Efficient Integration of Structure Indexes of XML

Taro L. Saito  Shinichi Morishita

University of Tokyo, Japan,
{leo, moris}@cb.k.u-tokyo.ac.jp

Abstract. Several indexing methods have been proposed to encode tree struc-
tures and path structures of XML, which are generally called structure indexes.
To efficiently evaluate XML queries, it is indispensable to integrate tree structure
and path structure indexes as a multidimensional index. Previous work of XML
indexing have often developed specialized data structures tailored to some query
patterns to handle this multidimensionality, however, their availability to the other
types of queries has been obscure. Our method is based on the multidimensional
index implemented on top of the B+-tree, and also it is general and applicable to
the various choice of XML labeling methods. Our extensive experimental results
confirm great advantages of our method.

1 Introduction

XML databases require the capability to retrieve nodes by using a variety of structural
properties of XML, which are basically derived from tree structures of XML such as
document order of nodes, subtree, sibling, ancestor, descendant nodes, etc. The other
properties are path structures of XML, that consist of sequences of tag and attribute
names, e.g //news/Japan. These various aspects of XML make its query processing dif-
ficult, and index structures for this purpose, which are generally called the structure
indexes [1], have attracted research attention. Most of the proposed structure indexes
aim to efficiently process XPath [2] queries, which is the de facto standard for navigat-
ing XML. XPath contains a mixture of tree and path traversal with several axis steps,
e.g. the child-axis (/), the descendant-axis (//), ancestor-axis, sibling-axis, etc.

Since 1996, as XML gradually has established its position as a data representation
format, tremendous number of structure indexes have been proposed, which are op-
timized for specific query patterns, including structural joins [3,4], twig queries [5],
suffix paths [6], ancestor queries [7], etc. They are proved to be fast for their targeted
queries, however, most of them introduce special purpose data structures implemented
on disks, and ends up losing flexibility of choices of node labels. For example, XR-tree
[71, which is optimized for retrieving ancestor nodes that have specific tag names, can-
not incorporate other efficient path labels such as p-labels [6], which is the fastest for
suffix-path queries. That means XR-tree achieves fast ancestor query performance in
exchange for the performance of suffix path queries.

Care should be taken to devise a specialized data structure on a disk, since an in-
dustrial strength DBMS has to support transaction management, but its implementation
cannot be dependent from several essential components of the DBMS; page buffer, lock



manager, database logging for recovery, and also access methods, such as B+-trees or
R-trees [8]. These modules seem to be able to implement independently, however, all
of them have a lot of interdependencies. Index structures of DBMS usually include in-
tricate protocols for latching, locking, and logging. The B+-trees in serious DBMSs are
riddled with calls to the concurrency and recovery code, and this logic is not generic
to all access methods [9]. That is a reason why the transaction management of R-tree,
which is famous as a multidimensional index structure, is not seriously supported in
most of the DBMS products, including both of commercial and open-source programs.

A natural question that follows is whether we can utilize a B+-tree, which is a well-
established disk-based data structure, to achieve good performance for various types of
XML queries. Our answer to this question is affirmative. In this paper, we show XPath
queries can be performed with combinations of only two types of indexes; tree-structure
and path-strucure indexes. A challenging problem is that these scans must be performed
in a combined way, for example, we have to query ancestor nodes that belong to some
suffix path.

Our approach to this problem is to integrate tree-structure and path-structure in-
dexes into a multidimensional index implemented on a B+-tree. It accelerates query
processing for complex combinations of structural properties. And also, it is possible to
incorporate various types of labeling methods. As an integration approach, construct-
ing multiple secondary B+-tree indexes does not help multidimensional query process-
ing, since they work for only a single dimension, not the combinations of multiple
dimensions. Moreover, the existence of multiple secondary indexes not only enlarges
the database size, but also deteriorates the update performance. We overcome these
obstacles by using space-filling curve technique [10-12] to align XML nodes in a mul-
tidimensional space into one-dimensional space so that these nodes can be stored in a
single B+-tree. We show this approach is beneficial in both of the query performance
and database size.

