarantee find good
approximate solutions by setting optimal set of parameters values for MACOR.

Acknowledgments

This work was supported by the international cooperation project of Ministry
of Science and Technology of PR China, grant No. CB 7-2-01, and by “SEC
E-Institute: Shanghai High Institutions Grid” project. Meanwhile, the authors
would like to thank professor Karypis of University of Minnesota for supplying
source code of MeTiS. The authors also would like to thank Alpert of IBM
Austin Research Laboratory for supplying the ISPD98 benchmark suite.

References

1. Zha, H., He, X., Ding, C., Simon, H., Gu, M.: Bipartite graph partitioning and
data clustering. Proc. ACM Conf Information and Knowledge Management (2001)
25–32

2. Ding, C., He, X., Zha, H., Gu, M., Simon, H.: A Min-Max cut algorithm for graph
partitioning and data clustering. Proc. IEEE Conf Data Mining (2001) 107–114

3. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. WH Freeman, New York (1979)

4. Bui, T., Leland, C.: Finding good approximate vertex and edge partitions is NP-
hard. Information Processing Letters, Vol. 42 (1992) 153–159

5. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, Vol. 49 (1970) 291–307

6. Fiduccia, C., Mattheyses, R.: A linear-time heuristics for improving network par-
titions. Proc. 19th Design Automation Conf (1982) 175–181

7. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning. Integration,
the VLSI Journal, Vol. 19 (1995) 1–81

8. Tao, L., Zhao, Y.C., Thulasiraman, K., Swamy, M.N.S.: Simulated annealing and
tabu search algorithms for multiway graph partition. Journal of Circuits, Systems
and Computers (1992) 159–185

9. Kad�luczka, P., Wala, K.: Tabu search and genetic algorithms for the generalized
graph partitioning problem. Control and Cybernetics (1995) 459–476

10. Żola, J., Wyrzykowski, R.: Application of genetic algorithm for mesh partitioning.
Proc. Workshop on Parallel Numerics (2000) 209-217

11. Bahreininejad, A., Topping, B.H.V., Khan, A.I.: Finite element mesh partitioning
using neural networks. Advances in Engineering Software (1996) 103–115

12. Leng, M., Yu, S., Chen, Y.: An effective refinement algorithm based on multi-
level paradigm for graph bipartitioning. The IFIP TC5 International Conference
on Knowledge Enterprise, IFIP Series, Springer (2006) 294–303

13. Leng, M., Yu, S.: An effective multi-level algorithm for bisecting graph. The 2nd In-
ternational Conference on Advanced Data Mining and Applications, Lecture Notes
in Artifical Intelligence Series, Springer-Verlag (2006) 493–500

An Effective Multi-level Algorithm Based on ACO for Bisecting Graph 149

14. Karypis, G., Kumar, V.: MeTiS 4.0: Unstructured graphs partitioning and sparse
matrix ordering system. Technical Report, Department of Computer Science, Uni-
versity of Minnesota (1998)

15. Selvakkumaran, N., Karypis, G.: Multi-objective hypergraph partitioning algo-
rithms for cut and maximum subdomain degree minimization. IEEE Trans. Com-
puter Aided Design, Vol. 25 (2006) 504–517

16. Amine, A.B., Karypis, G.: Multi-level algorithms for partitioning power-law graphs.
Technical Report, Department of Computer Science, University of Minnesota
(2005) Available on the WWW at URL http://www.cs.umn.edu/˜metis

17. Koros̃ec, P., S̃ilc, J., Robic̃, B.: Solving the mesh-partitioning problem with an
ant-colony algorithm, Parallel Computing (2004) 785–801

18. Alpert, C.J.: The ISPD98 circuit benchmark suite. Proc. Intel Symposium of Phys-
ical Design (1998) 80–85

19. Dorigo, M., Gambardella.,L.: Ant colony system: A cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computa-
tion (1997) 53–66

20. Dorigo, M., Maniezzo, V., Colorni., A.: Ant system: Optimization by a colony of
cooperating agents. IEEE Trans on SMC (1996) 29–41

21. Langham, A.E., Grant, P.W.: Using competing ant colonies to solve k-way parti-
tioning problems with foraging and raiding strategies. Advances in Artificial Life,
Lecture Notes in Computer Science Series, Springer-Verlag (1999) 621–625

22. Seidman, S.B.: Network structure and minimum degree. Social Networks (1983)
269–287

23. Batagelj, V., Zavers̃nik, M.: An O(m) Algorithm for cores decomposition of net-
works. Journal of the ACM (2001) 799–804

24. Batagelj, V., Zavers̃nik, M.: Generalized cores. Journal of the ACM (2002) 1–8

	Introduction
	Mathematical Description
	Motivation
	An Effective Multi-level Ant Colony Optimization Refinement Algorithm
	Experimental Results
	Conclusions