There are hundreds of combinations of labeling strategies for XML and some of
them demand special purpose data structures implemented on disks. What we would
like to reveal in this paper is how the integration of tree and path structure indexes
works for various types of queries consisting of combinations of structural properties.

Our major contributions in this paper are as follows:

— We introduce an efficient multidimensional index structure, which is a combination
of existing node labeling strategies in literature. While some XML indexes facilitate
a few set of query patterns, our index is adaptive for various types of queries.

— We show an implementation of the proposed multidimensional index on top of the
B+-tree, utilizing the space-filling curve technique.

— We show the multidimensional range query algorithm that can be performed with-
out changing the B+-tree implementation.

Based on the above techniques, we have implemented an XML database system
called Xerial (pronounced as [eksirisl]) . Our experiments in Section 4 demonstrate
Xerial’s all-around performance for various types of queries. In spite of this faculty, its
index size remains compact.

! Our system will be available at http://www.xerial.org/



ancestors of /news/USA/NY/headline
1 o 44
CIapan>_ (UsA)
2 i T~ 19 20 43
3 P 14 15 18 21 34 35 42
G el

A
i
’

4 56 7 %613 16 17 23!6 !27 : 33 36 37 38‘ 41
/ 9 10 11 12 23 24 25 26 2332 T 39 40
/news/Japan/item @ /mews/USA/*/%/* (sibling level=5)

(descendants)

w

0

«

Fig. 1. Interval labels of XML

Organization of the rest of the paper is as follows: in Section 2, we explain tree-
structure and path-structure indexes of XML, and show examples that motivate the
need of multidimensional index for XML In Section 3, we introduces its design and
implementation. In Section 4, we provide results of experimental evaluation. Finally,
we report related work in Section 5 and conclude in Section 6.

2 Backgrounds

Tree-Structure Indexes. XML has a tree structure, however, ancestor and descendant
axes cannot be efficiently evaluated with standard tree navigations such as depth-first
or breadth-first traversals. To make faster the process of ancestor-descendant queries,
two types of node labeling methods have been developed; the interval label [3] and the
prefix label [13]. The interval label (see also Fig. 1) utilizes containment of intervals to
represent ancestor-descendant relationships of XML nodes. For example, if an interval
label of a node p contains another interval of a node g, p is an ancestor of g. The prefix
label assigns node id paths from the root node to each node so that if the label of a node
p is a prefix of the label of a node ¢, p is an ancestor of g. Both of the node labeling
strategies are fundamentally same in that they are designed to instantly detect ancestor-
descendant relationships of two XML nodes. This operation is called structural joins
[14]. Fig. 1 shows an example of the interval label. The interval assigned to each node
subsumes intervals of its child and descendant nodes. These node labels are favorable in
that they can be aligned in the document order of nodes by seeing start values of these
intervals. Therefore, these labels can also be used to traverse the tree structures of XML
in both of the depth-first and breadth-first manner. We call this type of indexes for tree
navigation, tree-structure indexes.

Path-Structure Indexes. To efficiently evaluate path expression queries, in addition
to the tree-structure indexes, we also need the path-structure indexes, which reduce the
overhead of tree navigation by clustering nodes that belong to the same tag or attribute
name paths. There are many proposals how to encode path structures of XML, varying
from simply assigning an integer id to each independent path in the XML document [1]
to creating a summary graph of path structures [15, 16].

When a query contains the descendant-axis (//), we can localize the search spaces
for the descendant nodes. For example, an XPath query //Japan//item can be decom-



. Z
40, Ancestor * g g
Region J ol .~ inverted path inverted path
Y news\ editorial\Japan\news\
30 ~ 4 Japan\news\ editoria\CA\USA\news\
= /vn\ews J M 7’/ ‘\ headline\Japan\news\ sports\Japan\news\
5 (level =2) e headline\NY\USA\news\ USA\news\
200, ’ " Inews/USA/*/*/ headline\CA\USA\news! NY\USA\news!
2 (level =5) item\headline\Japan\news! trafficNY\USA\news\
o /4\ . item\headline\NY\USA\news\ infoltraffic\NY\USA\news\
10 4 /mews/Japan//item item\editorial\Japan\news\ jam\info\traffic\NY\USA\news\
p y/Descendant item\editoria\CA\USA\news\ CA\USA\news\
97 Region item\sports\Japan\news\
%
0 10 20 30 40

start

Fig. 2. Projection of the interval labels on a 2D-plain (left). Inverted path labels (right).

posed into two paths; //Japan and //item, and the search space for //item will be localized
according to the results of //Japan (Fig. 1 and Fig. 2). Therefore, the tree-structure and
path-structure indexes should be integrated to evaluate these types of queries.

In addition, we usually have to query not only with tag names of XML nodes but
also with suffix paths. For example, an XPath //Japan//headline/item contains a suffix
path //headline/item. Rather than querying headline and item nodes individually, it is far
more efficient to scan nodes that have suffix paths //headline/item directly, since there
are many item nodes whose parents are not the headline nodes. To improve accessibility
to suffix paths, the p-label has been proposed [6]. The essence of its technique is to
invert the sequences of paths occurring in the XML document, which we call inverted
paths, and align these inverted paths in the lexicographical order considering each tag
or attribute name in the paths as a comparison unit. Fig. 2 shows an example of inverted
paths, where each inverted path is labeled with an integer id. To evaluate an XPath
query //item, we have to collect nodes whose inverted path ids are contained in the range
[6,11). When a more detailed path is specified, for example, //headline/item, the query
range narrows to [6, 8). With the inverted path ids, we can perform a suffix path query
with a range search.

Multidimensional Aspects of XML. Here, we show why the integration of tree-
structure and path-structure indexes is so important. Fig. 2 shows the mapping of the
intervals (start, end) in Fig. 1 into a two-dimensional plane. A benefit of the interval
labeling is that we can enclose all ancestor (descendant) nodes of some nodes within
its upper left (lower right) rectangular region. For example, all ancestor nodes of the
NY node (21, 34) is enclosed in its upper left rectangle. The process of a query, say
/news/Japan//item, has to accurately extract item nodes within the subtree rooted by
Japan (a shaded region in the figures). Since some item nodes exist out of this region, the
index structure for XML demands the capability to capture nodes by the combination
of start, end, and a path.

Although the 2D plane is useful to track ancestor and descendant nodes, we also
need the information of the node depth (level) to process wild-cards in path expres-
sions. For example, XPath expressions /news/* and /news/US/*/*/*, which are useful to
investigate the structure of XML database, require the level information to efficiently
collect the answer nodes, since without indexes for the level values, its process has to
traverse the tree-structure in depth-first or breadth-first manner; it is inefficient when the



depth is deep. Our experimental results confirm the inefficiency of these tree traversal
methods for wild-card queries, i.e. the sibling-axis steps.

XPath [2] has 11 types of axis steps for tree navigations, that are ancestor, de-
scendant, parent, child, attribute, preceding-sibling, following-sibling, ancestor-or-self,
descendant-or-self, preceding, and following®. Among them, the six types of axis steps,
ancestor(-or-self), descendant(-or-self), preceding and following, can be processed with
the two-dimensional indexes for the interval labels (start, end). The parent, child, preceding-
sibling and following-sibling axis-steps require all of start, end, level values, since start
and end values are not sufficient to detect parent-child relationships of nodes. If at-
tribute nodes of XML are modeled as child nodes of tags, the attribute-axis can be seen
the same with the child-axis. Therefore, all of 11 axis-steps can be processed with the
combination of (start, end, level) indexes, i.e. tree-structure indexes.

In addition to the tree-structure indexes, if we have the path-structure indexes, we
can efficiently answer XPath queries, even if these answers are contained in meander-
ing regions as illustrated in the query region for /news/Japan//item in Fig. 2. Therefore,
multidimensionally indexing tree-structures and path-structures of XML is a key to ac-
celerate XML query processing.

3 Multidimensional XML Index

In order to construct XML databases, we utilize a combination of tree-structure indexes,
and path-structure indexes. Although, there are many proposals for labeling each type
of index, we adopted labels that can be easily represented with integers.

We encode every XML node with a label:
(start, end, level, path, text),

where start and end represent interval labels of XML, and level is the node depth. The
path is the inverted path id described in Section 2. The text is a text content enclosed in
the tag or attribute. Every attribute element in XML is assigned the same interval and
level value with its belonging tag, so as to learn the subtree range of the tag from the
index of the attribute node.

Although we utilized the interval labels for tree structures, other labeling schemes,
such as prefix labels, can substitute them; the XML label will be (prefix-label, level, path,
text). Each prefix label contains all prefix labels of its ancestor nodes, so there is no need
to have end values for ancestor queries. The path labels also can be replaced simply with
tag IDs or other labels.

The above labeling scheme is used to create multidimensional indexes. To index
multidimensional data, it is general to use R-tree, which groups together nodes that
are in close spatial proximity. However, implementations of the R-tree are not yet as
matured as the B+-tree, which is broadly employed in the industrial strength DBMSs,
while the R-tree is not. Although the B+-tree is a one-dimensional index structure, we

2 The other two axis steps defined in XPath [2] are the namespace and self axis, which do not
require any tree traversal.



k01 11 » 0101 [ 0111 1101 | 1111
10 010Q 0110, 1160 1110

OO 10 01 0001 | 08.11 \1001 M. 11
00 00 00 0010 1000 10 10

0 1 . 00 01 10 11

step 0 step 0-1

Fig. 3. Interleave function generates a z-order from an index (start, end, level, path), that speci-
fies a position on the z-curve.

can store the multidimensional data into a B+-tree by using a space-filling curve [12],
such as Hilbert curve, Peano curve etc. The space-filling curve traces the entire mul-
tidimensional space with a single stroke, and it can be used to align multidimensional
points in one dimensional space.

However, what kind of space-filling curve is suited for XML indexing? To answer
this question, let us confirm our objective to construct a multidimensional index; that
is to make clusters of nodes that have same attribute values as possible, for example,
same level values and same suffix paths, so that we can efficiently query nodes with
combinations of these attribute values, i.e. start, end, level and path.

To meet this demand, we chose a straightforward approach; bit-interleaving of co-
ordinate values. It gives a position on the z-curve [10, 12], which is also a space-filling
curve. The interleave function illustrated in Fig. 3 receives coordinate values of a point
as input, and from their bit-string representations, it retrieves single bits from heads
of coordinate values in a round-robin manner, then computes the z-order, which is an
absolute position on the z-curve (Fig. 3). This linear ordering of XML nodes enables
us to implement the multidimensional index on top of the B+-tree. In addition, each
step in the z-order in Fig. 3 has a role to split each dimension. The first step splits each
dimension into two, and the second step split each slice into 2, resulting in 2> = 4
slices, and so on. If two nodes are close in the multidimensional space, their z-orders
also likely to be close in the some steps. It means these nodes will be probably placed
in the same leaf page or its proximate pages in the B+-tree; this property is the nature
of bit-interleaving.

Normalizing Index Resolution. The interleave function extracts bits beginning from
the MSB (most significant bit). When value domains of the interleaved indexes are
far different, for example, the domain of start values is 0 < start < 210 and that of
level values is 0 < level < 23, the change of a value in a smaller domain has as equal
significance to the z-order as that of the larger domains. In general, the depth of XML
documents is not greater than 100, while the interval label for XML requires as large a
value as the number of nodes, which can be more than 100,000. Thus, if we use the same
bit-length number to represent each index value, the level values are less important in
the z-order, and we fail to separate XML nodes level by level, deteriorating the sibling
query performance.



To avoid this problem, we adjust the resolution of each index, which is the maximum
bit length that is enough to represent all values in the index domain. We denote the
resolution of an index as r. For example, when a domain of some index is a range
[0, Vinax), its resolution r is [10g, Viax |- The normalize,,(v) function converts an integer
value v, whose resolution is r, into an m-bit integer value. We define normalize,,(v) =
[v/2"7™], ignoring the fraction. For example, when m = 8 and the resolution of each
index of (start, end, level, path) is 10, 10, 3 and 4, respectively, an XML index (100,
105, 3, 2) is normalized to the 8-bit values (25, 26, 96, 32). By using normalized index
values to compute z-orders, we can adjust the resolution so that level or path values,
whose domains are usually small, affect much more to the z-order than start or end
values. We simply denote this normalization process for some node p as normalize(p).

Range Query Algorithm. The idea that utilizing z-curve for multidimensional indexes
is first mentioned in the zkd-BTree [10] and is improved in the UB-tree [17]. Although
both of them extended the standard B+-tree structure to make it efficient for multidi-
mensional queries, we introduce a multidimensional range query processing algorithm
without modifying existing B+-tree structures. In our algorithm, we need only two stan-
dard functions for the B+-tree; find and next. The find(k) receives an key value k and
finds the smallest entry whose key value is greater than or equal to k. The next(e) returns
the next entry of an entry e in the B+-tree.

We denote the z-order of a node p = (start, end, level, path) as zorder(p), and coor-
dinates specified by the z-order z as coord(z). Then, coord(zorder(p)) = p. Each entry
in the B+-tree has the structure: zorder(normalize(p)) = p, where the left-hand side
is a key to be used to sort XML nodes in the z-order. To perform a multidimensional
query for a hyper-rectangle region Q(pjy, p.), where p; and p, are the multidimensional
points specifying the beginning and end points of the query range, we can utilize a prop-
erty of z-orders; all points p in the query range Q satisfies zorder(p;) < zorder(p) <
zorder(p,) [17].

Algorithm 1 shows the range query algorithm, and Fig. 4 illustrates its behavior.
Since all nodes are aligned in the z-order in the B+-tree, we have to scan the key range of
z-order from zorder(normalize(py)) to zorder(normalize.i/(p.)), where normalize .. is
calculated from [v/2"~™] of each coordinate value v. That z-orders computed from nor-
malized coordinate values may have round errors, so there is a case that coord(normalize(p))
is contained in the normalized query range N Q(normalize(p;), normalize.ii(p.)), but p
is not in Q, since if we de-normalize N, illustrated in Fig. 4 as pseudo-query range, it
is always equal to or larger than Q. Even though, the containment test for NQ (Step 10)
is useful to detect whether the current z-order is completely out of range of Q. In this
case, we can compute the nextZorder that re-enters into the query box NQ (Step 17).
It skips some nodes in the outside of the query box and saves disk I/O costs. An effi-
cient algorithm to compute next z-orders is described in [18]; this algorithm locates the
most-significant bit-position, say j, in the z-order that can be safely set to one without
jumping out of the query range, then adjusts other bit values which are lower than j so
that the z-order becomes the smallest one contained in the query range but larger than
the original z-order.



Algorithm 1 Range query algorithm

Input: Q(p;. p.) : query range
Output: A node set within the query range
. NQ = (normalize(py), normalize..i(p.)) // normalized query range of Q
.z = zorder(py), z, = zorder(p,)
. z =z, // set the initial z-order to the beginning of the query range
. //find an entry e in the B+-tree that has the smallest z-order larger than z.
D e = find(z)
. while e is not nil do
z=ez [/ ezisthe z-order (key value) of the entry e
if z > 7z, then
return // end of the query
if coord(z) is contained in NQ then
while e is not nil and e.z == z do
// retrieve nodes whose z-order is z in the B+-tree
if the entry e is contained in Q then
output e
e =next(e) [/ move to the next entry of e in the B+-tree
else
nextZorder = the smallest z-order larger than z and contained in NQ.
e = find(nextZorder)

[ Y Y g ey S—
FIASNEPR—S ORI E R

4 Experimental Evaluation

We evaluated the query performance of Xerial for several kinds of queries, e.g. ancestor,
descendant, sibling, and path-suffix queries, which are the basic components to process
more complicated queries such as structural joins, twig-queries, etc.

To clarify the benefit of our method, we prepared two competitors for Xerial; start
index and path-start index. The start index simply sorts XML nodes in the order of start
values. It has the data structure (start = end, level, path, text) in B+-tree. The path-start
index, ((path, start) = end, level, text), sorts nodes first by path, then by start orders.
These structure can localize search space of path queries within some subtree range,
and similar structure is utilized in [4]. However, the following experiments reveal that
such simple integration of indexes has several weak points.

Implementation. All of the indexes are implemented in C++. Xerial’s index structure
is z-order = (start, end, level, path, text). Every z-order is represented with 64-bit integer,
and it is a sort key in the B+-tree. And also,all indexes hold start, end, level and path
values as 32-bit integers. To construct B+-trees, we used the BerkeleyDB library [19],
and their page sizes are set to 1K.

Machine Environment. As a test vehicle, we used an Windows XP, Pentium M 2GHz
notebook with 1GB main memory and 5,400 rpm HDD (100GB).

Database Size. We compared database sizes of start index and Xerial. Fig. 4 shows
their actual database sizes and construction times for various scaling factors (1 to 10)
of the XMark’s benchmark XML documents [20]. The secondary index in Fig. 4 shows
the database size if we constructs three B+-tree indexes for end, level, path values to
complement the functionality of the start index. Even though Xerial has additional z-
orders, its database size is almost the same with the start index, and also it is much more
compact than creating multiple secondary indexes. It is mainly because the B+-tree of
Xerial has many duplicate entries having same z-orders, and it makes lower the depth
of the B+-tree.



search end
4000 T T T T T 4000
3500 + Xerial(time) —=— M4 3500
start index (time) ---#x---
secondary indexes (time) - B .
5 3000 | Xerial (size) == . 1 3000
] start index (size) ——a -~
o 2500 secondary indexes (size) —1.~ {2500 &z
£ o | =
= 2000 b ! 1 2000 &
£ 5
3] . -
\ 2 1500 . I 4[4 1500 O
7] . 10
© 1000 ¢ . 1 1000
) 500 |- = 1 500
search begin =
> o ‘ ‘ . ‘ ‘ 0
@ answer node pseudo query range 0 200 400 600 800 1000 1200

XML File Size (MB)
actual query range

Fig. 4. Range query algorithm (left). DB construction time and DB size (right)

The following experiments are conducted on a XMark document (113MB, scaling
factor = 1.0), and we measured the average times for individual query operations, ig-
noring the output costs of reporting the query results.

Suffix Path Query. First, we compared performance of suffix path queries. Fig. 5 shows
how fast each index can collect nodes that have the same path suffixes. The path-start
index, which has clusters of suffix paths is the fastest, and Xerial performs as fast as
the path-start index, because the interleave function of Xerial also plays a role to group
together nodes which have the same suffix path. The start index is weak in processing
this kind of query since it has to scan the whole index, since information of path is
hidden in its data pages.

In order to show that the importance of having flexibility for the choice of node
labels, we also compared the performance of suffix path queries when inverted path
cannot be used. The tag-start index uses tag IDs instead of inverted path IDs, so it
must perform several nested structural joins [14] to achieve the answer, and shows poor
performance other than the Q3, that is the tag-only query.

Subtree Retrieval. The start index is the most suitable data structure for subtree re-
trievals because nodes in a subtree are sequentially ordered. It shows the fastest result
(Fig. 5). Nevertheless, both of Xerial and path-start index show almost identical perfor-
mance to the start index.

Ancestor Retrieval. Ancestor query is useful to retrieve parent or ancestor information
from some node directly accessed from additional secondary index structures such as
the one for traversing IDREF edges, or inverted indexes for text contents. This query
needs to find nodes which satisfy start < s A e < end, where (s, e) are start and end
position of the base node of the query. Fig. 6 shows the performance of the ancestor
queries for various positions of base nodes, whose level is 12. The start index processes
this query from the root node, and it skips subtrees which are not the ancestor of the
base node. The performance of Xerial is stable, because it can eliminate the search space
by using a combination of start and end axes. On the other hand, the path-start index
breaks the start order down into multiple clusters grouped by path IDs. Consequently,



10

0.6

0s M path-start Xerial -
. path-start index —=—
B Xerial startindex e X
04 24
21750 nodes O tag-start

0.3

Time (sec.)

0.2

0.1

0.0

820 nodes
0520

0.270

21750 nodes

01410151 g 435

0.031 0047 0.042 ) (|

Q1 Q2

Q3

Q1: /lcategory/description/parlist/listitem Q3: //item
Q2: /site/regions/asia/item/description

10 16 900000
o 14 = [ path-start index = | 800000
S “ “ full scan
(s} ] A
» start index ----e---- 1 700000
81 12 Xerial
= 1 path-start index S #of sibling nodes ——— | goo000 g
n start index ----v---- & 10 s S
@ Xerial o 4 500000 £
@ £ & °
g 3 Soneena 4400000 2
S0t { & o 2
3 . g 4 300000 s
é 4 4 200000
N S 2 H 4 100000
0.01 L= : : ‘ o o L T e .
0 20 40 60 80 100 3 4 5 6 7 8 9 10 11 12 13

elapsed time (sec.)

L
. . . . . .

100000 200000 300000 400000 500000 600000
# of nodes in subtree

Fig. 5. Suffix-path (left) and subtree (right) query performance

relative position of base node(%)

depth of sibling nodes

700000 800000

Fig. 6. Ancestor (left) and sibling (right) query performance

it cannot utilize the tree structure of XML. In addition, it cannot eliminate the search
space by using the end values, therefore it is inefficient when the base node of the query
has a lot of preceding nodes in the document order. The start index has the same deficit.
This result indicates that the ancestor query performance of start and path-start indexes
depends on the database size.

Sibling Retrieval. Notable usage of sibling node retrievals is to find blank spaces for
node insertions, to compute parent-child joins and wild-card(*) queries. Xerial remark-
ably outperforms the other indexes (Fig. 6). This is because these indexes except Xerial
have difficulty to find nodes in the target level. The start index must repeat searching the
tree for a node in the target level with a depth-first traversal, while skipping unrelated
descendant nodes occasionally. The path-start index performs this process in every clus-
ter of paths. This descendant skip works well when the target depth of sibling is low;
however, as the level becomes deeper, it cannot skip so many descendants and the cost
of the B+-tree searches increases. To see this inefficiency, we also provided the result
using sequential scan of the entire index, and it shows similar performance to the start
index and path-start index for deep levels.

In summary, to efficiently process queries of suffix paths, siblings, subtrees and
ancestors, the start-index and the path-start index require additional secondary indexes.



11

For example, start index should have indexes for level and path, and path-start index needs
at least three indexes for end, level, and suffix path. Xerial has the ability to process all
of these queries, and the fact it does not use any secondary index is beneficial to the
database size and also to the costs of index maintenance due to updates.

5 Discussions & Related Works

Although the above experiments show advantages of our methods, we would like to
mention some tips that finally lead us to this performance. At first, we used 32-bit in-
tegers to represent z-orders, but this implementations performs poorly for every types
of queries in the experiments. This is because the 32-bit z-order splits each dimension
only to 28 grids. It is too coarse and results in that too many nodes are assigned the same
z-orders; there are many overflowed B+-tree pages and it slows down every search op-
erations. On the other hand, the resolution becomes the finest when every point in the
multidimensional space has a unique z-order. However, its bit length might be too long,
and such key values will soon fill internal pages of the B+-tree, ending up lowering the
B+-tree’s branching factors. The optimal resolution is to make each disk page have a
unique z-order. To achieve this, the UB-tree [17] has to extend the B+-tree implemen-
tation.

The use of the UB-tree [17] to index XML documents is proposed in [21]. Its coor-
dinates are combinations of text values, document IDs, and paths and their appearance
orders generated from DTDs. Although this method cannot handle suffix path queries
etc., the integration of text values is an interesting approach that we do not have men-
tioned in this paper. Note that, however, if we integrate text values to the index structure,
every update to the text values invokes subsequent maintenance of the indexes. Kaushik
et. al. proposed efficient algorithms to process queries containing predicates for text
values [1]. Their approach assumes text value indexes are maintained separately from
structure indexes, so it is more promising in that it can leverage traditional IR technolo-
gies to index text contents of XML.

We have not mentioned the updatability of the XML indexes. In fact, integer inter-
vals are weak for updates, since blank space for future node insertions will be exhausted.
There are some proposals to make these labels tolerant for node insertions, including
ORDPATH [13] etc. As long as we can define the total order on node labels, it is possi-
ble to incorporate these labeling strategies to our method.

6 Conclusions & Future Work

In this paper, we proposed an efficient method to integrate tree-structure and path-
structure indexes for XML. The proposed indexing method provides efficient processing
of ancestor, descendant, sibling, suffix path queries etc. In addition, our index structure
and multidimensional range query algorithm can be implemented on top of the stan-
dard B+-tree. Our experimental results show advantages and disadvantages of query
processing due to the indexing methods. Other queries not targeted in this paper are
references by using IDREF edges or inverted indexes for the text contents. It is worth
investigating to incorporate such additional index structures into Xerial.



12

References

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.
20.

21.

. Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ramakrishnan, R.: On the integration of

structure indexes and inverted lists. In: ICDE. (2004) 829

. Clark, J., DeRose, S.: XML path language (XPath) version 1.0 (1999) available at

http://www.w3.org/TR/xpath.

. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions. In: proc.

of VLDB. (2001)

. Chien, S.Y., Vagena, Z., Zhang, D., Tsotras, V.J., Zaniolo, C.: Efficient structural joins on

indexed XML documents. In: proc. of VLDB. (2002)

. Jiang, H., Wang, W., Lu, H., Yu, J.X.: Holistic twig joins on indexed xml documents. In:

proc. of VLDB. (2003)

. Yi Chen, S.B.D., Zheng, Y.: BLAS: An efficient XPath processing system. In: proc. of

SIGMOD. (2004)

. Jiang, H., Lu, H., Wang, W., , Ooi, B.C.: XR-Tree: Indexing xml data for efficient structural

joins. In: proc. of ICDE. (2002)

. Gray, J., Reuter, A.: Transaction Processing - Concepts and Techniques. Morgan Kaufmann

(1993)

. Hellerstein, J.M., Stonebraker, M.: Readings in Database Systems. Forth Edition. MIT Press

(2005)

Orenstein, J.A., Merrett, T.H.: A class of data structures for associative searching. In: proc.
of PODS. (1984)

Lawder, J.K., King, P.J.H.: Querying multi-dimensional data indexed using the Hilbert space-
filling curve. SIGMOD Record 30(1) (2001)

Sagan, H.: Space-Filling Curves. Springer-Verlag New York, Inc (1994)

O’Neil, P, O’Neil, E., pal, S., Cseri, 1., Schaller, C.: Ordpaths: Insert-friendly xml node
labels. In: proc. of SIGMOD. (2004)

Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M.: Structural joins: A primitive for
efficient XML query pattern matching. In: proc. of ICDE. (2002)

Goldman, R., Widom, J.: DataGuides: Enabling query formulation and optimization in
semistructured databases. In: proc. of VLDB. (1997)

Milo, T., Suciu, D.: Index structures for path expressions. In: Database Theory - ICDT 99.
Volume 1540 of Lecture Notes in Computer Science. (1999)

Bayer, R., Markl, V.: The UB-tree: Performance of multidimensional range queries. Techni-
cal report (1998)

Ramsak, F., Markl, V., Fenk, R., Zirkel, M., Elhardt, K., Bayer, R.: Integrating the UB-tree
into a database system kernel. In: proc. of VLDB. (2000)

Sleepycat Software: (BerkeleyDB) available at http://www.sleepycat.com/.

Schmidt, A., Waas, F., Kersten, M., Carey, M.J., manolesch, L., Busse, R.: XMark: A bench-
mark for XML data management. In: proc. of VLDB. (2002)

Bauer, M.G., Ramsak, F., Bayer, R.: Indexing XML as a multidimensional problem. Tech-
nical report (2002) TUM-10203.



